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Abstract

Given a Brownian motion (Bt)t¿0 and a general target law � (not necessarily centered or even
in L1) we show how to construct an embedding of � in B. This embedding is an extension
of an embedding due to Perkins, and is optimal in the sense that it simultaneously minimises
the distribution of the maximum and maximises the distribution of the minimum among all
embeddings of �. The embedding is then applied to regular di$usions, and used to characterise
the target laws for which a Hp-embedding may be found.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let (Xt)t¿0 be an adapted stochastic process with state space I , and let � be a
probability measure on I . Given X and �, the Skorokhod embedding problem is to
9nd a stopping time with the property that XT ∼ �. For a general stochastic process
X , and an arbitrary measure �, necessary and su;cient conditions for the existence of
a solution to Skorokhod problem were given by Rost (1971). Hence attention switches
to the construction of solutions.
When (Xt)t¿0 is a one-dimensional Brownian motion started at 0 and � is a zero-

mean target distribution, many explicit constructions of stopping rules which embed
� are known, see for example Skorokhod (1965), Dubins (1968), Root (1969) and
Chacon and Walsh (1976). For Brownian motion it is interesting to seek embeddings
with additional optimality properties, such as the embedding which minimises the vari-
ance of the stopping time (Rost, 1976), the embedding which stochastically minimises
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the law of the local time at zero (Vallois, 1992), or the embedding which maximises
the law of the supremum of the stopped process amongst the class of stopping times
for which the process (Xt∧T )t¿0 is uniformly integrable (AzCema and Yor, 1979a, b).

The 9rst purpose of this article is to consider the embedding in Brownian motion of
a target distribution which is not centered and may not even be integrable. Note that if
the target distribution has 9nite mean m then one way to embed the law is to wait until
the Brownian motion 9rst hits the level m and then adopt a favourite embedding for
a centered target distribution for the shifted process now starting at m. However, this
cannot work if m is not well-de9ned and 9nite and even if m exists this construction
may not share the optimality properties of the original embedding.
More generally, if Xt is a Brownian motion and � is any target distribution, then

there is a simple solution of the Skorokhod embedding problem given by

TD = inf{t ¿ 1: Xt = h(X1)}; (1)

where h is chosen so that h(X1) ∼ �. This solution was pointed out by Doob (see also
Revuz and Yor (1999, Exercise VI.5.7)) and can be adapted to any recurrent process.
However there is a strong sense in which this simple solution is not a good solution.
To be more precise, TD is not a minimal stopping time (except in a few special cases),
or in other words there exists a uniformly smaller stopping time S6TD which also
embeds � (see Cox and Hobson (2003)).
The concept of minimal stopping times was introduced by Monroe (1972). Monroe

showed that when � is a zero-mean target distribution for Brownian motion, a stopping
time T is minimal if and only if (Xt∧T ) is uniformly integrable. Note that, with � cen-
tered and in L1, TD de9ned in (1) is clearly not a uniformly integrable stopping time
unless � is normal with variance 1. Hence we know that there are ‘better’ constructions
in this case at least (see for example the embeddings listed in the second paragraph).
Our aim is to give a ‘better’ stopping rule than the one given in (1), which applies

to all target distributions whether integrable or not. We adapt an embedding which was
9rst proposed by Perkins (1986). For zero mean target laws the Perkins embedding
has the property that it simultaneously maximises the distribution of the minimum,
and minimises the distribution of the maximum, amongst the class of all stopping
times which embed �. Our adaptation of the Perkins embedding extends to all target
distributions and retains the optimality properties of the Perkins embedding. The fact
that this embedding minimises the law of a functional of the Brownian path over all
embeddings is our justi9cation for the use of the word optimal in the title. This property
also allows us to see that the embedding is minimal in the sense proposed by Monroe.
The second purpose of this article is to consider the embedding of � in a one-

dimensional di$usion. The main technique is to use a change of scale to reduce the
problem to the Brownian case, and under this transformation it is completely natural
for the target measure to have non-zero mean in the Brownian scale. We will see that
our embedding is a natural one to use in this situation, and we are able to identify the
cases where it is possible to embed a given target distribution, thus rederiving a result
in Pedersen and Peskir (2001). We also identify some properties of the maximum and
minimum of the processes in these cases. Our results in this direction can be seen as an
extension of the results in Grandits and Falkner (2000) (for drifting Brownian motion)
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and Pedersen and Peskir (2001). In this last paper, the authors use an extension of the
Azema–Yor embedding which may not be de9ned in certain cases of interest. Thus
our construction of a Skorokhod embedding is both di$erent to, and more general than,
the embedding in Pedersen and Peskir (2001).
The remainder of the article is structured as follows. In Section 2 we consider the

problem of embedding a general target measure in Brownian motion. We construct an
embedding which is de9ned for all circumstances in which it is possible to 9nd an em-
bedding and with the property that the law of the maximum is stochastically as small as
possible. In Section 3 we show this embedding can be applied to construct embeddings
in regular di$usions and in Section 4 we answer the question of when it is possible to
construct a Hp-embedding, i.e. given a di$usion process Y and a target law � when
does there exists a stopping time T such that YT ∼ � and E

[(
supt |Yt∧T |

)p]
¡∞.

2. Embedding a general target measure in Brownian motion

Consider 9rst the problem of embedding a target distribution � in a one-dimensional
local martingale (Mt)t¿0, M0 = 0 a.s. We make no assumptions on � other than that
�(R) = 1, and that � has no atom at 0. In fact this second assumption can be avoided
by stopping immediately according to some independent randomisation with suitable
probability, and then using the construction to embed the remaining mass of �, con-
ditional on not stopping at 0. Clearly such a construction is necessary in any stopping
time that will minimise the maximum, and maximise the minimum.
For a general local martingale the above conditions are not su;cient to ensure that an

embedding exists. However, a su;cient condition for the existence of an embedding for
any � is that our local martingale almost surely has in9nite quadratic variation. Since
any local martingale is simply a time change of Brownian motion, this just ensures
that our time change does not stall.
We begin by de9ning a series of functions. Let

c(x) =




∫
{u¿0}

(x ∧ u)�(du); x¿ 0;

∫
{u¡0}

(|x| ∧ |u|)�(du); x¡ 0:
(2)

Then c(x) is increasing and concave on {x¿ 0}, decreasing and concave on {x6 0}
and continuous on R (see Figs. 1 and 2). It is also di$erentiable Lebesgue-almost-
everywhere and

c′(x)+ =

{
�((x;∞)); x¿ 0;

−�((−∞; x]); x¡ 0;
(3)

c′(x)− =

{
�([x;∞)); x¿ 0;

−�((−∞; x)); x6 0;
(4)
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Fig. 1. c(x) for a centered non-atomic measure. As |x| → ∞, c(x) is asymptotic to �, where � =∫
{x¿0} x�(dx).

Fig. 2. c(x) for a non-integrable measure with an atom at −�+(�1). As x → ∞, c(x) → ∫
{x¿0} x�(dx)=∞,

while as x → −∞, c(x) is asymptotic to the level � = − ∫
{x60} x�(dx), which for this example is taken

to be 9nite. The point � is such that c(�) = �, and for all �¿�, �+(�) =∞.

where c′(x)−, c′(x)+ are the left and right derivatives, respectively. In particular, the
points at which c(x) is not di$erentiable are precisely the atoms of out target dis-
tribution. We also note that c(∞)¡∞ if and only if our target distribution satis9es∫
{x¿0} x�(dx)¡∞, and c(−∞)=

∫
u¡0 |u|�(du). Finally, we have c(∞)=c(−∞)¡∞

if and only if �∈L1 and � is centered.
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For �¿ 0, de9ne the following quantities:

�+(�) = argmin
x¿0

{
c(�)− c(−x)
�− (−x)

}
; (5)

�−(�) = argmax
x¿0

{
c(x)− c(−�)
x − (−�)

}
; (6)

�+(�) =−inf
x¿0

{
c(�)− c(−x)
�− (−x)

}
; (7)

�−(�) = sup
x¿0

{
c(x)− c(−�)
x − (−�)

}
; (8)

�+(�) = �+(�) + �([�;∞));

=− c(�)− c(−�+(�))
�− (−�+(�))

+ c′(�)−; (9)

�−(�) = �((−∞;−�]) + �−(�);

=− c′(−�)+ +
c(�−(�))− c(−�)
�−(�)− (−�)

: (10)

If the minimising (respectively maximising) x in (5) (resp. (6)) is not unique then
we take the smallest such x. If there is no minimising x, then the function we are
minimising is decreasing (resp. increasing) as x → ∞, and we de9ne �+(�)=∞ (resp.
�−(�) =∞). In this case we also de9ne �+(�) = 0 (resp. �−(�) = 0).

Remark 1. Although we have given formal de9nitions these quantities are best de-
scribed pictorially. Given �¿ 0, we consider points (y; c(y)) for y¡ 0 and more
speci9cally the line segment joining (y; c(y)) with (�; c(�)). As y ranges over the
negative reals we let �+(�) be the steepest possible downward slope of this line seg-
ment, and we let �+(�) be the absolute value of the x-coordinate of the point where
this maximum is attained. See Figs. 1 and 2.
The quantities �−(�) and �−(�) are obtained by reOecting the picture. Alternatively,

if we de9ne the measure �̃((−∞; x]) = �([− x;∞)) then we obtain a correspondence
between the pairs of de9nitions above—that is ��−(�) = ��̃+(�), ��

−(�) = ��̃
+(�) and

�−(�) = �̃+(�), with the obvious extension of the notation.

Remark 2. It is only possible to have �+(�) = ∞ when
∫
{x¿0} x�(dx)¿∫

{x60} |x|�(dx), see Fig. 2. If this is true, then �+(�) =∞ for all � such that c(�)¿∫
{x60} |x|�(dx) (and if the support of � is not bounded below, also when equality
holds).
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We take this opportunity to record some further relationships between the various
quantities de9ned in (5)–(10). It follows from (5) and (6) that for �¿ 0:

− c′(−�+(�))−6 �+(�)6− c′(−�+(�))+; (11)

c′(�−(�))+6 �−(�)6 c′(�−(�))−; (12)

so there is equality in (11) or (12) when there is no atom of � at −�+(�) or �−(�),
respectively. From Fig. 2 it is clear that if there is an atom of � at −�+(�) then c has
a kink there, and −�+(�) is then the gradient of the line joining c(−�+(�)) and c(�).
Further, for �¿ 0 such that �+(�); �−(�)¡∞, we have

c(�) = c(−�+(�))− (�+ �+(�))�+(�); (13)

c(−�) = c(�−(�))− (�+ �−(�))�−(�): (14)

Note that as a simple consequence of these equalities, c(�)6 c(−�+(�)) and c(−�)6
c(�−(�)).

Remark 3. By considering Figs. 1 and 2, we see that alternative de9nitions for �+(�),
�−(�), �+(�) and �−(�) are

�+(�) =−sup
{
x¡ 0 :

c(�)− c(x)
�− x

6 c′(x)+

}
; (15)

�−(�) = inf
{
x¿ 0 :

c(x)− c(−�)
x − (−�)

¿ c′(x)−

}
; (16)

�+(�) =− c(�)− c(−�+(�))
�− (−�+(�))

; (17)

�−(�) =
c(�−(�))− c(−�)
�−(�)− (−�)

: (18)

As a result it is easy to see that, in the case where � is centered, these quantities are
identical to the quantities de9ned in Perkins (1986), where the quantity q+(�) de9ned
in Perkins (1986) satis9es �+(�) = q+(�) + �((−∞;−�+(�))).

Our 9rst theorem shows that for any target measure � there is an embedding which
simultaneously stochastically maximises the distribution of the minimum, and minimises
the distribution of the maximum.

Theorem 4. (1) Let (Mt)t¿0 be a continuous local martingale, vanishing at zero and
with supremum process St = supu6t Mu and in5mum process Jt =−inf u6t Mu, and let
T be a stopping time such that MT ∼ �. Then, for all �¿ 0, the following hold:

P(ST ¿ �)¿ �+(�); (19)

P(JT ¿ �)¿ �−(�): (20)
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(2) For a continuous local martingale, Mt , vanishing at zero and such that 〈M 〉∞=
∞ a.s., with supremum process St = supu6t Mu and in5mum process Jt =−inf u6t Mu,
de5ne the stopping time

T = inf{t ¿ 0: Mt �∈ (−�+(St); �−(Jt))}: (21)

Then the stopped process MT has distribution �, and equality holds in (19) and (20).

Remark 5. When � is centered, the fact that the quantities �+ and �− agree with those
in Perkins (1986), and the fact that in this case T as de9ned in (21) is the Perkins
stopping time, means that we know that T embeds �. Moreover, we know that T
minimises the law of the maximum, and maximises the law of the minimum. These
results follows directly from Theorems 3.7 and 3.8 in Perkins (1986). The content of
Theorem 4 is that these results can be extended to any choice of �.

Remark 6. We may think of �+(�) and �−(�) as probabilities, and in particular, for
the embedding de9ned in (21), �+(�) is the probability that our process stops below
−�+(�) but with a maximum above �. If � has no atom at −�+(�) then for this
construction the maximum will be above � if and only if our 9nal value is above �
or below −�+(�). However, if there is an atom at −�+(�), the process may stop there
without previously having reached �. This event is represented graphically by the fact
that there are multiple tangents to c at −�+(�). Also, when �+(�) = ∞ for some �,
if the supremum of our process gets above � before stopping, then our stopping rule
becomes simply to wait until we reach some upper level, dependent on the in9mum.

An alternative way to visualise the stopping time in (21) is shown in Fig. 3. We
think of the process (Jt ; St), and de9ne the stopping time to be the 9rst time it leaves
the region de9ned via �+ and �− as shown.
The 9rst half of the proof of Theorem 4 is a consequence of the following lemma.

Lemma 7. Let (Mt)t¿0 be a continuous local martingale. Suppose that M vanishes
at zero, M converges a.s., and that M∞ ∼ �, for some probability measure � on R.
Then, for �¿ 0,

P(S∞¿ �)¿ �+(�); (22)

P(J∞¿ �)¿ �−(�); (23)

where S∞ = sups Ms, and J∞ =−inf s Ms.

Proof. For x¡ 0¡�, we de9ne H� = inf{t ¿ 0: Mt¿ �}, where we take inf ∅=∞.
By examining on a case by case basis, we 9nd that the following inequality holds:

1{S∞¿�}¿ 1{M∞¿�}+
1

�− x
[MH�−(� ∧M∞)1{M∞¿0}+(|M∞| ∧ |x|)1{M∞¡0}]:

After taking expectations, this implies that

P(S∞¿ �)¿ c′(�)− +
1

�− x
EMH� −

c(�)− c(x)
�− x

:
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Fig. 3. The path of the process in the (Jt ; St)-space. T is the 9rst time this process leaves the region.

Now Mt∧H� is a local martingale bounded above, and hence a submartingale, so
EMH� ¿M0 = 0. Substituting this in the above equation, we get

P(S∞¿ �)¿ c′(�)− − c(�)− c(x)
�− x

;

and since x is arbitrary,

P(S∞¿ �)¿ c′(�)− + sup
x¡0

{
c(x)− c(�)

�− x

}

¿ �([�;∞)) + �+(�) = �+(�);

which is (22).
We may deduce (23) using the correspondence � �→ �̃.

Remark 8. In particular, for equality to hold for 9xed � in the above, we must have

(1) if S∞¿ �, either M∞¿ � or M∞6− �+(�) a.s.,
(2) if S∞ ¡�, M∞¿− �+(�) a.s.,
(3) EMH� = 0, so that Mt∧H� is a true martingale.

It can be seen that these will hold simultaneously for all � in the case where the
stopping time is that given in Theorem 4, and that this is almost surely the only
stopping time where (22) and (23) hold.

Proof of Theorem 4. We apply Lemma 7 to the process (MT∧t)t¿0, which allows us
to deduce (19) and (20).
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For the second part of the theorem recall that if � is centered then the Theorem
follows from Theorems 3.7 and 3.8 in Perkins (1986). In the case when � is not
centered de9ne

 n
+ = inf

{
x : �([x;∞))6

1
2n

}
;

 n
− = sup

{
x : �((−∞; x])6

1
2n

}
;

and, for n su;ciently large, consider a sequence of measures �n satisfying

(i) �n((�; �)) = �((�; �)),  n
− ¡�6 �¡ n

+;
(ii) �n([ n

−;  n
+]) = �n([(−n) ∧  n

−; n ∨  n
+]) =

n−1
n ;

(iii) �n({ n
±})6 �({ n

±});
(iv)

∫
x�n(dx) = 0;

(v)
∫ |x|�n(dx)¡∞.

We can construct such a sequence by redistributing the mass that lies in the tails of �
as follows: each �n agrees with � on the interval ( n

−;  n
+), and mass is placed at the

endpoints of this interval to satisfy (ii) and (iii) if there are atoms here; the remaining
mass is then placed outside the interval [(−n)∧ n

−; n∨ n
+] in such a way as to ensure

that (iv) and (v) hold.
For the rest of this section a superscript n will denote the fact that a quantity is

calculated relative to the measure �n.
Note that if we can construct �n in such a way that �n(R−) = �(R−) then we

9nd that cn(x) ≡ c(x) on [ n
−;  n

+]. However, it is not possible to construct �n with
this additional property if �(R−) = 0 or 1, and in that case we need a more general
argument.
Suppose �n(R−) − �(R−) =  n for some number  n ∈ (−1=2n; 1=2n), then cn(x) =

c(x)−  nx for x∈ [ n
−;  n

+]. If both � and �+(�) lie in this interval then it is clear from
(5) that �n+(�) = �+(�). Conversely if �+(�) =∞, then �n+(�)¿ n. Similar results hold
for �n−.
We de9ne the stopping times associated with these measures,

Tn := inf{t ¿ 0: Mt �∈ (−�n+(St); �n−(Jt))};
so that MTn ∼ �n. Note that if MTn ∈ [(−n)∧ n

−; n∨ n
+], then T =Tn a.s. (see Fig. 4).

However this implies that P(T =Tn) → 1, since these intervals are increasing to cover
the whole of R. Together with the fact that �n([�;∞)) → �([�;∞)), we conclude that
MT ∼ �.
Finally, we need to show that our process attains equality in (19) and (20). Fix

�¿ 0. We know that

P(STn ¿ �) = �n
+(�) = �n([�;∞)) + �n

+(�)

and since P(Tn = T )¿ (n − 1)=n, we have P(STn ¿ �) → P(ST ¿ �). Moreover,
�n([�;∞)) → �([�;∞)) so that in order to prove

P(ST ¿ �) = �([�;∞)) + ��
+(�) = �+(�); (24)
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Fig. 4. The path of the process in the (Jt ; St)-space, showing boundaries to embed both � and �n. We have
shown here a possible choice of �n in the case where  + ¡n¡ (− −).

it is su;cient to show that �n
+(�) → ��

+(�) as n → ∞. Now, when x∈ [ n
−;  n

+], we
have cn(x)− c(x) =  nx and for x outside this range (cn)′ − c′6 1=n. Hence

|cn(x)− c(x)|6 |x|
n

for all x. As a corollary, for x¡ 0¡�,∣∣∣∣cn(�)− cn(x)
�− x

− c(�)− c(x)
�− x

∣∣∣∣6 1
n
;

from which it follows that

|� �n

+ (�)− ��
+(�)|6

1
n
:

using representation (17).
As before we can also show (20) holds by using the correspondence � �→ �̃.

3. Applications to di&usions

We now work with the class of regular (time-homogeneous) di$usions (see Rogers
and Williams (2000), V. 45) (Yt)t¿0 on an interval I ⊆ R, with absorbing or inac-
cessible endpoints, and vanishing at zero. Consider the problem of determining when
and how we may embed a distribution � on I◦ in the di$usion. Since the di$usion is
regular, there exists a continuous, strictly increasing scale function s : I → R such that
Mt = s(Yt) is a di$usion on natural scale on s(I). We may also choose s such that
s(0) = 0. In particular, Mt is (up to exit from the interior of s(I)) a time change of a
Brownian motion, with strictly positive speed measure.
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If we now de9ne the measure � on s(I) by

�(A) = �(s−1(A)); A ⊆ s(I); Borel;

then our problem is equivalent to that of embedding � in a Brownian motion before
it leaves s(I)◦. This is because M is a local martingale on s(I)◦, and hence a time
change of a Brownian motion on s(I)◦, and if we construct a stopping time T such
that MT =s(YT ) ∼ �, then YT ∼ �. In this context it makes sense to consider � and � as
measures on R which place all their mass on I◦ and s(I)◦ respectively. Our approach
will be to use the embedding we established in Theorem 4 to embed � in the local
martingale M , and our 9rst step will be to transfer the framework of the previous
section to our new setting.
An advantage of using the embedding we established in Section 2 in this situation

is that, because we have a strictly increasing scale function, the properties of the
maximum and the minimum are preserved. In particular, this transformed stopping
time will maximise the distribution of the minimum, and minimise the distribution of
the maximum of the process (YT∧t) among all stopping times of Yt with YT ∼ �.

The 9rst question that it is necessary to ask is: when is it possible to embed a given
target law? This is exactly the question considered by Rost (1971) using potentials,
but we want a more direct criterion. In the di$usion case it is no longer possible to
embed all target laws, as can be witnessed by considering the problem of embedding
unit mass at −1 in Brownian motion with positive drift. The result we need was 9rst
proved in Pedersen and Peskir (2001).

Lemma 9 (Pedersen and Peskir (2001), Theorem 2.1). There are three di9erent cases:

(1) s(I)◦ =R, in which case the di9usion is recurrent, and we can embed any distri-
bution � on I◦ in Y ,

(2) s(I)◦ = (−∞; �) (respectively (�;∞)) for some �∈R. Then we may embed � in
Y if and only if m=

∫
I s(y)�(dy) exists, and m¿ 0 (resp. m6 0).

(3) s(I)◦ = (�; �), �; �∈R. Then we may embed � in Y if and only if m= 0.

The statement of the result in Pedersen and Peskir (2001) has the additional assump-
tion in Case (1) that

∫
I |s(y)|�(dy)¡∞. This can be dropped since in Case (1) the

di$usion is recurrent so that either the simple stopping time de9ned the introduction,
or the extension of the Perkins embedding we introduced in the previous section, can
be used to embed �.
For the precise details of the proof of Lemma 9 we refer the reader to Pedersen

and Peskir (2001). However, we can provide a sketch of the proof using the modi9ed
Perkins embedding. For t less than the 9rst exit time of the di$usion from the interior
of s(I) we have Mt = s(Yt) = X%t for some time-change % and Brownian motion X .
If 〈M 〉∞ = %∞ ¡∞ we may extend the time domain on which X%t is de9ned to all
positive times by continuing the Brownian motion beyond %∞. In this way, we may
drop the assumption of Theorem 4 that the process Mt has in9nite variation. We deduce
that we may embed our distribution on s(I)◦ if and only if, when we consider the
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problem of embedding � in Brownian motion, our process remains on s(I)◦. However
the transformed target distribution has support concentrated only on this interval, so
when we consider the stopping time T de9ned in (21) and the form of �+(�) and
�−(�) in the martingale scale, we see that problems can only occur if �+(�) =∞ or
�−(�) =∞ for some �. Further examination shows that this is only possible when �
is not integrable, or not centered—see Remark 2—and the three cases of Lemma 9 all
follow.
Our aim in the remainder of this section is to look at some of the properties of

the construction, and of embeddings in general. Our principal question is (cf. Perkins
(1986) and Jacka (1988), where the law of sup |Yt | in the Brownian case with centered
target distribution is considered),

given a di$usion Yt , and a law �, when does there exists an embedding for which
the law of the maximum modulus of the process, supt |YT∧t |, lies in the space Lp

of random variables with 9nite pth moment?

Before answering this question we show how the results of the previous section can
be used to de9ne an embedding of a target law in a di$usion.
Given � and (Yt)t¿0 de9ne � and M = s(Y ) as above. As before, for M on s(I) we

can de9ne

cM (x) =




∫
{u¿0}

(x ∧ u)�(du); x¿ 0;

∫
{u¡0}

(|x| ∧ |u|)�(du); x¡ 0;

together with the quantities de9ned in (5)–(10). Write

cY (y) = cM (s(y)) =




∫
{w¿0}

(s(y) ∧ s(w))�(dw); y¿ 0;

∫
{w¡0}

(|s(y)| ∧ |s(w)|)�(dw); y¡ 0:

and, for z¿ 0, de9ne the quantities

(+(z) = argmin
y¿0

{
cY (z)− cY (−y)
s(z)− s(−y)

}
; (25)

(−(z) = argmax
y¿0

{
cY (y)− cY (−z)
s(y)− s(−z)

}
; (26)

)+(z) =− inf
y¿0

{
cY (z)− cY (−y)
s(z)− s(−y)

}
; (27)

)−(z) = sup
y¿0

{
cY (y)− cY (−z)
s(y)− s(−z)

}
; (28)
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�+(z) = )+(z) + �([z;∞)); (29)

�−(z) = �((−∞;−z]) + )−(z): (30)

By convention, if (+(z) or (−(z) is not uniquely de9ned then we take the smallest
solution.
Now de9ne a stopping time for Yt by

T = inf{t ¿ 0: Yt �∈ (−(+(SY
t ); (−(J Y

t ))}
= inf{t ¿ 0: Mt �∈ (−�+(SM

t ); �−(JM
t ))}; (31)

where we write SY
t =sups6t Ys, J Y

t =−inf s6t Ys, SM
t =sups6t Ms and JM

t =−inf s6t Ms.
The two alternative characterisations of T are equivalent because of the identities

s(−(+(z)) =−�+(s(z));

s((−(z)) = �−(−s(−z)):

We also have that )+(z)=�+(s(z)), and )−(z)=�−(−s(−z)). It follows that T embeds
� in (Mt)t¿0, and hence � in (Yt)t¿0. Also �+ and �− are the laws of the supremum
and in9mum, respectively, of YT∧t . Consequently, we may restate Theorem 4 in the
di$usion context.

Theorem 10. Let (Yt)t¿0 be a regular, time-homogeneous di9usion, vanishing at zero
and with supremum process SY

t and in5mum process J Y
t , and let T be a stopping time

such that YT ∼ �. Then, for all �¿ 0, the following hold:

P(SY
T ¿ �)¿ �+(�); (32)

P(J Y
T ¿ �)¿ �−(�): (33)

If there exists an embedding, the stopping time T de5ned in (31) is an embedding
and is optimal in the sense that it attains equality in (32) and (33).

We are interested in the measure �∗ where �∗ is the law of supt6T |Yt |. Trivially,
for z¿ 0,

max(�+(z); �−(z))6 �∗([z;∞))6 �+(z) + �−(z); (34)

and it follows that �∗ ∈Lp if and only both �+ and �− are elements of Lp.
The next two lemmas give upper and lower bounds on �+ and �−. We give proofs in

the case of �+; the corresponding results for �− can be deduced using the transformation
� �→ �̃.

Lemma 11. For all z¿ 0, we have

�+(z)6
1

s(z)
[cY (−z)− cY (z)− |s(−z)|�((−∞;−z])]+1{z¿(+(z)}

+ �({|y|¿ z}); (35)
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�−(z)6
1

|s(−z)| [cY (z)− cY (−z)− s(z)�([z;∞))]+1{z¿(−(z)}

+ �({|y|¿ z}): (36)

Proof. Suppose 9rst that z¿(+(z), or equivalently s(−z)¡− �+(s(z)). Then by the
convexity of cM on R−,

cM (−�+(s(z)))− �+(s(z))�+(s(z))6 cM (s(−z)) + s(−z)�((−∞;−z]);

which translates to

cY (−(+(z)) + s(−(+(z)))+(z)6 cY (−z) + s(−z)�((−∞;−z]):

Substituting this inequality into (27) we deduce that

s(z))+(z) = s(−(+(z)))+(z) + cY (−(+(z))− cY (z)

6 cY (−z)− cY (z) + s(−z)�((−∞;−z]):

Conversely, if z6 (+(z), then

)+(z)6 �((−∞;−(+(z)])6 �((−∞;−z]):

Given that �+(z) = �([z;∞)) + )+(z), these two bounds lead directly to (35).

Lemma 12. For all z¿ 0, we have

�+(z)¿
[cY (−z)− cY (z)]+

s(z) + |s(−z)| + �([z;∞)); (37)

�−(z)¿
[cY (z)− cY (−z)]+

s(z) + |s(−z)| + �((−∞;−z]): (38)

Proof. By (27), for z¿ 0,

)+(z)¿
cY (−z)− cY (z)
s(z) + |s(−z)| :

Since also )+(z)¿ 0 the result follows easily from the identity �+(z) = �([z;∞)) +
)+(z).

Corollary 13. For z¿ 0, we have(
1

s(z)
+

1
|s(−z)|

)
|cY (z)− cY (−z)|+ 2�({|y|¿ z})

¿ �+(z) + �−(z)¿
|cY (z)− cY (−z)|
s(z) + |s(−z)| + �({|y|¿ z}):

Let T ′ be an embedding of � in Y . For p¿ 0 we say this embedding is a Hp-
embedding if supt |Yt∧T ′ | is in Lp. We may ask when does there exist a solution of
the Skorokhod problem which is a Hp-embedding, and when is every solution of the
Skorokhod problem a Hp-embedding? In this paper we are interested in the 9rst of
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these questions. By the extremality properties of our embedding T it is clear that there
exists a Hp-embedding if and only if T is a Hp-embedding.

Corollary 13 can be used to give necessary and su;cient conditions for �∗ to be
an element of Lp. In particular, the following result follows easily from Corollary 13
and (34).

Theorem 14. Let Yt be a regular di9usion and suppose that � can be embedded in
Y . Consider the embedding T of � given in (31). A su;cient condition for T to be a
Hp-embedding is that �∈Lp and∫ ∞

zp−1
(

1
s(z)

+
1

|s(−z)|
)
|cY (z)− cY (−z)| dz¡∞: (39)

Necessary conditions are that �∈Lp and∫ ∞

0
zp−1 |cY (z)− cY (−z)|

s(z) + |s(−z)| dz¡∞: (40)

Remark 15. Note that in the symmetric case where s(z)=−s(−z) then (39) and (40)
are equivalent and Theorem 14 gives a necessary and su;cient condition for T to be
a Hp-embedding.

We return to the problem of the existence of a Hp-embedding in the next
section, and close this section with a further observation about the optimality of the
embedding T .

Remark 16. Fix a measurable function f :R→ R and let (Yt)t¿0 be a regular di$usion
with Y0 = 0 and � a probability measure on R. Then the embedding de9ned in (31)
minimises the distribution of supt¿0 f(Yt∧T ′) over all stopping times T ′ such that
YT ′ ∼ �.

In particular the minimising choice of stopping time does not depend on the func-
tion f. This is in contrast with the problem of 9nding the Skorokhod embedding
which maximises the law of supt¿0 f(Yt∧T ′). In that case the optimal embedding will
in general depend on f.

4. Hp embeddings for di&usions

Our goal in this section is to investigate further conditions on whether T is a
Hp-embedding in the cases when s(I)◦ = (−∞; �); (�;∞); (�; �) and R. The 9rst two
cases are equivalent up to the map x �→ −x and we consider them 9rst.

4.1. Di9usions transient to +∞

Theorem 17. Let Yt be a di9usion on I with scale function s(z), such that s(0) = 0,
supz∈I s(z) = �¡∞, and inf z∈I s(z) =−∞. We may embed a law � in Y if and only
if

∫
I |s(z)|�(dz)¡∞ and m=

∫
I s(z)�(dz)¿ 0.
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Under these conditions:

• if m¿ 0, then a necessary and su;cient condition for E supt |YT∧t |p ¡∞ is that

∞∫
zp−1

|s(−z)| dz¡∞ and �∈Lp; (41)

• if m= 0, this is also a su;cient condition. A necessary and su;cient condition is

∞∫
zp−1

|s(−z)| |cY (z)− cY (−z)| dz¡∞ and �∈Lp: (42)

Proof. The 9rst part of this Theorem is a restatement of Lemma 9(2) (or equivalently
Pedersen and Peskir (2001) (Theorem 2.1)). For the second part assume m¿ 0, where
m=

∫∞
0 s(y)�(dy)− ∫ 0

−∞ |s(y)|�(dy). For z¿ 0,

cY (−z)− cY (z) = −
∫
{y¡−z}

|s(y)|�(dy) +
∫
{y¿z}

s(y)�(dy)− m

+
∫
{y6−z}

|s(−z)|�(dy)−
∫
{y¿z}

s(z)�(dy)

6
∫
{y¿z}

s(y)�(dy) +
∫
{y6−z}

|s(−z)|�(dy);

so by Lemma 11,

�+(z)6
1

s(z)
[cY (−z)− cY (z)− |s(−z)|�((−∞;−z])]+1{z¿(+(z)}

+ �({|y|¿ z})

6
∫
{y¿z}

s(y)
s(z)

�(dy) + �({|y|¿ z})

6
�

s(z)
�({|y|¿ z}):

Since �=s(z)¡ 2 for su;ciently large z it follows that �∈Lp is a necessary and
su;cient condition for �+ ∈Lp.
Now consider �−(z). We note that given -¿ 0, for su;ciently large z,

m− -6 cY (z)− cY (−z)6m+ -;
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and so by Lemma 11,

�−(z)6
1

|s(−z)| (m+ -) + �({|y|¿ z}):

As a result (41) is a su;cient condition for �− ∈Lp when m¿ 0.
Conversely, if m¿ 0 Lemma 12 implies that for su;ciently large z,

�−(z)¿
1

2|s(−z)| (m− -);

and so (41) is also necessary.
Now suppose m= 0. By (36),

�−(z)6
1

|s(−z)| [cY (z)− cY (−z)]+ + �({|y|¿ z});

so (42) is a su;cient condition for �− ∈Lp. By Corollary 13, for su;ciently large z,

�+(z) + �−(z)¿
|cY (z)− cY (−z)|

2|s(−z)| + �({|y|¿ z}):

If �∗ ∈Lp then both �+ and �− lie in Lp, and so (42) is a necessary condition.

Example 18 (Drifting Brownian motion): Suppose Y is drifting Brownian motion
on R,

Yt = Bt + .t;

for t¿ 0 and .¿ 0. Then s(y)=1−e−2.y is the scale function for Y , so supy s(y)=1.
If

∫
R s(y)�(dy)¡ 0, then it is not possible to embed � in Y . If

∫
R s(y)�(dy)¿ 0, we

may embed � in Y , and since
∞∫

yp−1

|s(−y)| dy =

∞∫
yp−1

e2.y − 1
dy¡∞;

if follows that if �∈Lp, then supt |YT∧t | is too.
These conclusions should be compared with those in Grandits and Falkner (2000).

Grandits and Falkner conclude that if Y is drifting Brownian motion, and if T ′ is any
embedding of � in Y , then T ′ ∈H 1.

Example 19 (Bessel d process): In Hambly et al. (2003) the authors consider a
Skorokhod embedding for the BES(3) process. For d¿ 2 let Y solve

dYt = dBt +
d− 1
2Yt

dt; Y0 = 1:

Then I = (0;∞) and s(y) = −y2−d. We do not have Y0 = 0, nor s(0) = 0 but
the modi9cations to the theory are trivial. We can embed � in Y if and only if∫∞
0 y2−d�(dy)¡ 1. Furthermore Y is only de9ned on the positive reals, so in deciding
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whether �∗ ∈Lp we need only consider �+. But, provided we may embed � in Y , it
follows from the proof of Theorem 17 that a necessary and su;cient condition for
�+ ∈Lp is �∈Lp.

4.2. Recurrent di9usions

The general case is covered by Theorem 14. If we have some control on the scale
function then we are able to make the results more explicit.

Theorem 20. Suppose for |y|¿ 1 there exists k, K ¿ 0 such that

k|y|r6 |s(y)|6K |y|q; for some q¿ r¿ 0: (43)

Then for p¿ 0,

(1) if p¿q,

m= 0 and �∈Lp+q−r ⇒ �∗ ∈Lp ⇒ �∈Lp and m= 0;

(2) if p¡r,

�∈Lp+q−r ⇒ �∗ ∈Lp ⇒ �∈Lp;

(3) if r6p6 q,∫ ∞

1
yp−r−1|cY (y)− cY (−y)| dy¡∞ and �∈Lp

⇒ �∗ ∈Lp (44)

⇒ �∈Lp and
∫ ∞

0
yp−q−1|cY (y)− cY (−y)| dy¡∞: (45)

In particular, if r = q, the three cases each become if and only if statements.

Remark 21. The case where the di$usion is in natural scale, so that s(y) = y, is the
case considered by Perkins (1986). Here the Cases (1) and (2) are dealt with in his
introduction, while in Case (3) he shows that �∈L1, m= 0 and H (�)¡∞, where

H (�) =
∫ ∞

0
y−1

∣∣∣∣
∫ ∞

−∞
x1{|x|¿y}�(dx)

∣∣∣∣ dy;
are necessary and su;cient conditions for �∗ ∈L1. It is not hard to see that this
condition is equivalent to (45).

Proof. (1) Suppose p¿q. If �∈Lq then since |s(y)|6K |y|q for |y|¿ 1, we have∫ |s(y)|�(dy)¡∞, so m exists.
Now suppose m= 0 and �∈Lp+q−r . By Theorem 14 it is su;cient to show∫ ∞

1
yp−1

(
1

s(y)
+

1
|s(−y)|

)
|cY (y)− cY (−y)| dy¡∞:
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For y¿ 0,

cY (y)− cY (−y)

=
∫
{|w|6y}

s(w)�(dw) +
∫
{w¿y}

s(y)�(dw)−
∫
{w¡−y}

|s(−y)|�(dw)

= −
∫
{|w|¿y}

s(w)�(dw) + s(y)�({w¿y})− |s(−y)|�({w¡− y});

where we have used the fact that m= 0. By assumption(
1

s(y)
+

1
|s(−y)|

)
6

2
kyr for y¿ 1;

so that∫ ∞

1
yp−1

(
1

s(y)
+

1
|s(−y)|

)
|cY (y)− cY (−y)| dy

6
2
k

∫ ∞

1
yp−r−1 [Kyq�((y;∞)) + Kyq�((−∞;−y))

+
∫
{|w|¿y}

|s(w)|�(dw)
]
dy:

The 9rst two terms in the bracket will be 9nite upon integration since �∈Lp+q−r .
Also, by Fubini,∫ ∞

1
yp−r−1

[∫
{w¿y}

s(w)�(dw)

]
dy =

∫
{w¿1}

[∫ w

1
yp−r−1s(w) dy

]
�(dw)

6K
∫
{w¿1}

wq+p−r

p+ q− r
�(dw)¡∞:

We can show a similar result for the integral over {w¡ 0} and it follows that �∗ ∈Lp.
Now suppose that �∗ ∈Lp. Then clearly �∈Lp, and

E sup
t
|s(YT∧t)|6KE

(
sup
t
|YT∧t |q + 1

)
6KE

(
sup
t
|YT∧t |p

)
+ K ¡∞:

Furthermore s(Yt) is a local martingale, so, since E supt |s(YT∧t)|¡∞, s(YT∧t) is a UI
martingale, and hence

m= E(s(YT )) = 0:

(2) Suppose now p¡r, and �∈Lp+q−r . Then as before, by Theorem 14 it is
su;cient to show∫ ∞

1
yp−1

(
1

s(y)
+

1
|s(−y)|

)
|cY (y)− cY (−y)| dy¡∞:
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A simple inequality gives

|cY (y)− cY (−y)|6 cY (y) + cY (−y)

=
∫
{|w|6y}

|s(w)|�(dw) + s(y)�({w¿y}) + |s(−y)|�({w¡− y});

and so∫ ∞

1

(
1

s(y)
+

1
|s(−y)|

)
|cY (y)− cY (−y)| dy

6
2
k

∫ ∞

1
yp−r−1

[
Kyq�({|w|¿y}) +

∫
{|w|6y}

|s(w)|�(dy)
]
dy;

where, as before, the 9rst term is 9nite upon integration. For the 9nal term∫ ∞

1
yp−r−1

[∫
{0¡w6y}

s(w)�(dw)

]
dy

=
∫
{w¿0}

s(w)
[∫ ∞

w∨1
yp−r−1 dy

]
�(dw)

6
∫
{w¿0}

(w ∨ 1)p−r

r − p
s(w)�(dw)

6
∫ 1

0

s(w)
r − p

�(dw) +
K

r − p

∫
{w¿1}

|w|p+q−r�(dw);

which is 9nite by assumption since �∈Lp+q−r . The corresponding result also holds
over {w¡ 0}. So we have shown �∈Lp+q−r ⇒ �∗ ∈Lp. The second implication
�∗ ∈Lp ⇒ �∈Lp is clear.
(3) This case is a trivial application of (43) to Theorem 14.

For the integral condition in (44) to hold, a necessary condition is that |cY (z) −
cY (−z)| → 0 as z → ∞. However this occurs if and only if m= 0, provided m exists.
So if m exists, if r = p = q and if �∈Lp, then m = 0 is a necessary condition for
�∗ ∈Lp. We show in Example 22 that this condition is not su;cient.
Note that it is not necessary for m to exist for the integral condition in (40) to be

satis9ed, and for �∗ to be an element of Lp. For example, suppose that both the scale
function and the target measure are symmetric about 0, i.e. suppose s(z)=−s(−z) and
�(dz) = �(d(−z)). Then cY (z) = cY (−z) and (40) is trivially satis9ed. If s and � are
symmetric then �∗ ∈Lp if and only if �∈Lp.

Example 22. We now consider a di$usion on R with behaviour speci9ed by

dYt = 2
√
|Y |tdBt + � sign(Yt) dt;
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where Y0 = 0, and �∈ (0; 2). The solution to this SDE is not unique in law, but we
make it so by assuming the law of the process is symmetric about 0, and that the
process does not wait at 0. In particular, |Yt | is a Bessel process of dimension �. Such
a process is recurrent, and we can construct the process Yt from |Yt | by assigning to
each excursion away from 0 an independent random variable with value either 1 or
−1. Alternatively we may de9ne the process by its scale function

s(y) = (|y|1−�=2) sign(y);

and write Yt = s(WAt ), for a Brownian motion Wt and a suitable time change At .
Since (Yt)t¿0 is recurrent on R we may embed any target distribution. We may apply
Theorem 20 to this process for some target distribution � and examine the behaviour
of supt |YT∧t |, for our embedding T . We note that, using the notation of Theorem 20,
r=q=1−�=2, so the statements in the theorem each become if and only if statements.
We can consider each case separately:
(1) In the case, where p¿ 1−�=2, �∈Lp guarantees that m exists, and a necessary

and su;cient condition for supt |YT∧t | ∈Lp is that m= 0.
(2) If p¡ 1− �=2, �∈Lp is both necessary and su;cient for supt |YT∧t | ∈Lp.
(3) Suppose now that p = 1 − �=2. If m �= 0 then supt |YT∧t | �∈ Lp. However, we

now show that m= 0 is not a su;cient condition for supt |YT∧t | ∈Lp.
We embed the probability measure � de9ned by

�(dy) =
y−p−1

(log y)2
dy for y¿ e;

with the rest of the mass placed at −b. Here b is chosen such that
∫
s(y)�(dy)= 0. It

can be checked that �∈Lp. Then, provided z¿max(e;−s−1(−b)),

|cY (z)− cY (−z)|=
∫ ∞

z

1
y(log y)2

dy − zp�((z;∞))

=
1

log z
− zp�([z;∞)):

Consequently, because �∈Lp and
∫∞
z 1=(y log(y)) dy =∞,

∞∫
y−1|cY (y)− cY (−y)| dy =∞:

So m= 0 is not su;cient to ensure that supt |YT∧t | ∈Lp.

4.3. Di9usions which in natural scale have state space consisting of a 5nite interval

Theorem 23. Let Yt be a di9usion on I with scale function s(z), such that s(0) = 0,
supz∈I s(z) = �¡∞, and inf z∈I s(z) = �¿−∞. We may embed a law � in Y if and
only if

∫
I |s(z)|�(dz)¡∞ and m=

∫
I s(z)�(dz) = 0.

Furthermore �∗ ∈Lp if and only if �∈Lp.
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Proof. The 9rst part of this result follows from Lemma 9(3) (or equivalently Pedersen
and Peskir (2001) (Theorem 2.1)). The remaining part follows from Theorem 20. In
our setting the scale function s is bounded—so we have q= r = 0, p¿ 0 and we are
in case (1). In particular, m exists, and �∗ ∈Lp if and only if m = 0 and �∈Lp.
However, we have already noted that in order to be able to embed in this case we
must have m= 0, so our condition is essentially �∗ ∈Lp ⇔ �∈Lp.
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