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Abstract

We study the quantum effects in a brane-world model in which a positive constant curvature brane universe is embedded in
a higher-dimensional bulk AdS black hole, instead of the usual portion cAdS. By using zeta regularization, in the large
mass regime, we explicitly calculate the one-loop effective potential due to the bulk quantum fields and show that it leads to a
non-vanishing cosmological constant, which can definitely acquire a positive value.
0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction

The study of quantum effects in the brane-world has been a subject of quite some activity recently. In particular,
the one-loop effective potential for bulk quantum fields has been calculated, for the case when the bulk space is the
5-dimensional AdS and the brane is flat [1]. This is one of the directions which relates the AdAS/CFT correspondence
[2] with the brane-world paradigms [3]. (It is interesting to note that the one-loop potential obtained from the
bulk space may be useful in the development of the holographic renormalization group (RG) in the AdS/CFT
set up [4-6].) Among the applications of a calculation of this type, one can envisage radion stabilization and the
derivation of an induced cosmological constant. Subsequently, this kind of calculation has been generalized to the
case when the brane is de Sitter space [7-9], which is an interesting example since this setup seems to be the ont
corresponding to our observable universe. The main technical ingredient in our calculation, which allows to carry
it explicitly to the end, will be zeta-function regularization [10,11].

In view of the recent developments on cosmological models, it seems interesting to generalize the study of
quantum effects due to bulk fields to different sorts of bulk spaces. Indeed, if our universe is a brane-world of any
kind, it is unclear a priori what is the right bulk space. For example, it is already known that brane gravity trapping
occurs in an AdS 5-dimensional black hole [12—-15] in just the same way as in the Randall-Sundrum model [3].
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Moreover, in the ADS/CFT correspondence, the case of a bulk AdS black hole represents a different phase of the
same theory and there is the exciting connection that a transition between an ordinary bulk AdS and a bulk AdS
black hole corresponds to the confinement—deconfinement transition in the dual CFT [16]. Thus, it appears quite
natural to expect that, at some epoch or other of its evolution, our brane universe may have been embedded into a
bulk AdS black hole.

The purpose of this Letter is—by the way of a calculable explicit example—to give consistency to the ideas
above. With this aim, we consider the physical de Sitter brane universe to be embedded into a higher-dimensional
AdS black hole. We show that, by using zeta-regularization techniques, one can explicitly calculate the one-loop
effective potential due to the bulk quantum fields. For the sake of simplicity, a bulk scalar will be here considered,
but the calculation could be easily extended to other cases. The one-loop effective potential that we shall obtain will
then be compared with the potential found in the case when the bulk is a pure AdS space. Such one-loop effective
potential may be actually responsible for the dominant contribution to the brane cosmological constant during some
period of the evolution of our brane-world. One should note on passing that applications of the one-loop effective
potential from a bulk AdS black hole to inducing the correct hierarchy does not look so interesting, since such kind
of background does not seem at present to be able to provide a natural solution of this problem [17].

To begin with, as a background bulk space, we may consider an asymptotically AdS generic black hole solution,
in D =2+ d dimension, with Euclidean time and extra radial coordinate The metric reads [18-21]

1
45? = g dx dx = A dv 4 o osdr? 12 ®
r
whereM, N =1, ..., D, ¥, is the constant curvature brane space—time and
P2 et
A =k+ 5~ o o

Here k = 0,1, —1 for Minkowski, de Sitter and anti-de Sitter space, respectivelys related to the bulk
cosmological constant, ang is a typical length parameter, which depends on the mass of the black hole and
on the bulk Newton constant. In the non-extremal case, the fundtiopnhas a simple zero at= ry, which is the
minimum (positive) value admissible fer For the particular case= 0, one trivially hasy = ro.

2. Near-horizon approximation

As is well known, one-loop calculations in a generic black-hole background are hard, if not impossible, to
perform exactly. One is compelled to make use of some approximation. Here, we will investigate quantum one-
loop effects in the so called near-horizon approximation. This one proves to be a good approximation to the exact
problem in hand as far as the black hole mass—in our case the length paragmetsrsufficiently large. In this
situation the bulk black hole space-time becomes a Rindler-like space-time and the statistical mechanics of the
black holes can be investigated in detail (for a further discussion see, for example [22]).

In fact, defining the new coordinatgsandé, by means of

A/(r]-]) 2 2
= y = 9, 3
r=rg+ 4 0 T om 3)
one gets
ds2~p2d92+dp2+rfl dEg. 4)

As usual, in order to avoid the conical singularityeat 0, one has to require the coordinatéo be periodic with
a period of Zr. This corresponds to a perigdof the Euclidean time given by the Hawking condition
4
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In this way, the space—time becomes locallyx X, this is to say, the Euclidean version of a Rindler-like space—
time.
Consider then the action for a scalar with scalar-gravitational coupling in the bulk, e.g.,

2

m being the masg; the constant coupling with gravitation, adthe scalar curvature of the whole manifold. The
latter action can be rewritten as

s=1 / dPx /g[¢"N ampang + m2p® + & R¢?], (6)

1
SZE/C’DWMM, L=Lp+M*=Lp+Lg+ M>?, @)
whereLp = Lo + L, is a Laplacian-like operator on the-dimensional manifold, while
1 1
Lop = —=00¢ — =0,(pdp) (8)
P P
is the flat Laplacian in 2 dimensions,
(d — 1)
Lap = [—Vﬁ +— ]zb )
4rg;

is a Laplacian-like operator (with a particular non-minimal coupling) on the constant curvature space;-time,
finally,

(d —1)? 5 1[
= —|edd-1) —
4r£l " +r12_1 sd( )

M?=m?+ER—

(d—1)2
2 ] (10)

is a constant term. For computational reason, we have added and subtracted in expressions (9) and (10) the constar
term(d — 1)?/(4r).

3. One-loop effective potential

Since we are interested in the effective potential, we have to compute the heat-kernel trace and then, via the
Mellin transform, the zeta function corresponding to the operatdn fact, in the zeta-function regularization
scheme, the one-loop contribution to the effective potential is given by

y@__ ¢OL/wm? _ ¢'OIL) +logut (OIL)
o 2Vp o 2Vp ’

Vp being the volume of the manifold anda free parameter, which one has to introduce for dimensional reasons.
It must be fixed by renormalization. Following Ref. [23], we write the effective potential in the form

(11)

Veit = Vi () + VP (), (12)

where V. () is the renormalized vacuum energy. The effective potential is a physical observable and for this
reason it cannot depend on the choice of the arbitrary scale parameténis means that it has to satisfy the
renormalization condition [23]
Vet _,
du
From the latter equation we determing(x) up to an integration constant. (o), which we choose to be
vanishing, and thus obtain in this way the renormalization pgint After such an operation one finally gets

(13)
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the renormalized effective potential in the form

_GOIL/uy) _ ¢'(OIL) +logpdt (OIL)
2Vp - 2Vp ’

In the approximation we are consideridg, and L, commute, thus (hereis the heat-kernel parameter)

(14)

eff =

Tre 'L =Tre L2 Tre_[L"e_’Mz. (15)
Let us put the branes at say= p1 andp = p2 (with p1 > p2). Then the eigenfunctions and the eigenvaluesof
are given by
—Lop=1%p, ¢=€" (an Jn(p) + BuNa(Ap)), A =2, (n=0,£1,£2,..)). (16)
Here J, and N, are Bessel and the Neumann functions, respectively. If, for simplicity, we impose Dirichlet
boundary condition at the branes, that is
¢ (p1) = ¢ (p2) =0, 17)
then, the eigenvalugs, are implicitly given by the equation

Jn (A p1) Ny (An 02) = Iy (A 02) Np(An 01). (18)

For simplicity, now let us compute the effective potential for the scalar field in the bulk with only one brane. In
fact, it is not difficult to realize that the two-brane case does not add any additional physical insight (although the
calculation is rather more involved). We put the brang at pg, the bulk space being defined py< pg. Thus, it
turns out that the eigenfunctions and eigenvaludsyadire given by

jn,k

Lap=2%¢, ¢=6€""J,(hp), A=hps = ™

(n=0,+1,£2,...). (19)

Herej, « are the zeros of the Bessel functiohsx): J, (jn,k) =0.

4. Large mass expansion

As it always happens in a situation of this kind, it is not possible to do the calculation exactly in a closed way,
valid in the whole range of parameters of the problem. For different domains of the parameters a different expansion
must be chosen. Here, we choose to perform an expansion for large values of the constaft {erith respect
to the renormalization poimtg),1 since this one corresponds to the most interesting (and natural) situation from
the physical viewpoint. In this situation the zeta function acquires the form

L(s+ (r—D/2)
T'(s)

¢(s|L)~ Y K (Lp) MPZ, (20)

r=0
The latter expression directly follows from the Mellin-like transform

I N
C(s) = o) /dtt Tre 'L, (21)
0

1 Which will set up, all the way from now, the unit in whight2 is to be measured.
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by using the heat-kernel expansion

o
Tre ™t~ e MUK, (L) P2, (22)
r=0
K, (Lp) being the Seeley—De Witt coefficients corresponding to the opetator
A direct computation gives

(=1)"2Kp_n(Lp)M"

O|L)=Kp(L) = , 23
£(O|L) = Kp(L) <DZ Wi (23)
while

, _ (=1)"2Kp_n(Lp)M" ) n
¢'(OIL) = Z /2! [—IogM +y+1//<1+§)]

n<Deven

1
+ ) F(—%)Kp_n(LD)M”+O<M), (24)

n<D odd

y being the Euler—Mascheroni constant ahthe digamma function (logarithmic derivative of tRgunction).
The heat-kernel coefficients, (L p) can be given in terms of; (L2) andK;(Ly). In fact, since

Tre 'bo =Tre "t Tre™'hd ~ N " K, (Lp)t"~D)/2 (25)
n=0
and
Tre—tL2 ~ Z Ki(LZ)t(i72)/2’ Tre tLa — Z Aj(Ld)ljid/z, (26)
i=0 j=0
one gets
Ko(Lp)= Y Ki(L2)A;(La). (27)
i+2j=n

Here we have used the notatidn = K»; since on a compact manifold without boundaXy, all K ; coefficients
with odd index vanish. Thei,(L;) coefficients depend on the horizon manifold and, in principle, they can
be computed in terms of geometric invariants. The other coefficiEp{d.2) are associated with the Dirichlet
Laplacian on the disk with radiysy. For dimensional reaso’ghey have the form

Ki(La) =dip3 ", (28)

whered; are numerical coefficients which can be evaluated with the help of the techniques developed in Ref. [24].
The explicit values of the ones we shall use in the following read

1 JT 5 Jr 347
dO—Z, dl——T, d2—1—2, dg_ﬁ’ 4—m,
25 37 /n 602993
ds T e (29)

= Too/z ' 16384 ~ 5765760

Egs. (23) and (24) are valid in arbitrary dimensions. For cosmological applications, however, it is interesting to
specify for theD = 6 case, which corresponds to a 4-dimensional brane as horizon manifold. From Egs. (14), (23)

2 Note that the dimensions of thig take care of the corresponding powershof
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and (24), forD = 6 and in the largeW limit, we obtain

Vet — [%Kl(LG)MS - ?KS(LG)M?’ +2\/mKs(Le)M

~2vp| 15
Ko(Lg)M® o M? 11\ Ka(Lg)M* o M? 3
6 2 6 2 pd 2
M? M? 1
- K4(L6)M2<Iog — - 1) + Ke(Lg) log —2] +0 (—) (30)
Mo Mo M

In the following we shall analyze in detail the case- 1, that is, the de Sitter brane, which is most promising
from the cosmological viewpoint. The simplest cése 0, that is the Minkowski brane, will be directly obtained
in the limit of vanishing curvature.

5. Thede Sitter branecase

As anticipated, the de Sitter casge=£ 1) may be very interesting for cosmological applications. The results that
we obtain for this case are the following.

The heat-kernel coefficients for the operatow? + 9/4r12_1 on the 4-dimensional sphere can be taken, for
instance, from Ref. [11]. The non-vanishing ones read

Va Va Va

Ag=—2, A1=———o Ap=——o . 31
0= 1672 YT 6an? 27 16n2r% (1)
From Egs. (27) and (28) and settiffg = p3 Va4, it follows that
Ve dy dp—2 dp—4
Kl = qooa (5 — 52+ ) (32)
A VR Yo
Now, using Eq. (30) we are able to write the final result under the explicit form
Vo L[AMp0®  Mpo)® ( dipg\  Mpo (, dspg  dipg
T8l 60n52 T 24x52\° T 42 ) T 16252\ T 42 T A
do(Mpo)® M2 11 Mpo)* dop? M2 3
_Lf;tg<|og_2__)+< £0) (dz_ 0/;0)<|Og_2__)
192 uZz  6) " 64r 42 uZ 2
Mpp)? dap?  dopd M? 1 dap?  dop M?
ST P R NN S PR N
32r 4ry Ty MG 32r 4ry, ryp Mg
1
ol —). 33
+ ( M) (33)

6. Theflat brane case

The one-loop effective potential for the simplest case 0 (Minkowski) can be obtained from Eq. (30) by
observing that
psVadn _ Vedy
1672pf  1673pf"

K, (Lg) = (34)
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or, more simply, it can be obtained by taking the flat limjt— oo in Eq. (33). We get

Ve — L [d1Mpo)®  d3(Mpo)*  dsMpo  do(Mpo)® (\  M? 11\  da(Mpo)* (' MZ 3
1= 8| 607572 24752 16752 1927° ui 6 6473 ps 2
da(Mpo)? M? de M? 1
——5=|l09— —-1)+ sz=5log— [+ 0| — ). 35
328 \ 92 ) T3z TN\ (35)

7. Concluding remarks

Performing a numerical analysis of the result above, we arrive to the conclusion that such quantity—which
should be identified essentially with the cosmological constant—is generically non-zero and can acquire positive
and negative values, depending on the specific choice of the parameters. The same is seen to happen for a dS brar
in the bulk we are considering, Eq. (33). This has now to be compared with the Casimir effect for a dS brane in
the AdS bulk: in that case the cosmological constant is always zero [7]. A more detailed analysis shows actually,
that for the range of values fa¥ and pg of physical interest, which have been under discussion in the recent
literature: (i) all the series we have here converge very quickly (this already happens$0t0~1° cm), and
(i) the value of the induced cosmological constant that we obtain from them is positive, as needed to explain the
observed acceleration in the expansion of the universe. In this preliminary analysis it is too soon to discuss about
a numerical matching with the observational val8&imilarly, it can be shown from Eq. (33), that the effective
potential corresponding to the case of a de Sitter brane is also non-zero, and can be made positive too, providing
an enlarged number of interesting situations.

Summing up, from this simple examples we have here considered it becomes already clear that, in order to
induce a 4-dimensional cosmological constant in a brane-world universe, it turns out that an AdS black-hole bulk
with a one-brane configuration is far more attractive than the pure AdS bulk. We have here dealt only with some
simple examples but, as has been pointed out already, the present calculation can be extended, without essentia
trouble, to more realistic situations and, thus, it seems to open a number of different, very promising possibilities.
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