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Let G be a finite group, p be a prime, k be an algebraically closed field of 
characteristic p, and H be a subgroup of G. Using Green correspondence, 
it is often possible to obtain information about non-projective summands 
of modules of the form Indg(M) (M a kH-module) in terms of projective 
summands of induced modules for various sections of G. 

The main theme of this paper is the study of projective summands of 
modules of the form Indg(M), especially when M is a simple kH-module. A 
crucial tool in our investigation is the Reynolds ideal of kG (which is the 
k-span of the p’-section sums of kG, or equivalently, is equal to Z(kG) n 
Ann(J(kG))), which we denote by Rey(kG). 

The first and last sections of the paper discuss the way in which Rey(kG) 
controls projective summands of arbitrary kG-modules. These sections were 
inspired to some extent by a paper of Landrock [3] dealing with projective 
summands of Ind$(k) when HE Syl,( G). 

The second section of the paper includes a useful reciprocity theorem, 
proved using the Reynolds ideal. In the third section, we show that if A4 is 
a simple kH-module, then projective summands of Indg(M) (if there are 
any) have relatively large dimension. Alternatively, Propositions 4 and 5 
may be viewed as putting upper bounds on the size of certain Cartan 
invariants. 

In the fourth section of the paper, we apply our earlier results to obtain 
information about modules of the form Indg(S) when S is a l-dimensional 
kH-module. Again, Propositions 6 and 7 may be regarded as placing 
restrictions on the size of Cartan invariants in terms of group-theoretic 
structure. 

106 
0021-8693/89 $3.00 
Copyright 0 1989 by Academic Press, Inc. 
All rights of reproductmn in any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82033199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PROJECTIVESUMMANDSOF INDUCED MODULES 107 

1. THE REYNOLDS IDEAL AND PROJECTIVE SUMMANDS 

A Basis for the Reynolds Ideal 

Let { Si: 1 < i d t } be a full set of representatives for the distinct 
isomorphism types of simple kc-modules. Let /Ii be the (k-valued) charac- 
ter of Sj for 1 < i < t. Let Pi be the projective cover of Si for 1~ i 6 t. 

Let fi = CgEG /?Jg-‘) g. Then as {/I,: 1~ i < t} is linearly independent 
over k, and since Rey(kG) has dimension t, it follows that {fi: 1 < i< t) is 
a basis for Rey(kG) (notice that each /Ii is constant on $-sections). 

PROPOSITION 1. Let M be a kG-module. Then f;M# 0 if and only if the 
projective cover of Si is a summand of M. Furthermore, dim,(L.M) = 
dim,( Si) x (the multiplicity of P, as a summand of M). 

Proof We may suppose that M is indecomposable, and we do so. We 
note that J(kG)fiM = 0, so that fiM is a semi-simple kG-module. Suppose 
that fiM ~0. Choose m E M with fim #O. Define the morphism of left 
kG-modules 4: kG + M via d(a) = am for a E kG. Then fikG q! ker 4. 

Let e be a primitive idempotent of kG. Then fie = CgsG fl,(eg-‘) g. Thus 
he # 0 if and only if e does not annihilate S;, which happens if and only if 
kGe r Pi. Then fikGe z Si if kGe% Pi, and fikGe = 0 otherwise. Also 
hfikG r O dimk(S,) times Si. 

Since f,kG d ker 4, there must be a primitive idempotent eE kG with 
f.kGe Q! ker 4. Then f,kGe = Soc(kGe) r Si, kGe g Pi. Since soc(kGe) is 
simple, kGe n ker q5 = (0). 

Thus kGe is isomorphic to a submodule of M, so is isomorphic to a 
summand of M (as kGe is injective). Since M is indecomposable, the result 
now follows. 

Our next result uses the Reynolds ideal to prove a fact about the 
kc-module which can be shown to be true for a wider class of algebras (via 
different methods). 

PROPOSITION 2. Let M be a kG-module, and let E= End,,(M). Then 
J(E) M has no projective submodule. 

Proof: Suppose that X is a projective indecomposable submodule of 
J(E) M. Then X is a summand of M, say X = iM for some primitive idem- 
potent i of E. For some value of j we have f, X = soc( X). Now X = iJ( E) M. 
Thus for some primitive idempotent i’ of E we must have &iJ(E) i’M ~0. 
In particular f,i’M#O. Since i’ is primitive, i’M is indecomposable. Since 
f,i’M # 0 we must have fji’M = soc(i’M) and i’M =X. Thus i’= uiu~’ 
for some unit, u say, of E. Hence iJ(E)i’M = iJ(E) Now hfix is 
iEi-invariant, and if follows that there is an algebra epimorphism from iEi 
onto End,,(fjX) (note that every kG-endomorphism of X which 
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annihilates sot(X) is nilpotent). Since End,,&X) is a simple algebra, it 
follows that iJ(E)i annihilates fiX. Hence f, annihilates iJ(E (so also 
U(E) i’M), a contradiction. 

2. A RECIPROCITY THEOREM 

Let H be a subgroup of G, { ‘?I; 1 < j < r } be a full set of isomorphism 
types of simple k&modules, and P, be the projective cover of zj. 

THEOREM 3. For all i, j, the multiplicity of Pi is a summand of IndC,(sj) 
is the multiplicity of pj as a summand of Resg(Si). 

Proof Let {x: 1 d j< r} be the elements of Rey(kH) defined as the f+ 
were for kG. 

We note that for any j, kG$ is isomorphic to @dimkCsj;i)copies Indg(Sj). 
From the results of Section 1, it follows that dim,(f,kGj”i) is dim,(S,) times 
the multiplicity of Pi as a summand of kG&. 

Thus we can conclude that dim,(f,kGz) = dim,(S,) x dim,(Jj) x 
(multiplicity of Pi “in” IndG,(gj)). 

On the other hand, we see that dim,(f,kG$) = dimk(T;kGfP) (where 
(C a,g)‘= C agg-‘). Thus, again from Section 1, we see that 
dim,JyykGfP) is dim,(S,+) times the multiplicity of p: as a summand of 
Resz(kGf p). Since kGf p is isomorphic to @ dimk(S:) copies SF, the result now 
follows easily (where M* denotes the dual of a module M).’ 

3. ON THE DIMENSION OF PROJECTIVE SUMMANDS 

PROPOSITION 4. For 1 < i < t, 1 < j < r, let rnv denote the multiplicity of 
Pi as a summand of Indg(Sj). Then dim,(P,) > xi’=, xi=, cilmri dim,(Fj) 
(for any given i) (where Ci/ is the Cartan invariant dim,(Hom,,(P,, PI))). 

Furthermore, if H contains a Sylow p-subgroup of G, then equality holds 
if and only tf Pi is simple. 

Proof We note that S, occurs with multiplicity ci, as a composition 
factor of Pi. Since Resg(S,) contains i?;l as a summand with multiplicity 
rnQ (by the results of Section 2), it follows that Resz(Pi) contains pi as a 
summand with multiplicity at least Cf= i c,$zy (since pj is a projective 
kH-module). The inequality is thus established. 

Suppose that p i [G: H], but that equality holds. Then there is certainly 

1 Nofe added in proof. The reciprocity formula above can also be proved using projective 
homomorphisms, and we have learned that various people seem to be aware of the result, 
among them D. J. Benson and P. J. Webb. However, there seems to be no proof in the 
literature, and we feel that the proof given here is of some interest. 
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some simple kc-module S, such that c,mO # 0 for some j. Furthermore, we 
must have Res$(S,) E @J=, $ mqcopies pj. Thus Resz(S,) is projective. 
Since p J [G:H], it follows that S, is projective. Since S, is a composition 
factor of Pi, we have i = 1, and Si = Pi. 

Conversely, if Pi is simple, then ResG,(P,) z @;= 1 @m,/copies isj and 
equality does indeed hold. 

PROPOSITION 5. For 1 6 j < r, we haoe [G : H] dim,(pj) 2 
C:=, xi=, Fj,rnil dim,(P,). Furthermore, equality holds if and only if pj is 
simple (I?~, denotes the Curtan invariant dim,(Hom,,(pj, P,))). 

Proof. For 1 d 1~ r, 3, occurs E, times as a composition factor of pj, 
and Pi occurs m, times as a summand of Ind$(S,). Thus Pi occurs at least 
xi=, cjIrni, times as a summand of Ind$(Fj). The inequality follows. 

If equality holds, then there is some 1 with Zli # 0 and m, # 0 for some i. 
Then IndE(s,) must be isomorphic to @I=, @ (m,,copies) Pi. Thus Indg(S,) 
is projective, so that 3, must be projective (for 3, is a summand of 
ResC,(Ind$(S,))). Since s, is a composition factor of pj, we must have 
3, z pj. Conversely, if Pi r s,, then Ind$(pj) E @ := r em, copies P,, and 
equality does hold. 

4. APPLICATIONS 

Let H, L be subgroups of G (possibly H = L). Let { Ti: 1~ i < s} be a full 
set of isomorphism types of simple kL-modules (and let us keep the 
notation adopted earlier for the simple kH-modules, and the multiplicities 
m&. 

Let nV denote the multiplicity of Pi as a summand of Indz( Tj). 

PROPOSITION 6. Suppose that sj and Fq are one-dimensional. Then there 
are at least xi,,=, ci,mrini4 (L, H)-double coset representatives, w, for which 
pj IL”‘nHl and Rest:,,(w-‘O~~)~Res~~j,,,(Sj). 

Proof From the proof of Proposition 4, pj occurs at least Cf=, cirmy 
times as a summand of ResC,(P,) (for each i). Since Pi occurs ni,, times as a 
summand of Indz(T’,) it follows that pj occurs at least C:,, = 1 ci,muni4 times 
as a summand of ResC,(Ind F( T’,)). 

On the other hand, we know that 

Res$(Indf(Tq))r @ IndFW,,,(Resiz,,(w-‘@ Tq)). 
n’ E L\G/H 

Applying Theorem 3 within H, we see that for any w E L\G/H the mul- 
tiplicity of pj as a summand of IndFW,, H(ResiL,H(w-l @ F,,)) is the same as 



110 GEOFF'REYR.ROBINsON 

the multiplicity of the projective cover of ResiZ,,(w-‘0 Tq) as a sum- 
mand of ResFw n ,(sj). 

Since si is one-dimensional, this last multiplicity is 1 if p 1 1~5” n HI and 
Res~::,,(w-lO~~)~Res,H,nH(S~), and is 0 otherwise. This suffices to 
complete the proof of Proposition 6. 

Remark. Of course, Proposition 6 may be applied with sj and Tq both 
being trivial. 

PROPOSITION 7. Suppose that HE Syl,(G). Then the number of (H, H) 
double coset representatives, w, for which p 1 1 H” n HJ is at least 
E{jr:P,is not simple} mil)+C;,=,ci/mi,m,,. 

Proof Since ResG,(Pi) is projective, it follows that Res$(P,) contains P, 
(gkH) as a summand with multiplicity at least 1 + Cf=, ci,mll whenever 
Pi is not simple (from the proof of Proposition 4). It follows, then, that 
ResG,(IndG,(s,)) contains H, as a summand with multiplicity at least 
(C { i: P, is not simple} mi,)+C~.r=lmj,m,lcil. The result now follows as in 
Proposition 6. 

EXAMPLE. Suppose that there is only one (H, H)-double coset represen- 
tative, w,, say, for which pj’ lHWon HI. Then Ci,,=, ci,milm,, < 1 from 
Proposition 6 (where we have labelled so that 3, is the trivial kH-module). 
Hence there can be at most one value of i for which Pi occurs as a sum- 
mand of Ind$(S,), and if there is such a value of i, then mi, = cii= 1. The 
fact that cir = 1 forces Pi to be simple. 

(This situation can occur-for example, if G has a split (B, N)-pair in 
characteristic p, and H = B.) Similar types of assertions can be made about 
modules of the form Indz(gj) when gj is any one-dimensional module in 
the above situation. 

5. FURTHER REMARKS ON PROJECTIVE SUMMANDS 

Let A be a symmetric k-algebra (i.e., there is a symmetric k-linear form t: 
A + k such that ker t contains no non-zero right ideal of A). 

We may define Rey(A) to be Z(A) nAnn(.J(A)). Let K(A) denote the 
k-span of {ab-ba: a,beA). 

The following result (and its proof) is just a restatement of Satz D of 
Kiilshammer [2]. 

PROPOSITION 8. Rey(A) = [K(A) +J(A)]‘. 

Proof: Note that XEJ(A)’ iff for every jeJ(A) and every aE A we 
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have t(xj,) = 0 iff XE Ann(J(A)) (since ker t contains no non-zero right 
ideal of A). Also XEK(A)’ iff for all a, bg A we have t(x(ab- bu))=O. 
This happens if and only if for all a, b E A we have t(bxu) ( = t(xab)) = 
t(xbu) ( = t(bax)). Thus for a fixed a we need t(bxu) = t(bux) for all b E A so 
t(b(xu - ax)) = 0 for all b E A, so xu - ax = 0 (as ker t contains no left ideal 
of A). Thus the above equality holds if and only if x E Z(A). 

PROPOSITION 9. Let P be a projective kc-module. Then E = End,,(P) is 
a symmetric algebra. 

Proof Since P is projective, there is some u E End,(P) with Try(a) = 1. 
We define t: E -+ k as follows: given x E E, then x = Try(x,) for some x0 E 
End,(P), so set t(x) = trace(x,). As in [l], t is symmetric, and is well 
defined. We claim that ker t contains no non-zero right ideal of End,,(P). 
For given 0 # x E E, there is some y, E End,(P) with trace(xy,,) # 0. Thus 
t(x TrP( y,)) # 0, as Trp(xy,) =x Tr~h,). 

Now let M be any kG-module, and write M = P 0 X, where P is projec- 
tive and X has no projective summand. There is an algebra morphism from 
Z(kG) into End,,(M). Furthermore, Rey(kG) annihilates X by 
Proposition 1, and Rey(kG) annihilates J(End,,(P)) by Propositions 1 and 
2. Thus Rey(kG) maps into Z(End,,(P)) n Ann(J(End,,(P))) = 
Rey( End& P)). Let E = End,,(P). Then dim,( Rey( E)) = dim,(E) - 
dim,(K(E) + J(E)), which is the number of matrix algebra summands of 
E/J(E), which is the number of conjugacy classes of primitive idempotents 
of E (under the units of E), which is the number of isomorphism types of 
indecomposable summands of P. 

On the other hand, if fi, ... f, are basis elements of Rey(kG) which do 
not annihilate P, their images in Rey(E) are linearly independent (for fj 
annihilates any summand of P whose socle is not isomorphic to Sj). Thus 
the dimension of the image of Rey(kG) is the number of isomorphism’types 
of summands of P, which is dim,(Rey(E)). Hence we have (with the 
notation above): 

THEOREM 10. Under the natural algebra morphism from Z(kG) into 
End,,(M), the image of Rey(kG) is Rey(End,,(P)), and the dimension of 
the image of Rey(kG) is the number of isomorphism types of indecomposable 
projective summunds of M. 
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