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a b s t r a c t

Graphene nanoflakes (GNF) with lateral dimensions of ca. 30 nm and edge-terminated with carboxylic
acid functionalities have been characterised and the influence of acidic functionalities on the
[Fe(CN)6]3�/4� redox couple studied using cyclic voltammetry and spectroelectrochemical methods.
The presence of the COOH-terminated GNF in solution as well as immobilised onto an electrode surface
was found to inhibit the redox reaction, supporting the conclusion that GNF promote instability of
[Fe(CN)6]3�/4� in solution. The redox reaction was also much less influenced by the presence of GNF in
D2O, highlighting the role played by readily available protons in destabilising the [Fe(CN)6]3�/4� redox
couple. In the presence of GNF in solution, an additional, very intense cyanide stretch IR band was
observed that was attributed to the formation of a new, non-soluble species. When D2O was used as
the solvent, the IR spectrum showed no evidence of a new cyano species.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

One of the many advantages of carbon as electrode material is
its relatively inert electrochemistry. However, carbon has a rich
surface chemistry, and while this property is useful in that it allows
the chemical modification of the electrode surface, it can also lead
to unwanted oxidation in the presence of atmospheric oxygen and
moisture [1,2]. The interaction of various redox species with oxy-
gen functionalities at carbon electrodes has been investigated
extensively by McCreery and coworkers [3–5]. Common redox
probes can be classified roughly into three categories: those which
are insensitive to surface termination (FcMeOH, [Ru(NH3)6]3+/2+);
those which interact with specific oxygen functionalities (such as
Fe3+/2+ with C@O) and those which are surface sensitive but appar-
ently do not interact with specific oxygen-containing groups
([Fe(CN)6]3�/4�) [1].

As higher surface area nanomaterials are used, the role of car-
bon surface chemistry becomes increasingly important. In the past
decade since it was first studied experimentally [6], graphene has
attracted enormous interest in electrochemical applications owing
to its large surface area and remarkable electronic properties
[7–14]. Pristine graphene manufactured via mechanical exfoliation
cannot be produced in bulk quantities. As graphene is increasingly
being manufactured via reduction of graphene oxide, where an
array of oxygen groups persist in the final product, the interaction
of oxygen moieties with solution species will have an influence on
the electrochemical response. The large variety of possible oxygen
functionalities at the electrode surface makes it difficult to attri-
bute changes in electrochemical response to specific functional
groups.

Our approach to studying the influence of oxygen functionali-
ties on the electrochemical response of graphene is to use novel
graphene nanoflakes (GNF). GNF have average lateral dimensions
of just 30 nm, confirmed by AFM imaging [15] with a graphene
basal plane that is largely defect free. The edges of the GNF are dec-
orated with carboxylic acid (COOH) groups, as shown by XPS and
ATR-FTIR [15]. The high-resolution XPS spectrum of the C1s region
can be fit with two peaks: a main peak at ca. 285 eV corresponding
to sp2 carbon and a second peak at ca. 289 eV assigned to the pres-
ence of the COOH edge groups. There is no evidence for the pres-
ence of sp3 carbon bonding, or oxygen functionalities other than
COOH. Likewise, the ATR-FTIR spectrum shows a strong m(C@O)
peak at 1717 cm�1, which is consistent with a carboxylic acid func-
tionality and in good agreement with XPS data. Thus these GNF
allow us to study the influence of the COOH groups on
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electrochemical response in isolation, as there are no other oxygen
functionalities present. Additionally, these edge groups are present
in high density and the small size of the GNF means their influence
on the electrochemical performance of the flakes will be amplified.

The results presented in this paper concern the influence of the
COOH edge group on the redox response of the [Fe(CN)6]3�/4� cou-
ple and follow from previously reported results from our group
[16]. When this redox couple was investigated using an electrode
modified with COOH-terminated GNF, its voltammetric response
was found to become highly irreversible as the solution pH was
decreased below pH 8. At low solution pH (<6) and ionic strength
the cyclic voltammetric (CV) response was very inhibited and sig-
moidal in form, consistent with presence of an adsorbed blocking
species at the electrode surface. When GNF terminated with amide
functionalities were used instead, they were found to have no
noticeable effect on this redox reaction, indicating that the COOH
edge groups are responsible for the observed inhibition. Other
redox probes, such as ferrocene methanol, were found to be insen-
sitive to the identity of the GNF edge groups, so it was clear that
the [Fe(CN)6]3�/4� species in particular was affected by the COOH
groups. Previous studies [1,4,5] have found the ET kinetics of this
reaction to become slower with increasing, rather than decreasing,
pH, and attributed the effect to electrostatic repulsion between
COO� functionalities at carbon electrodes and the negatively
charged redox probe. In the case of COOH-GNF modified elec-
trodes, a completely different mechanism must be responsible
for the observed inhibition. The inhibition becomes observable at
pH <8 and this is coincident with the pH range under which
COOH-GNF are involved in complex dynamic protonation equilib-
ria. A pH titration of GNF reported in our earlier work [16] showed
a lack of a well-defined pKa as deprotonation of the acid groups
occurred over a wide pH range of ca. pH 3–8. This behaviour was
attributed to different bonding environments or electro-
static/hydrogen-bonding interactions between neighbouring
COOH groups. From the titration data the number of acidic protons
was estimated at 7 � 10�3 mol per gram of GNF material. It
appeared that the stability and reversibility of electron transfer
of the [Fe(CN)6]3�/4� species is strongly affected by the acidic pro-
tons of the edge groups and in this paper we describe further the
role of the acidic groups on GNF in the [Fe(CN)6]3�/4� electrochem-
istry, using in situ ATR-FTIR spectroscopy to monitor the redox
reaction in both H2O and D2O environments.
2. Experimental

2.1. Chemicals

The GNF were prepared from multiwalled carbon nanotubes (5–
20 nm outer diameter and 2–6 nm inner diameter) by chemical
oxidation as reported previously [15] with some modification to
the method to allow for scale-up. All other chemicals were pur-
chased from Sigma–Aldrich and used as received. All H2O solutions
were prepared using water from a Milli-Q water purification sys-
tem, with a resistivity of not less than 18.2 MX cm at 25 �C.
2.2. Cyclic voltammetry and electrode preparation

The experimental procedure has been reported previously [16].
CV experiments were carried out using a l-Autolab potentiostat
(Eco Chemie, NL) running GPES (v4.9) software. A boron-doped
diamond (BDD) disk, 3 mm in diameter and sealed in PEEK
(Windsor Scientific) was used as the working electrode, either
unmodified or modified with a layer of adsorbed GNF. A coiled
platinum wire served as a counter electrode. The reference elec-
trode was Ag/AgCl (sat. KCl) (BASi, US) and all potentials are
reported relative to it. The BDD electrode was polished using suc-
cessively finer grades of alumina suspension down to 0.05 lm,
rinsed thoroughly with ultrapure water and dried using an ambi-
ent air flow. For experiments using GNF-modified electrodes,
GNF samples were drop-cast from aqueous suspensions of known
concentration onto the freshly polished BDD electrode using a
micropipette and allowed to dry under ambient conditions. After
drying, the electrode was rinsed thoroughly with ultrapure water
to remove any poorly adhered material from the surface and dried
using an ambient air flow. The resulting amount of GNF on the
electrode was estimated at 1.5 ± 0.5 lg in all experiments, and all
CVs were recorded using a freshly modified electrode. In other
experiments a known concentration of GNF was simply added to
the solution along with the redox probe.

2.3. Solution-phase ATR-FTIR

2.3.1. Characterisation of GNF
Solution-phase characterisation of GNF was performed by

recording mid-infrared spectra in attenuated total reflectance
(ATR) mode with a Bruker Tensor 27 spectrometer (Bruker,
United Kingdom) fitted with a room temperature DLaTGS detector
at 4 cm�1 resolution and a diamond crystal as the internal reflec-
tion element. A droplet (volume ca. 50 ll) of an aqueous suspen-
sion of the GNF was applied directly onto the ATR crystal and
2 ll aliquots of 0.1 M KOH were added until the pH of the solution
reached ca. 9 as determined with pH indicator paper. A spectrum
was collected after each addition. Water bands were subtracted
from the sample spectra by recording a background spectrum of
water only prior to the experiment. The data was processed using
the atmospheric compensation function of OPUS software.
Changes in concentration due to the addition of aqueous aliquots
of base were compensated by multiplying the spectra by the vol-
ume ratio.

2.3.2. [Fe(CN)6]3�/4� stability experiments
The stability of [Fe(CN)6]3�/4� in solution was investigated by

recording the IR absorption of the cyanide ligands over a 24-h per-
iod. A stainless steel cell was placed on top of the IRE with two nar-
row steel tubes at the top of the cell that acted as the inlet and
outlet for the sample. Plastic tubing was attached to the steel tubes
and the sample was introduced at one end via a syringe. The sam-
ple was then pumped back and forth to remove any air bubbles.
The length of the plastic tubing and the small surface area exposed
to the atmosphere meant that contamination of samples in D2O by
atmospheric water was minimised. A single spectrum was com-
puted by Fourier transformation of 250 averaged interferograms
for background and sample and the software was programmed to
record a spectrum every 60 min. The background spectrum was
of pure water and air for experiments in H2O and D2O, respectively.
Spectra recorded in H2O were manipulated using the baseline and
atmospheric correction functions in OPUS software. Spectra
recorded in D2O were manipulated by subtracting a spectrum of
D2O only, which was first scaled to match the absorbance at
2080–2740 cm�1 in sample spectra.

2.4. Spectroelectrochemical experiments

To probe the effect of solution-phase GNF on the reversibility of
the [Fe(CN)6]3�/4� redox couple, the IR absorption of the cyanide
ligands was monitored during oxidation and reduction using an
in-situ technique. ATR-FTIR spectra were recorded with a Bruker
ISF 66/S spectrometer (Bruker, United Kingdom) fitted with a liq-
uid nitrogen-cooled MCT-A detector and a silicon ATR prism at
4 cm�1 resolution. An electrochemical cell with a volume of 20 ll
was used with a Pt mesh working electrode situated 0.1–0.3 mm
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above the prism. A Pt sheet counter and Ag/AgCl reference elec-
trode were placed in a chamber separated from the sample cham-
ber by a Vycor frit. Working electrode potentials were set at 0 V for
reduction of [Fe(CN)6]3� to [Fe(CN)6]4� and +350 mV for oxidation
of [Fe(CN)6]4� to [Fe(CN)6]3�. IR difference spectra were con-
structed by recording a background spectrum at one potential,
then switching to the second potential and recording a sample
spectrum at specific time intervals.
3. Results

3.1. ATR-FTIR characterisation of GNF in solution

The solution-phase IR spectra of solvated GNF are shown in
Fig. 1. Initially, when only water and GNF are present and no base
has been added, the pH of the solution is approximately 2 as deter-
mined with pH indicator paper. Absorption bands can be seen at
1720 cm�1 (C@O stretch), 1590 cm�1 (asymmetric COO� stretch),
1420 cm�1 (symmetric COO� stretch) and 1260 cm�1 (overlapping
C–O stretch and O–H deformation). The GNF are partially deproto-
nated already before the addition of base, as indicated by the low
pH of the solution and the peaks corresponding to both protonated
and deprotonated forms of COOH. Adding increasing aliquots of
KOH causes the signal from the C@O and C–O stretches associated
with protonated carboxylic acid to decrease, whereas the two
bands from COO� gain intensity with added base. Changes can also
be observed in the O–H stretch region where a decrease in absorp-
tion intensity is seen around 2900 cm�1 and increase around
3300 cm�1. Because a background spectrum of pure water was
recorded, the O–H stretch of water is subtracted from the sample
spectra which initially leads to a negative feature centred at
3300 cm�1. The increase in absorption at 3300 cm�1 upon addition
of base is assigned to increased solvation of the deprotonated car-
boxylate groups. At the same time, the intensity of absorption
around 2700 cm�1 decreases and this is attributed to the loss of
hydrogen-bonded COOH groups. The final spectrum in Fig. 1 is
recorded at pH ca. 7. Thus these in situ pH studies agree with
our former observations that the flakes occupy a range of protona-
tion states in solutions of pH 3–7.
Fig. 1. Changes in IR absorption of GNF upon addition of 0.1 M KOH. GNF with no
added base at pH 2 (black), pH3 (red), pH 5 (green), pH 7 (blue). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
3.2. Cyclic voltammetric studies of [Fe(CN)6]3�/4� redox couple in the
presence of GNF

To explore further our previous observations [16] that the
[Fe(CN)6]3�/4� species are unstable in the solution environment
surrounding the GNF, cyclic voltammetry was performed with both
[Fe(CN)6]3� and GNF present in solution. All CVs were recorded at a
freshly polished, clean BDD electrode. The experiment was also
carried out with the [Ru(CN)6]3�/4� redox species in solution for
comparison. It can be seen from Fig. 2 that presence of GNF in solu-
tion influences both redox reactions, but the extent to which this
happens differs greatly. In the case of [Ru(CN)6]3�/4�, the presence
of GNF in solution leads to a small increase in peak separation and
a small decrease in peak height. In the case of [Fe(CN)6]3�/4�, on the
other hand, the peak height is drastically reduced and the voltam-
mogram has a sigmoidal shape, indicative of electrode blocking.
This is the same response as we obtained when COOH-terminated
GNF were immobilised directly on the electrode surface [16]. The
decrease in current observed for the [Ru(CN)6]3�/4� couple we
attribute to a small lowering of the effective diffusion coefficient
of the probe due to the large GNF particles dispersed in the solu-
tion. We would expect a similar inhibition for [Fe(CN)6]3�/4�; how-
ever these results indicate that GNF have a profound effect on the
electron transfer process of this species, rather than simply block-
ing diffusion. As we reported previously [16] it is specifically the
COOH edge groups which affect the [Fe(CN)6]3�/4� in this way, sug-
gesting a protonation process may be responsible for these
observations.

Having established the importance of the acidic functionalities
in electron transfer process for [Fe(CN)6]3�/4�, CV experiments
were carried out in low ionic strength (0.01 M KCl) solutions with
GNF immobilised on the electrode surface and either H2O or D2O as
the solvent. The results are presented in Fig. 3. When H2O is used
as the solvent, the CV shows significant inhibition in the first cycle.
The response improves slightly during repeated cycling, but the
10th cycle still shows significant irreversibility of the redox reac-
tion. In D2O, the first cycle shows inhibited electron transfer, but
the response improves during repeated cycling with increase in
peak heights and decrease in peak separation. By the tenth scan,
the response in D2O is essentially reversible.
Fig. 2. CVs of GNF only (black); 0.5 mM [Fe(CN)6]3� (dashed blue); 0.5 mM
[Fe(CN)6]3� and 34 lg ml�1 GNF (solid blue); 0.5 mM [Ru(CN)6]4� (dashed red);
0.5 mM [Ru(CN)6]4� and 34 lg ml�1 GNF (solid red). Electrolyte: 0.01 M KCl. Scan
rate: 50 mV s�1. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)



Fig. 3. CVs of 0.5 mM K3[Fe(CN)6] in 0.01 M KCl in H2O (red) and D2O (blue). First
scans (solid lines) and 10th scans (dashed lines) shown. Scan rate: 50 mV s�1. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

M.M. Lounasvuori et al. / Journal of Electroanalytical Chemistry 753 (2015) 28–34 31
When the GNF are surrounded with H2O molecules, the con-
stant protonation and deprotonation of the carboxylic acid edge
groups does not lead to a change in the chemical identity of the
acid groups. However, if the H2O molecules are replaced by D2O,
the dynamic acid–base equilibrium will gradually lead to predom-
inantly COOD around the flake edges as the protons are exchanged
and diffuse away from the electrode surface. Therefore we propose
that during the first cycles in D2O, the GNF edges are still mostly
decorated with COOH groups and these inhibit the redox reaction.
However, as COOD groups begin to dominate, the redox reaction is
allowed to proceed uninhibited, leading to a near reversible CV by
the 10th scan. The results also suggest that if an electrode blocking
species is responsible for the inhibited electron transfer, it forms
reversibly and can dissolve or desorb from the electrode surface
according to changes in the diffusion layer. Thus the redox reaction
is able to become more reversible with cycling in D2O as the con-
centration of protons at the GNF-modified electrode surface
decreases.

3.3. Spectroelectrochemistry of [Fe(CN)6]3�/4�

The [Fe(CN)6]3�/4� redox reaction can be conveniently moni-
tored with ATR-FTIR because the cyanide stretch is sensitive to
the oxidation state of the iron centre. [Fe(CN)6]3� absorbs at
2116 cm�1, whereas in [Fe(CN)6]4� the absorption frequency is
shifted to 2036 cm�1 and the extinction coefficient is four times
larger. ATR-FTIR coupled with in-situ controlled potential
experiments were performed for 1 mM K3[Fe(CN)6] in 0.01 M KCl.
The sample was introduced to the in situ electrochemical cell
and a potential of 0 V was applied to drive the reduction of
[Fe(CN)6]3� to [Fe(CN)6]4�. The resulting IR spectrum shows a neg-
ative [Fe(CN)6]3� band and positive [Fe(CN)6]4� band (solid line,
Fig. 4a). When the intensity of the [Fe(CN)6]4� band did not
increase anymore, all [Fe(CN)6]3� present in the sample chamber
was assumed to have been converted to [Fe(CN)6]4�. The reaction
reached completion in about 2 min, as indicated by the intensity
of the [Fe(CN)6]4� band. The height of the [Fe(CN)6]4� band as a
function of time is plotted in Fig. 4b.The potential was then
switched to +350 mV to oxidise [Fe(CN)6]4� back to [Fe(CN)6]3�.
The resulting IR spectrum shows a positive [Fe(CN)6]3� band and
negative [Fe(CN)6]4� band (dashed line, Fig. 4a). As was the case
for the reduction, the negative [Fe(CN)6]4� band reached full height
after about 2 min, indicating full conversion back to [Fe(CN)6]3�.
The [Fe(CN)6]3� solution was then replaced by a solution contain-
ing 1 mM K3[Fe(CN)6] in 0.01 M KCl and 3.2 lg ml�1 of GNF. The
concentration of acidic protons from the GNF is estimated to be
22 lM and only a small fraction would be dissociated. Therefore
the GNF did not significantly alter the pH of the solution. The
experiment was then repeated and a potential of 0 V applied.
With the GNF present, the reaction proceeded much more slowly.
After 2 min, the [Fe(CN)6]4- band was only 40% of the intensity
expected for full conversion of [Fe(CN)6]3� to [Fe(CN)6]4�. Full con-
version took approximately 9 min, compared to 2 min for the same
volume and concentration of the control solution. The influence of
GNF on the oxidation reaction was essentially the same.

The observations reported here support the CV experiments
described in Section 3.2. The presence of GNF clearly inhibits the
reversibility of the [Fe(CN)6]3�/4� redox couple. Moreover, it was
shown in Fig. 2 that the observed decrease in current could not
be explained by diffusion effects alone. Therefore, the reason
why the reaction takes longer to complete with GNF in solution
is likely to lie in the solution stability of the redox species.

3.4. Monitoring the stability of [Fe(CN)6]3�/4� with ATR-FTIR

Beriet and Pletcher [17] made the observation that the poison-
ing of an electrode surface by the [Fe(CN)6]3�/4� redox couple
required the presence of both Fe(II) and Fe(III) species. We there-
fore used an equimolar solution of K3[Fe(CN)6] and K4[Fe(CN)6] in
H2O to probe their stability in solution in the absence of applied
potential. To gauge the impact of GNF on the stability of
[Fe(CN)6]3�/4�, a second solution was prepared, this one also con-
taining 30 lg ml�1 GNF. The concentration of GNF was high
enough to impart a brownish hue to the solution but low enough
to not alter the pH significantly (pH of both solutions 6.5 ± 0.1).

The IR spectrum of both samples initially shows two peaks; the
[Fe(CN)6]4� CN stretch at 2036 cm�1 and the [Fe(CN)6]3� CN stretch
at 2116 cm�1 (Fig. 5). No peaks are detected in the 1700–1200 cm�1

region that could be associated with GNF, although the concentra-
tion of flakes is too low for this purpose. Over time, a third peak
begins to emerge in both samples. In the control solution, this peak
at 2069 cm�1 is detectable above the noise after about 13 h,
whereas with GNF in solution, the intensity of this third peak sur-
passes that of the [Fe(CN)6]3� peak after 3 h. Mixing the GNF sample
by pumping gently with a syringe back and forth caused a decrease
in the intensity of the peak at 2069 cm�1.

The new band is very high in intensity compared to the other
two CN stretch bands. Given that the [Fe(CN)6]4� and [Fe(CN)6]3�

bands are not greatly diminished, it is clear that the new cyano
species cannot be present in high concentration. The intensity of
the new band may then be due to either a species present in low
concentration with a high extinction coefficient, or the accumula-
tion of a species in the region near the ATR prism. A new species



Fig. 4. (a) Difference spectra of [Fe(CN)6]3� and [Fe(CN)6]4�. After reduction of K3[Fe(CN)6], the IR spectra show a negative [Fe(CN)6]3� band and positive [Fe(CN)6]4� band
(solid line). Oxidation of [Fe(CN)6]4� results in a positive [Fe(CN)6]3� band and negative [Fe(CN)6]4� band (dashed line). (b) Height of the [Fe(CN)6]4� CN stretch band at
2036 cm�1 relative to the intensity of absorption at full conversion as a function of time. Blue squares: 1 mM K3[Fe(CN)6]; red squares: 1 mM K3[Fe(CN)6] and 3.2 lg ml�1 of
GNF. Electrolyte: 0.01 M KCl. Potentials: 0 V (reduction), +350 mV (oxidation). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. 2 mM K3[Fe(CN)6] and 2 mM K4[Fe(CN)6] in H2O at t = 0 h (solid blue) and at
t = 24 h (dashed blue); with 30 lg ml�1 GNF at t = 0 h (solid red) and at t = 24 h
(dashed red). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. ATR-FTIR spectra of 2 mM K3[Fe(CN)6] and 2 mM K4[Fe(CN)6] with
30 lg ml�1 GNF In H2O at t = 0 h (solid red) and t = 4 h (dashed red), in D2O at
t = 0 h (solid blue) and t = 4 h (dashed blue). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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with a high extinction coefficient is unlikely, as the most plausible
solution species candidate that absorbs in this region is free cya-
nide, the absorption coefficient of which is very small compared
to the bound form [18]. The most likely explanation is the accumu-
lation of a non-soluble species at the surface of the internal reflec-
tion element, which in the cell geometry is at the bottom of the
cell. This would also explain why the intensity of the other CN
stretch bands does not change significantly, since the amount of
precipitate does not need to be large in order to give an appreciable
signal. UV–Vis spectra taken in situ with the same solution (not
shown) do not offer evidence of the formation of a coloured spe-
cies, but it is important to bear in mind that the UV–Vis probes
the bulk solution (where the overall concentration of this new spe-
cies is low) whereas ATR-FTIR only reaches a few microns at the
bottom of the cell (where the species accumulates).

As described in Section 3.2, the identity of solvent has a marked
influence on the reversibility of the [Fe(CN)6]3�/4� redox couple. To
further explore this, stability experiments were repeated in D2O as
shown in Fig. 6. In H2O, a new band appeared in between the two
cyanide stretch bands after a couple of hours. In D2O, no new band
is seen after four hours whereas in H2O, the new band at that point
was already comparable in size to the [Fe(CN)6]4� stretch. After
24 h in D2O the new band did become evident, but its appearance
is accompanied with a H2O band due to H2O contamination from
atmospheric moisture, leading to the conclusion that the presence
of appreciable concentration of protons is necessary for the decom-
position/precipitation reaction to proceed.

4. Discussion

Above, we have described how the presence of GNF influences
the [Fe(CN)6]3�/4� redox system. In our previous work [16] it was
determined that it is specifically the acidic groups around the
edges of GNF that are responsible for the irreversible behaviour
of the [Fe(CN)6]3�/4� redox couple. Here, we have explored further
the influence of protons on this redox reaction. The reversibility
and electron transfer rate of the [Fe(CN)6]3�/4� redox system has
been shown by others to also depend on the concentration and
identity of cations in solution [17,19]. Peter et al. have suggested
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that the rate of electron transfer depends on the concentration of
an activated species containing one or more cations, and that elec-
tron transfer is considerably lower in the absence of ion-pairing,
for example in electrolyte solutions of low ionic strength [19].
Additionally, it is known that [Fe(CN)6]3�/4� can be unstable in
solution of low ionic strength and low pH, and cyanide ligand loss
and subsequent decomposition and adsorption onto electrodes
have been observed by several groups [17,20–25]. Protonation
and decomposition of [Fe(CN)6]3� have been observed to occur
simultaneously [26], and although our sample solutions at pH 6
would not be considered acidic enough to cause decomposition
of [Fe(CN)6]3�, the high density of COOH groups on the GNF may
lead to localised acidic conditions, promoted by the ready avail-
ability of protons at the edges of the flakes. Thus there are several
mechanisms by which the very acidic local environment of the
COOH-GNF could inhibit electron transfer, including disruption to
the ion paired activated species required for fast electron transfer,
protonation of CN ligands, loss of ligands or formation of insoluble
decomposition products.

When deuterated water is substituted for H2O, the presence of
GNF has much less influence on the [Fe(CN)6]3�/4� redox reaction.
Consecutive cycles in D2O saw the voltammetric response of
[Fe(CN)6]3�/4� quickly return to near reversible. ATR IR also
showed the [Fe(CN)6]3�/4� species to be more stable in the pres-
ence of GNF when dissolved in D2O rather than H2O. The substitu-
tion of deuterium for hydrogen in a water molecule has little effect
on the molecular dimensions defined by bond length and bond
angle, but the O–D bond is slightly stronger than the O–H bond.
The difference in bond strength leads to a smaller dissociation con-
stant for D2O than H2O, making H2O a fivefold stronger acid [27].
Liquid D2O is more viscous than liquid H2O and has a slower rate
of molecular reorientations and translations [28], leading to the
conclusion that there is more structural order in D2O due to a
higher degree of hydrogen bonding [29]. This can be attributed
to lower intermolecular vibrational frequencies caused by isotopic
substitution but also the greater strength of hydrogen bonding in
D2O than in H2O [29]. Additionally, protons are able to diffuse
rapidly in water via the Grotthuss mechanism [30]. It has recently
been demonstrated that the mechanism is strongly influenced by
the local hydration structure of the proton and involves the con-
certed motion of several protons [31]. The reorganisation and rota-
tion of molecules involved in the Grotthuss mechanism are slower
in D2O than in H2O, making heavy water less efficient in proton
transport. Thus the instability of [Fe(CN)6]3�/4� in the presence of
GNF appears to be exacerbated by the readily available H+ in the
localised acidic conditions in the region of the carboxylic acid edge
groups. Increased stability in D2O can be attributed either to the
increased strength of the O–D bond (making D+ less available) or
slower diffusion of D+ from the GNF to [Fe(CN)6]3�/4�.

The results described in Section 3.4 lead to the interpretation
that the presence of GNF in an aqueous solution of K3[Fe(CN)6]
and K4[Fe(CN)6] promotes the decomposition of [Fe(CN)6]3� and/or
[Fe(CN)6]4�. The intense new IR absorption band that emerges after
only some hours indicates the formation of a non-soluble species.
The best-known hexacyanoferrate complex is Prussian Blue, which
absorbs in the region of 2070–2100 cm�1 depending on the
whether the Fe3+ is hydrolysed (lower cm�1) or not (higher
cm�1) [32] and it could be envisaged to accumulate at the bottom
of the cell by precipitation, although the UV–Vis data does not offer
direct evidence of Prussian Blue. Other well-known related com-
pounds are Prussian White (all ferrous), which absorbs between
2080–2060 cm�1 and Prussian Yellow/Everitt’s Salt (all ferric),
absorbing near 2175 cm�1. During the reduction of [Fe(CN)6]3� to
[Fe(CN)6]4� an adsorbed intermediate has been reported that
absorbs between 2070–2080 cm�1 [33]. Similarly, an adsorbed
species on Pt has been observed during potential cycling that gives
an IR band 2090–2070 cm�1 and inhibits ET, concluded to be a
(unnamed) colourless soluble (i.e. containing K+) mixed-valency
compound [24]. Hence although we have clearly detected a decom-
position product formed in the presence of COOH-terminated GNF
we cannot be absolutely certain of its identity.
5. Conclusions and future work

COOH-terminated GNF have been used to probe the influence of
acidic functionalities on the [Fe(CN)6]3�/4� redox couple by cyclic
voltammetry and controlled-potential experiments with in-situ
ATR-FTIR. The redox reaction is severely inhibited by the presence
of the GNF in solution as well as at the electrode surface, support-
ing the conclusion that GNF promote instability of [Fe(CN)6]3�/4� in
solution. The formation of a precipitate from solutions of
[Fe(CN)6]3� and [Fe(CN)6]4� in the presence of GNF was concluded
from ATR-FTIR spectroscopy. The precipitate did not form when
D2O was used as the solvent. GNF had much less influence on
the redox reaction in D2O, highlighting the role played by readily
available protons at the flake edge.

We have suggested here that the instability of [Fe(CN)6]3�/4�

may be caused by protonation and subsequent decomposition of
the complex anion. Work is under way to monitor this process
and the protonation state and H+/D+ exchange of the carboxylic
acid edge groups around GNF dissolved in D2O with 1H NMR. At
a given temperature, D2O is more structured than H2O, hence sub-
stituting D2O for H2O is therefore comparable to lowering the tem-
perature of the solution. Therefore it would be interesting to see if
there is a temperature dependence of the CV response of
[Fe(CN)6]3�/4� in H2O when GNF are present. Other solvents will
also be used to study the influence of GNF on the reversibility
and stability of this redox couple.

Understanding the role of different oxygen-containing func-
tional groups on the electrochemical performance of graphene
materials is essential in determining the importance of defect
chemistry when it is used as an electrode. Here we have been able
to study the influence of COOH groups in isolation as our well-
characterised flakes are shown to contain no other functionalities.
By changing the GNF terminations we aim to study the effect of
other edge groups on the electrochemical response of graphene.
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