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Abstract

We study the quantum effects in a brane-world model in which a positive constant curvature brane universe is emb
a higher-dimensional bulk AdS black hole, instead of the usual portion of theAdS5. By using zeta regularization, in the larg
mass regime, we explicitly calculate the one-loop effective potential due to the bulk quantum fields and show that it le
non-vanishing cosmological constant, which can definitely acquire a positive value.
 2004 Elsevier B.V.

1. Introduction

The study of quantum effects in the brane-world has been a subject of quite some activity recently. In pa
the one-loop effective potential for bulk quantum fields has been calculated, for the case when the bulk spa
5-dimensional AdS and the brane is flat [1]. This is one of the directions which relates the AdS/CFT correspo
[2] with the brane-world paradigms [3]. (It is interesting to note that the one-loop potential obtained fro
bulk space may be useful in the development of the holographic renormalization group (RG) in the Ad
set up [4–6].) Among the applications of a calculation of this type, one can envisage radion stabilization
derivation of an induced cosmological constant. Subsequently, this kind of calculation has been generaliz
case when the brane is de Sitter space [7–9], which is an interesting example since this setup seems to b
corresponding to our observable universe. The main technical ingredient in our calculation, which allows
it explicitly to the end, will be zeta-function regularization [10,11].

In view of the recent developments on cosmological models, it seems interesting to generalize the
quantum effects due to bulk fields to different sorts of bulk spaces. Indeed, if our universe is a brane-worl
kind, it is unclear a priori what is the right bulk space. For example, it is already known that brane gravity tr
occurs in an AdS 5-dimensional black hole [12–15] in just the same way as in the Randall–Sundrum mo
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Moreover, in the AdS/CFT correspondence, the case of a bulk AdS black hole represents a different pha
same theory and there is the exciting connection that a transition between an ordinary bulk AdS and a b
black hole corresponds to the confinement–deconfinement transition in the dual CFT [16]. Thus, it appea
natural to expect that, at some epoch or other of its evolution, our brane universe may have been embedd
bulk AdS black hole.

The purpose of this Letter is—by the way of a calculable explicit example—to give consistency to the
above. With this aim, we consider the physical de Sitter brane universe to be embedded into a higher-dim
AdS black hole. We show that, by using zeta-regularization techniques, one can explicitly calculate the o
effective potential due to the bulk quantum fields. For the sake of simplicity, a bulk scalar will be here cons
but the calculation could be easily extended to other cases. The one-loop effective potential that we shall ob
then be compared with the potential found in the case when the bulk is a pure AdS space. Such one-loop
potential may be actually responsible for the dominant contribution to the brane cosmological constant duri
period of the evolution of our brane-world. One should note on passing that applications of the one-loop e
potential from a bulk AdS black hole to inducing the correct hierarchy does not look so interesting, since su
of background does not seem at present to be able to provide a natural solution of this problem [17].

To begin with, as a background bulk space, we may consider an asymptotically AdS generic black hole s
in D = 2+ d dimension, with Euclidean timeτ and extra radial coordinater. The metric reads [18–21]

(1)ds2 = gMN dx
M dxN =A(r) dτ2 + 1

A(r)
dr2 + r2dΣ2

d ,

whereM,N = 1, . . . ,D, Σd is the constant curvature brane space–time and

(2)A(r)= k + r2

�2 − rd+1
0

�2rd−1 .

Here k = 0,1,−1 for Minkowski, de Sitter and anti-de Sitter space, respectively,� is related to the bulk
cosmological constant, andr0 is a typical length parameter, which depends on the mass of the black ho
on the bulk Newton constant. In the non-extremal case, the functionA(r) has a simple zero atr = rH , which is the
minimum (positive) value admissible forr. For the particular casek = 0, one trivially hasrH = r0.

2. Near-horizon approximation

As is well known, one-loop calculations in a generic black-hole background are hard, if not impossi
perform exactly. One is compelled to make use of some approximation. Here, we will investigate quantu
loop effects in the so called near-horizon approximation. This one proves to be a good approximation to t
problem in hand as far as the black hole mass—in our case the length parameterrH—is sufficiently large. In this
situation the bulk black hole space–time becomes a Rindler-like space–time and the statistical mechani
black holes can be investigated in detail (for a further discussion see, for example [22]).

In fact, defining the new coordinates,ρ andθ , by means of

(3)r = rH + A′(rH )
4

ρ2, τ = 2

A′(rH )
θ,

one gets

(4)ds2 ∼ ρ2dθ2 + dρ2 + r2
H dΣ

2
d .

As usual, in order to avoid the conical singularity atρ = 0, one has to require the coordinateθ to be periodic with
a period of 2π . This corresponds to a periodβ of the Euclidean timeτ given by the Hawking condition

(5)β = 4π
′ .
A (rH )
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In this way, the space–time becomes locallyR2 ×Σd , this is to say, the Euclidean version of a Rindler-like spa
time.

Consider then the action for a scalar with scalar-gravitational coupling in the bulk, e.g.,

(6)S = 1

2

∫
dDx

√
g
[
gMN∂Mφ∂Nφ +m2φ2 + ξRφ2],

m being the mass,ξ the constant coupling with gravitation, andR the scalar curvature of the whole manifold. T
latter action can be rewritten as

(7)S = 1

2

∫
dDx

√
gφLφ, L= LD +M2 = L2 +Ld +M2,

whereLD = L2 +Ld is a Laplacian-like operator on theD-dimensional manifold, while

(8)L2φ ≡ − 1

ρ2∂
2
θ φ − 1

ρ
∂ρ(ρ∂ρφ)

is the flat Laplacian in 2 dimensions,

(9)Ldφ ≡
[
−∇2

d + (d − 1)2

4r2
H

]
φ

is a Laplacian-like operator (with a particular non-minimal coupling) on the constant curvature space–timeΣd and,
finally,

(10)M2 =m2 + ξR − (d − 1)2

4r2
H

=m2 + 1

r2
H

[
ξd(d − 1)− (d − 1)2

4

]

is a constant term. For computational reason, we have added and subtracted in expressions (9) and (10) th
term(d − 1)2/(4r2

H).

3. One-loop effective potential

Since we are interested in the effective potential, we have to compute the heat-kernel trace and then
Mellin transform, the zeta function corresponding to the operatorL. In fact, in the zeta-function regularizatio
scheme, the one-loop contribution to the effective potential is given by

(11)V (1) = −ζ
′(0|L/µ2)

2VD
= −ζ

′(0|L)+ logµ2ζ(0|L)
2VD

,

VD being the volume of the manifold andµ a free parameter, which one has to introduce for dimensional rea
It must be fixed by renormalization. Following Ref. [23], we write the effective potential in the form

(12)Veff = Vr(µ)+ V (1)(µ),

whereVr(µ) is the renormalized vacuum energy. The effective potential is a physical observable and
reason it cannot depend on the choice of the arbitrary scale parameterµ. This means that it has to satisfy th
renormalization condition [23]

(13)µ
dVeff

dµ
= 0.

From the latter equation we determineVr(µ) up to an integration constantVr(µ0), which we choose to b
vanishing, and thus obtain in this way the renormalization pointµ0. After such an operation one finally ge
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(14)Veff = −ζ
′(0|L/µ2

0)

2VD
= −ζ

′(0|L)+ logµ2
0ζ(0|L)

2VD
.

In the approximation we are considering,L2 andLd commute, thus (heret is the heat-kernel parameter)

(15)Tr e−tL = Tr e−tL2 Tr e−tLd e−tM2
.

Let us put the branes at sayρ = ρ1 andρ = ρ2 (with ρ1 > ρ2). Then the eigenfunctions and the eigenvalues oL2
are given by

(16)−L2φ = λ2φ, φ = einθ
(
αnJn(λρ)+ βnNn(λρ)

)
, λ= λn (n= 0,±1,±2, . . .).

Here Jn andNn are Bessel and the Neumann functions, respectively. If, for simplicity, we impose Dir
boundary condition at the branes, that is

(17)φ(ρ1)= φ(ρ2)= 0,

then, the eigenvaluesλn are implicitly given by the equation

(18)Jn(λnρ1)Nn(λnρ2)= Jn(λnρ2)Nn(λnρ1).

For simplicity, now let us compute the effective potential for the scalar field in the bulk with only one bra
fact, it is not difficult to realize that the two-brane case does not add any additional physical insight (altho
calculation is rather more involved). We put the brane atρ = ρ0, the bulk space being defined byρ < ρ0. Thus, it
turns out that the eigenfunctions and eigenvalues ofL2 are given by

(19)L2φ = λ2φ, φ = einθ Jn(λρ), λ= λn,k = jn,k

ρ0
(n= 0,±1,±2, . . .).

Herejn,k are the zeros of the Bessel functionsJn(x): Jn
(
jn,k

) = 0.

4. Large mass expansion

As it always happens in a situation of this kind, it is not possible to do the calculation exactly in a close
valid in the whole range of parameters of the problem. For different domains of the parameters a different ex
must be chosen. Here, we choose to perform an expansion for large values of the constant termM2 (with respect
to the renormalization pointµ2

0),1 since this one corresponds to the most interesting (and natural) situation
the physical viewpoint. In this situation the zeta function acquires the form

(20)ζ(s|L)∼
∞∑
r=0

Kr(LD)
,(s + (r −D/2))

,(s)
MD−r−2s .

The latter expression directly follows from the Mellin-like transform

(21)ζ(s)= 1

,(s)

∞∫
0

dt ts−1 Tr e−tL,

1 Which will set up, all the way from now, the unit in whichM2 is to be measured.
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by using the heat-kernel expansion

(22)Tr e−tL ∼
∞∑
r=0

e−tM2
Kr(LD)t

(r−D)/2,

Kr(LD) being the Seeley–De Witt coefficients corresponding to the operatorLD .
A direct computation gives

(23)ζ(0|L)=KD(L)=
∑

n�D even

(−1)n/2KD−n(LD)Mn

(n/2)! ,

while

ζ ′(0|L)=
∑

n�D even

(−1)n/2KD−n(LD)Mn

(n/2)!
[
− logM2 + γ +ψ

(
1+ n

2

)]

(24)+
∑

n�D odd

,

(
−n

2

)
KD−n(LD)Mn +O

(
1

M

)
,

γ being the Euler–Mascheroni constant andψ the digamma function (logarithmic derivative of the, function).
The heat-kernel coefficientsKn(LD) can be given in terms ofKi(L2) andKj(Ld). In fact, since

(25)Tr e−tLD = Tr e−tL2 Tr e−tLd ∼
∑
n=0

Kn(LD)t
(n−D)/2

and

(26)Tr e−tL2 ∼
∑
i=0

Ki(L2)t
(i−2)/2, Tr e−tLd =

∑
j=0

Aj(Ld)t
j−d/2,

one gets

(27)Kn(LD)=
∑

i+2j=n
Ki(L2)Aj (Ld).

Here we have used the notationAj =K2j since on a compact manifold without boundary,Σd , all Kj coefficients
with odd index vanish. TheAn(Ld) coefficients depend on the horizon manifold and, in principle, they
be computed in terms of geometric invariants. The other coefficientsKn(L2) are associated with the Dirichle
Laplacian on the disk with radiusρ0. For dimensional reasons,2 they have the form

(28)Ki(L2)= diρ
2−i
0 ,

wheredi are numerical coefficients which can be evaluated with the help of the techniques developed in R
The explicit values of the ones we shall use in the following read

d0 = 1

4
, d1 = −

√
π

4
, d2 = 5

12
, d3 =

√
π

128
, d4 = 347

5040
,

(29)d5 = 25

192
√
π

+ 37
√
π

16384
, d6 = 602993

5765760
.

Eqs. (23) and (24) are valid in arbitrary dimensions. For cosmological applications, however, it is intere
specify for theD = 6 case, which corresponds to a 4-dimensional brane as horizon manifold. From Eqs. (1

2 Note that the dimensions of theRi take care of the corresponding powers ofM .
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and (24), forD = 6 and in the large-M limit, we obtain

Veff = 1

2VD

[
8
√
π

15
K1(L6)M

5 − 4
√
π

3
K3(L6)M

3 + 2
√
πK5(L6)M

− K0(L6)M
6

6

(
log

M2

µ2
0

− 11

6

)
+ K2(L6)M

4

2

(
log

M2

µ2
0

− 3

2

)

(30)−K4(L6)M
2
(

log
M2

µ2
0

− 1

)
+K6(L6) log

M2

µ2
0

]
+O

(
1

M

)
.

In the following we shall analyze in detail the casek = 1, that is, the de Sitter brane, which is most promis
from the cosmological viewpoint. The simplest casek = 0, that is the Minkowski brane, will be directly obtaine
in the limit of vanishing curvature.

5. The de Sitter brane case

As anticipated, the de Sitter case (k = 1) may be very interesting for cosmological applications. The results
we obtain for this case are the following.

The heat-kernel coefficients for the operator−∇2 + 9/4r2
H on the 4-dimensional sphere can be taken,

instance, from Ref. [11]. The non-vanishing ones read

(31)A0 = V4

16π2
, A1 = − V4

64π2r2
H

, A2 = V4

16π2r4
H

.

From Eqs. (27) and (28) and settingV6 = πρ2
0V4, it follows that

(32)Kn(L6)= V6

16π3

(
dn

ρn0
− dn−2

4r2
Hρ

n−2
0

+ dn−4

r4
Hρ

n−4
0

)
.

Now, using Eq. (30) we are able to write the final result under the explicit form

Veff = 1

ρ6
0

[
d1(Mρ0)

5

60π5/2 − (Mρ0)
3

24π5/2

(
d3 − d1ρ

2
0

4r2
H

)
+ Mρ0

16π5/2

(
d5 − d3ρ

2
0

4r2
H

+ d1ρ
4
0

r4
H

)

− d0(Mρ0)
6

192π3

(
log

M2

µ2
0

− 11

6

)
+ (Mρ0)

4

64π3

(
d2 − d0ρ

2
0

4r2
H

)(
log

M2

µ2
0

− 3

2

)

− (Mρ0)
2

32π3

(
d4 − d2ρ

2
0

4r2
H

+ d0ρ
4
0

r4
H

)(
log

M2

µ2
0

− 1

)
+ 1

32π3

(
d6 − d4ρ

2
0

4r2
H

+ d2ρ
4
0

r4
H

)
log

M2

µ2
0

]

(33)+O

(
1

M

)
.

6. The flat brane case

The one-loop effective potential for the simplest casek = 0 (Minkowski) can be obtained from Eq. (30) b
observing that

(34)Kn(L6)= ρ2
0V4dn

16π2ρn
= V6dn

16π3ρn
,

0 0
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or, more simply, it can be obtained by taking the flat limitrH → ∞ in Eq. (33). We get

Veff = 1

ρ6
0

[
d1(Mρ0)

5

60π5/2 − d3(Mρ0)
3

24π5/2 + d5Mρ0

16π5/2 − d0(Mρ0)
6

192π3

(
log

M2

µ2
0

− 11

6

)
+ d2(Mρ0)

4

64π3

(
log

M2

µ2
0

− 3

2

)

(35)− d4(Mρ0)
2

32π3

(
log

M2

µ2
0

− 1

)
+ d6

32π3 log
M2

µ2
0

]
+O

(
1

M

)
.

7. Concluding remarks

Performing a numerical analysis of the result above, we arrive to the conclusion that such quantity—
should be identified essentially with the cosmological constant—is generically non-zero and can acquire
and negative values, depending on the specific choice of the parameters. The same is seen to happen for
in the bulk we are considering, Eq. (33). This has now to be compared with the Casimir effect for a dS b
the AdS bulk: in that case the cosmological constant is always zero [7]. A more detailed analysis shows
that for the range of values forM andρ0 of physical interest, which have been under discussion in the re
literature: (i) all the series we have here converge very quickly (this already happens forρ0 > 10−10 cm), and
(ii) the value of the induced cosmological constant that we obtain from them is positive, as needed to exp
observed acceleration in the expansion of the universe. In this preliminary analysis it is too soon to discu
a numerical matching with the observational values.3 Similarly, it can be shown from Eq. (33), that the effect
potential corresponding to the case of a de Sitter brane is also non-zero, and can be made positive too,
an enlarged number of interesting situations.

Summing up, from this simple examples we have here considered it becomes already clear that, in
induce a 4-dimensional cosmological constant in a brane-world universe, it turns out that an AdS black-h
with a one-brane configuration is far more attractive than the pure AdS bulk. We have here dealt only wit
simple examples but, as has been pointed out already, the present calculation can be extended, withou
trouble, to more realistic situations and, thus, it seems to open a number of different, very promising possi
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