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Angiogenesis: Crouching
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Over 50 years ago Geiringer (1) noted that the vasa vasorum
must extend into the media if vessel wall thickness is
.0.5 mm, implying that thickening of the arterial wall
required new blood vessel growth. Many years later Wil-
liams et al. (2) showed that regression of atherosclerosis,
achieved by reducing the dietary cholesterol in a primate
model, was accompanied by a proportional regression of the
vasa vasorum. More recently, Kwon et al. (3) performed the
opposite analysis, using three-dimensional computed to-
mography to calculate the area of the vasa vasorum, and they
demonstrated a significant increase in the area of the vasa in
association with the development of atherosclerosis in a
hypercholesterolemic pig model. Moulton et al. (4) then
took advantage of endothelial-specific inhibitors to attenu-
ate angiogenesis in a hypercholesterolemic mouse model of
atherosclerosis, revealing that plaque progression was inhib-
ited by administration of agents designed to block new
vessel growth. The reductions in plaque area occurred
despite equivalent cholesterol levels in all animals and were
accompanied by a decrease in the percentage of aortic
plaques containing vessels. Together, these studies have
provided strong evidence that neovascularization is necessary
for the growth of atherosclerotic plaque. What these studies
did not examine, however, is whether neovascularization, in
and of itself, is a sufficient condition for plaque expansion.

See page 2126

The study by Celletti et al. (5) in this issue of the Journal
addresses this very question. The investigators report that a
single intramuscular injection of recombinant human vas-
cular endothelial growth factor (VEGF) protein, in a classic
hypercholesterolemic rabbit model, results in an increase in
aortic plaque size and “endothelial area” within one week,
with a persistent difference between control and VEGF-
treated animals at three weeks. An increase in macrophage
infiltration of the vessel wall is also reported.

The investigators took a novel approach in evaluating
plaque vascularity, counting pixels instead of vessels. There-
fore, the current findings are difficult to compare with
previous investigations, especially given the absence of
examples of the immunohistology in this report. It would
have been interesting, for example, to see where the “pixels”
were located—luminal surface, plaque, adventitia—and to
visualize the relationship of numbers of pixels and actual
vessels. In addition, the investigators decided to normalize
plaque area to luminal area, which can vary markedly from
animal to animal, depending on fixation technique (see their
Figs. 1 and 2), rather than to medial area, which is not as
prone to this variability. Nevertheless, all the data, including
maximum plaque thickness and circumferential plaque ex-
tension, point to a significant increase in early plaque
growth induced by VEGF.

These findings provide the counterpart to the findings of
Moulton et al. (4). Here, instead of blocking angiogenesis
and inhibiting atheroma formation, the researchers have
shown that, in a milieu compatible with the development of
atherosclerosis, administration of an angiogenic cytokine
can result in accelerated nascent plaque growth. Given the
growing interest in the use of endothelial growth factors for
therapeutic angiogenesis, these findings could amplify con-
cerns regarding the potential for these therapies to worsen
the disease they are designed to treat.

Before reaching this conclusion, however, it is worth
putting these important findings into context. The data
clearly show that treatment with VEGF during the very
earliest stage of atherosclerosis can accelerate fatty streak
formation. It is equally important to note the hypothesis not
tested—whether the same cytokine can worsen already
severe atherosclerosis of the type that would lead to consid-
eration for therapeutic angiogenesis. The potential signifi-
cance of this discrepancy is underscored by the finding in
the study by Moulton et al. (4) that inhibition of plaque
progression was attenuated when antiangiogenic therapy
was delayed by 32 weeks.

Indeed, the crucial factor to consider in terms of putting
the findings of Celletti et al. (5) into perspective is how they
bear upon a possible effect of VEGF on already established
atherosclerosis.

Atherosclerosis has been inferred to result from a con-
stellation of events, including inflammatory cell invasion of
the arterial wall, lipid accumulation and smooth muscle cell
proliferation. Central to these events is the failure of the
endothelium to exert its normal homeostatic control over
these processes. The concept that “injury” to the endothe-
lium or a loss of endothelial integrity could play a seminal
role in atherogenesis has, in fact, driven many of the
investigations into the pathogenesis and treatment of ath-
erosclerosis. This concept has been fueled by the finding
that human atherosclerotic arteries have measurable defi-
ciencies in endothelium-dependent functions, such as nitric
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oxide (NO) production (6) and that atheroma formation is
accelerated when the endothelial function is impaired
chemically (7) or mechanically (8). Data regarding the
relationship between endothelial integrity and neointimal
thickening in human arteries, although limited, are consis-
tent with the results of animal experiments. Davies et al. (9)
harvested coronary arteries from explanted hearts of six
transplant recipients and found that the severity and extent
of endothelial cell defects varied directly with the severity
and extent of intimal disease. Schwarcz et al. (10) found foci
of—but not complete—re-endothelialization in only 6
(38%) of 16 carotid specimens of patients with recurrent
carotid artery narrowing following an initially successful
endarterectomy.

These studies support the notion that certain functions of
the endothelium—including barrier regulation of perme-
ability, thrombogenicity and leukocyte adherence, as well as
production of growth-inhibitory molecules—are critical in
the prevention of neointimal thickening (11). This concept
has stimulated efforts to preserve intact the endothelium of
native veins used for bypass surgery (12,13); to accelerate
re-endothelialization following balloon-induced arterial in-
jury (14,15); and to facilitate endothelialization of prosthetic
conduits (16–19) or endovascular stents (20,21).

The capability of certain cytokines to serve as mitogens
for endothelial cells (ECs) in vitro suggests that such growth
stimulatory molecules might be exploited to accelerate
endothelial recovery consequent to natural plaque rupture or
mechanical balloon injury. Application of EC mitogens to a
freshly injured arterial segment has been shown previously
to exert favorable reparatory effects. Lindner et al. (22), for
example, established clear evidence for the mitogenic effect
of basic fibroblast growth factor (bFGF) on EC replication
in the rat carotid artery model of balloon injury; total EC
regrowth was achieved by administration of bFGF in doses
of 12 mg twice weekly for up to eight weeks. In the case of
acidic FGF—like bFGF, a known mitogen for vascular
smooth muscle cells (SMCs) as well as ECs—low doses
(,1% of the dose of bFGF employed in the aforementioned
studies) administered to this same animal model were
shown to have an inhibitory effect on neointimal thickening
(23).

Vascular endothelial growth factor (24), known also as
vascular permeability factor (25) and vasculotropin (26), has
been previously shown to be an EC-specific mitogen and to
promote EC migration in vitro (25,27,28) and as an
angiogenic growth factor in vivo (24,29–31). Potentially
contributory as well, however, and beyond its mitogenic
effects, is the potential for VEGF to modulate qualitative
aspects of EC function. The finding by Peters et al. (32) of
the fms-like tyrosine kinase receptor in the endothelium of
mature (quiescent) endothelium of adult organs was inter-
preted as evidence for the concept that VEGF may be
important for the maintenance and repair of the endothe-
lium. Observations that VEGF directly augments EC
release of NO (33) and induces endothelium-dependent

hypotension in healthy (as well as hypercholesterolemic)
adult rabbits and swine (34) are consistent with the notion
that VEGF constitutes a principal determinant of endothe-
lial maintenance and repair. Indeed, this functional aspect of
the effect of VEGF on EC biology has been shown to be
critical for promotion of angiogenesis in vivo (35), and it is
clearly critical for restored endothelium to inhibit SMC
proliferation and/or neointimal thickening (36).

Based on such mitogenic, migratory, and functional
modulation of ECs in response to VEGF, we performed a
series of preclinical studies to investigate the direct applica-
tion of VEGF as naked DNA or recombinant protein to
arteries that were aggressively injured by balloon endothelial
denudation, with (37,38) or without (39,40) deployment of
an endovascular stent. In each of these animal experiments,
local administration of VEGF markedly accelerated endo-
thelial recovery of a freshly injured arterial segment.

In all four studies, accelerated endothelial recovery led to
marked reduction in intimal thickening and/or mural
thrombus formation. These findings implied that the ana-
tomically restored endothelium was functionally competent,
consistent with the principle that the endothelium, as
described by Clowes (41), represents “the controlling ele-
ment governing the function of biomaterials in the vascu-
lature.”

Indeed, what was perhaps the most striking aspect of
these animal studies was the impact on direct functional
assessment of endothelium-dependent function. Previous
investigations of re-endothelialization have demonstrated
that restoration of anatomic integrity and recovery of
physiologic function do not proceed simultaneously (42).
Using quantitative angiography, we determined the vaso-
motor response of the VEGF-transfected, balloon-injured
arterial segments to endothelium-dependent agonists. Con-
sistent with the previous experience of Weidinger et al. (43),
control rabbits transfected with plasmid DNA encoding for
beta-galactosidase (LacZ) demonstrated persistent impair-
ment in vasomotor response to endothelium-dependent
agents at four weeks’ postinjury. In contrast, arteries trans-
fected with phVEGF165 disclosed recovery of near-normal
endothelium-dependent vasoreactivity within one week.
Thus, these findings are consistent with the notion that
VEGF functions as an endogenous regulator of endothelial
integrity—both physiologic and anatomic—in the artery
wall (36).

Another feature of the VEGF gene—the presence of a
secretion signal at its amino terminus (44) permitting
VEGF to be naturally secreted by intact cells—is particu-
larly critical to its investigation in strategies of naked DNA
gene transfer (45). In experiments that have relied exclu-
sively on the use of nonsecreted gene products, examination
by histochemical staining, in situ hybridization and/or
polymerase chain reaction has suggested that the transfec-
tion efficiency of direct gene transfer to vascular SMCs
within the arterial wall was considerably ,1% and, there-
fore, might preclude a meaningful biological response.
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In contrast, genes encoding for a secreted protein such as
VEGF may overcome the handicap of inefficient transfec-
tion by a paracrine effect, secreting adequate protein to
achieve local levels that may be physiologically meaningful.
The relation between a secreted gene product and transfec-
tion efficiency after in vivo arterial gene transfer was
graphically documented by in vitro (46) and in vivo (47)
experiments performed in our laboratory to serially monitor
expression of a gene encoding for a secreted protein. In vivo
analyses were performed using the central artery of the
rabbit ear. Liposome-mediated transfection of plasmid
DNA containing the gene for human growth hormone
(hGH) was successfully performed in 18 of 23 arteries.
Serum hGH levels measured five days after transfection
ranged from 0.1 to 3.8 ng/ml (mean, 0.97 ng/ml); in
contrast, serum drawn from the control arteries demon-
strated no evidence of hGH production. Serial measure-
ment of hGH from transfected arteries demonstrated max-
imum hGH secretion five days after transfection and no
detectable hormone after 20 days. Despite these levels of
secreted gene product documented in vivo, immunohisto-
chemical staining of sections taken from the rabbit ear artery
at necropsy disclosed evidence of successful transfection in
,0.1% of cells in the transfected segment. Thus, low-
efficiency transfection with a gene encoding for a secreted
protein might achieve therapeutic effects not realized by
transfection with genes encoding for proteins that remain
intracellular.

These favorable preclinical studies led to the design of
phase I clinical trials to test the hypotheses that VEGF gene
transfer could: 1) augment angiogenesis in patients with
symptomatic ischemia and no options for conventional
revascularization, or 2) accelerate endothelial recovery after
balloon angioplasty and thereby inhibit restenosis. In the
context of these trials over 40 patients have now received
VEGF by direct intra-arterial gene transfer of naked DNA
delivered to a freshly injured arterial surface. The VEGF
plasmid was administered in 12 patients in normal or
moderately diseased arterial segments using a hydrogel-
coated angioplasty to which the DNA, in saline solution,
was applied in an attempt to augment collateral blood vessel
growth (48). Follow-up angiography and intravascular ul-
trasound have disclosed no evidence of progression of
atherosclerosis in these vessels (J. Isner, unpublished data,
2000). In 30 additional patients, the same delivery tech-
nique was employed following percutaneous revasculariza-
tion of severely atherosclerotic femoral arteries in a phase I
study to examine the potential of this approach to prevent
restenosis. Follow-up examination up to 18 months’ post-
gene transfer (49) disclosed no evidence of new atheroscle-
rotic lesion development, and the incidence of restenosis
was at the very least no higher—and perhaps lower—than
that observed among contemporary controls (50).

Thus, the animal and human studies performed in our
laboratory (38–40,49,51–54) and by other investigators
(55–57) (Table 1) in fact fail to support the notion that Ta
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accelerated atherosclerosis is a likely consequence of admin-
istering angiogenic cytokines. The outcome was quite the
opposite in that administration of VEGF led to statistically
significant reductions in intimal thickening.

Nevertheless, the findings of Celletti et al. (5) will
doubtless serve as the springboard for additional studies to
examine the potential impact of angiogenic therapies, per-
haps employing animal models of established atherosclero-
sis. In addition, these findings will also likely heighten the
already intense scrutiny of patients enrolled in clinical trials
of therapeutic angiogenesis (58–62). In this sense, the
success of this study is irrefutable.

Reprint requests and correspondence: Dr. Douglas W.
Losordo, Division of Cardiovascular Medicine and Research, St.
Elizabeth’s Medical Center, 736 Cambridge Street, Boston, Mas-
sachusetts 02135.
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