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Abstract

In the numerical solution of partial differential equations (PDEs), high-quality meshes are crucial for the stability,
accuracy, and convergence of the associated PDE solver. Mesh quality improvement is often performed to improve
the quality of meshes before use in numerical solution of the PDE. Mesh smoothing (performed via optimization) is
one popular technique for improving the mesh quality; it does so by making adjustments to the vertex locations. When
an inefficient mesh quality metric is used to design the optimization problem, and hence also to measure the mesh
quality within the optimization procedure, convergence of the optimization method can be much slower than desired.
However, for many applications, the choice of mesh quality metric and the optimization problem should be considered
fixed. In this paper, we propose a simple mesh quality metric alternation scheme for use in the mesh optimization
process. The idea is to alternate the use of the original inefficient mesh quality metric with a more efficient mesh
quality metric on alternate iterations of the mesh optimization procedure in order to reduce the time to convergence,
while solving the original mesh quality improvement problem. Typical results of using our application scheme to
solve mesh quality improvement problems yield approximately 40-55% improvement in comparison to the original
mesh optimization procedure. More frequent use of the efficient metric results in greater speed-ups.

Keywords: mesh quality improvement, mesh optimization, quality metric

1. Introduction

High-quality meshes are essential in the numerical solution of partial differential equations (PDEs) which arise in
various science and engineering applications. In particular, the quality of the mesh has been shown to significantly
impact the accuracy, stability, and convergence of the associated PDE solver. It is known that well-shaped elements
are necessary for good numerical behavior of the PDE solver; even a few poorly-shaped elements can cause significant
difficulty. Thus, mesh quality improvement is often applied before numerical solution of the PDE.

There are three main types of mesh quality improvement techniques: adaptivity [1, 2], smoothing [3, 4], and
swapping [5, 6]. In mesh smoothing, the vertex coordinates are altered without changing the connectivity of the
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vertices. Optimization techniques (e.g., [7, 8, 9, 10, 11]) are typically used for the mesh smoothing process. When an
optimization method is employed, an objective function which measures the overall mesh quality is designed. Hence,
the choice of the mesh quality metric significantly affects the performance of the optimization method. In addition,
the use of various mesh quality metrics and objective functions yields different final meshes.

There are numerous mesh quality metrics which have been proposed in the literature (e.g., [12, 13]). The use of
several of the mesh quality metrics in an optimization procedure yield rather similar meshes, especially when meshes
with isotropic elements are the goal. However, the amount of time required by the optimization solver depends
significantly on the choice of metric. In particular, the use of an inefficient mesh quality metric can significantly
increase the time to convergence of the optimization method when accurate mesh smoothing is desired.

One way to reduce the execution time of the optimization method would be to create a new optimization problem
which employs a more efficient mesh quality metric. However, for many applications, the choice of mesh quality
metric and the optimization problem should be considered fixed, as different element shapes are desirable for solving
different PDEs.

Instead of changing the mesh optimization problem, we propose a simple mesh quality metric alternation scheme
for use in the mesh optimization process. The idea is to alternate the use of the original, inefficient mesh quality metric
with a more efficient mesh quality metric on alternate iterations of the mesh optimization procedure in order to reduce
the time to convergence, while solving the original mesh quality improvement problem. Such a technique has the
potential to make a significant impact on mesh optimization for problems in science and engineering where very large
meshes and long optimization times are typical. For such applications, inaccurate mesh smoothing (corresponding to
just a few iterations of smoothing) is currently used as an alternative to long optimization times, whereas additional
mesh smoothing is desired.

2. Mesh Quality Improvement via Quality Metric Alternation

2.1. Quality Improvement Problem

The objective function used in this paper is

f (x) =
1
n

∑
1≤i≤n

q2
i , (1)

where f is the overall mesh quality as measured by the average quality of the mesh elements, qi is the quality of
element i, and n is the number of mesh elements. The objective function is minimized, as lower values of qi denote
better quality elements for the metrics we employ.

When optimizing the mesh, the boundary vertices are held fixed, i.e., xvB = xvB , where xvB are the boundary vertex
coordinates. In addition, the initial meshes and subsequent meshes cannot contain any inverted elements. We employ
a local implementation of the feasible Newton solver [8] in order to minimize (1).

2.2. Mesh Quality Metric Alternation

We propose a mesh quality metric alternation scheme for the solution of (1) whereby an inefficient metric (in
the original optimization problem) is combined with a more efficient metric. The metrics are applied in an alternate
fashion every other iteration. For example, alteration scheme A+B would use metric A on odd iterations and metric
B on even iterations to perform the mesh optimization. However, metric A is always used to test for convergence
of the method on each method, as the goal of the optimization is to minimize (1) as defined according to A. Hence,
the goal of using scheme A+B is simply to improve the time to convergence (and not to change the optimization
problem being solved). An important question considered in this paper is which metrics can be combined to create
effective alternation schemes for mesh optimization? Clearly, the choice of metrics significantly impacts the time to
convergence.

Table 1 shows five common mesh quality metrics used for mesh optimization: edge ratio [12], area [14], edge root
mean square [12], inverse mean ratio [8], and aspect ratio [15]. Here L12, L23, and L13 are the lengths of the three
edges in the triangle; Lmin and Lmax are the minimum and maximum edge lengths; S is the element’s area; A is the
Jacobian matrix for the physical triangle, and W is a Jacobian matrix for the reference triangle. The ranges of mesh
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quality metrics are: 1 to ∞ for EDGE, RMS, IMR, and AR, and 0 to ∞ for AREA. The ideal element of our mesh
optimization problem is an equilateral triangle; hence lower values of the quality metrics yield meshes with better
quality and it is appropriate to minimize (1).

Table 1: The mesh quality metric definitions

Quality Metric Formula
edge ratio (EDGE) Lmin/Lmax

area (AREA) S cur − S avg

edge root mean square (RMS)
√(

L2
12 + L2

13 + L2
23

)
/3

inverse mean ratio (IMR) ‖AW−1‖2F/
(
2 det(AW−1)

)

aspect ratio (AR)
√

3
(
L2

12 + L2
13 + L2

23

)
/12S i

We propose six mesh quality metric alternations based upon these metrics: EDGE+IMR, AREA+IMR, RMS+IMR,
EDGE+AR, AREA+AR, and RMS+AR, because the IMR and AR mesh quality metrics are faster than the EDGE,
AREA, and RMS mesh quality metrics when used for mesh optimization.

There are many types of convergence criterion that can be applied for mesh optimization using the above mesh
alternation schemes. For our purposes, convergence of the optimization scheme is said to occur when the optimization
procedure has progressed at least 95% of the way to the desired level of mesh quality, i.e., when

finitial − fcurrent > 0.95( finitial − fdesired), (2)

where finitial is the mesh quality of the initial input mesh, fcurrent is the mesh quality of the current iteration, and fdesired

is the goal mesh quality. For our experiments, the desired quality, fdesired, is set to the quality of the fully converged
local optimal solution.

3. Numerical Experiments

To determine the impact of mesh quality alternation on the optimization process, we tested the six mesh quality
metric alternations described above. Coarse approximations to the actual 2D meshes used in our experiments are
shown in Figure 1. The meshes were generated by Triangle [16]. The interior mesh vertices were perturbed in order
to design more challenging test cases. Table 2 gives their configurations. The feasible Newton method in the Mesh
Quality Improvement Toolkit (Mesquite) Version 2.1.1 [17] was employed for our experiments. (Similar trends were
observed when other solvers, e.g., quasi-Newton, were used to minimize (1).) The Mesquite code was modified to
incorporate the alternation of the mesh quality metrics on every other iteration. The Solaris machine employed for the
experiments was an UltraSPARC-III CPU with a 750MHz processor, 1GB SDRAM of memory, and 8MB L2 cache.

Table 2: The test mesh configurations

name # of vertices # of elements
airplane 72205 143205

duck 62372 123904
fish 57575 114546
hand 68807 136419

mechanic 69904 138610
twoholes 56088 111537

The goal of our experiment is to determine the impact that mesh quality metric alternation has on the time ef-
ficiency of the optimization procedure when used to minimize (1). The alternation schemes considered in this ex-
periment are: EDGE+IMR, AREA+IMR, RMS+IMR, EDGE+AR, AREA+AR, and RMS+AR. These schemes are
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(a) airplane (b) duck (c) fish

(d) hand (e) mechanic (f) twoholes

Figure 1: 2D meshes generated by Triangle [16]. These meshes are coarser, representative versions of the meshes
used in the experiments.

designed to reduce the convergence time of the optimization solver when the EDGE, AREA, or RMS metrics are used
to define (1).

Figure 2 shows the convergence history of the EDGE+IMR alternation scheme in comparison with the conver-
gence histories of the EDGE and IMR schemes when used to optimize the quality of three test meshes. The three
optimization schemes showed similar convergence trends on the various input meshes. The figure demonstrates that
the EDGE+IMR metric was successful in reducing the convergence time over the corresponding EDGE solver by
approximately 50% when (1) was minimized according to the EDGE metric. This reduction in time was possible
through the alternation scheme since the IMR optimization solver demonstrated a much faster time to convergence
did than the EDGE solver because it took less time per iteration.

Table 3 shows the total time required for mesh quality metric alternation with the EDGE and RMS metrics used as
the base metrics. For the EDGE+IMR alternation scheme, the percentage reduction in the total time when compared
with the original EDGE solver was: 54.7% for the airplane mesh, 52.9% for the duck mesh, 53% for the fish mesh,
52.9% for the hand mesh, 40% for the mechanic mesh, and 53.3% for the twoholes mesh. Here, the more efficient
IMR metric, when used in combination with the less efficient EDGE metric, resulted in a faster solver than the EDGE
solver. By combining two metrics, the convergence time can be reduced without altering the original optimization
problem.

For the other combinations of quality metrics, alternation was also beneficial in reducing the time to convergence
over the original optimization solver (based on the EDGE or RMS mesh quality metrics) in each case. At least 40%
improvement was obtained via metric alternation. Such a reduction was possible because optimization with the IMR
and AR mesh quality metrics was faster than optimization with either the EDGE and RMS mesh quality metrics. In
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Figure 2: Mesh quality vs. time plots for EDGE+IMR mesh quality metric alternation test. The plots are zoomed
in and show only the convergence history at the beginning of the optimization. To reduce the convergence time of
the EDGE optimization solver, alternation with the EDGE+IMR alternation scheme for optimization was applied.
Approximately 50% improvement was observed in comparison with the EDGE optimization solver.

particular, mesh optimization with either the EDGE or RMS metrics took approximately 200 times as long to converge
when compared to solvers based on IMR or AR. When the metrics were combined, the average time per iteration in
the mesh quality metric alternation scheme was faster than that for the original scheme. Furthermore, the optimized
meshes obtained via the alternation schemes achieved the desired levels of quality when measured according to the
EDGE and RMS metrics.

The convergence behavior of the EDGE+AR, RMS+IMR, and RMS+AR alternation schemes was similar to that
of the EDGE+IMR alternation scheme as was discussed above. However, two of the alternation schemes studied,
i.e., AREA+IMR and AREA+AR, did not show much difference in the convergence time when compared with the
other alternation schemes. Figure 3 and Table 4 show the convergence histories and timing results for the AREA+AR
alternation scheme. (For the remainder of the paper, figures showing the results of optimizing the duck, hand, and
twoholes meshes show similar convergence trends and are omitted due to space constraints.) The convergence times
for the AREA+IMR and AREA+AR schemes were similar to those for the AREA solver. The timing results for the
alternation schemes based on the AREA metric are shown in Table 4.
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Table 3: Timing results for mesh optimization with EDGE and RMS mesh quality metrics and their mesh quality
metric alternations: EDGE+IMR, EDGE+AR, RMS+IMR, and RMS+AR.

Total time to convergence (secs)
EDGE EDGE+IMR EDGE+AR RMS RMS+IMR RMS+AR

airplane 3399.36 1538.69 1625.29 3225.57 1529.34 1620.61
duck 2292.47 1077.72 1153.18 2830.56 1091.02 1147.5
fish 1911.24 897.54 964.74 1909.88 904.62 965.22
hand 2867.59 1350.37 1429.75 2875.84 1370.29 1451.6

mechanic 2986.64 1412.19 1512.19 3019.28 1424.02 1506.85
twoholes 1799.52 840.54 898.55 1800.32 831.96 916.27
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Figure 3: Mesh quality vs. time plots for AREA+AR mesh quality metric alternation test. The plots are zoomed in
and show only the convergence history at the beginning of the optimization. To improve the time efficiency of mesh
optimization process with AREA mesh quality metric, AR mesh quality metric was combined.

The convergence times of the AREA+AR alternation scheme were very similar to those of the AREA solver. In
particular, speed-ups of only 12-13% were observed. The percentage of reduction in the convergence times for the
individual meshes are as follows: 12.9% for the airplane mesh, 13.2% for the duck mesh, 13.1% for the fish mesh,
12.7% for the hand mesh, 12.4% for the mechanic mesh, and 13% for the twoholes mesh, respectively. The smaller
reductions in the time to convergence were not unexpected, as the AREA and AR optimization solvers only had a 1%
difference in their times to convergence. This experiment demonstrates that mesh quality metric alternation is more
beneficial when two metrics are combined which correspond to optimization solvers with a large difference in their
times to convergence. Thus, appropriate selection of mesh quality metrics for the alternation schemes are required.

Figure 4 shows the elemental mesh quality distributions for the mechanic mesh after mesh optimization was
performed with the EDGE+IMR alternation scheme and the EDGE solver. (The distribution for the initial mesh is
also shown for comparison purposes.) Clearly, the optimized meshes which result from the two schemes are somewhat
different. In particular, the distribution for the EDGE+IMR mesh has more better quality elements despite the fact
that the two meshes are of similar average quality. The difference in distributions is due to the two different paths that
the optimization routines take to convergence. However, both optimization schemes yielded meshes that are of good
quality and met the requirements for convergence.

The optimized meshes resulting from the other alternation schemes, such as EDGE+AR, RMS+IMR, and
RMS+AR, have similar mesh quality distributions to the EDGE+IMR alternation scheme distribution. However,
mesh optimization with alternation schemes based on the AREA metric showed different mesh quality distributions.



298  Jeonghyung Park et al. / Procedia Computer Science 4 (2011) 292–301

Table 4: Timing results for mesh optimization with the AREA mesh quality metric and its mesh quality metric
alternations AREA+IMR and AREA+AR.

Total time to convergence (secs)
AREA AREA+IMR AREA+AR

airplane 28.45 24.02 24.78
duck 24.41 20.52 21.2
fish 22.36 18.68 19.44
hand 26.98 22.8 23.55

mechanic 27.51 23.27 24.1
twoholes 21.77 18.22 18.94

Table 5: Total number of iterations and average time per iteration results for mesh quality metric alternations.

(a) EDGE mesh quality metric alternation

# of iterations average time per iteration (secs)
EDGE EDGE+IMR EDGE+AR EDGE EDGE+IMR EDGE+AR

airplane 19 19 19 178.9135 80.98368 85.54158
duck 21 20 20 109.1652 53.886 57.659
fish 16 16 16 119.4525 56.09625 60.29625
hand 13 13 13 220.5838 103.8746 109.9808

mechanic 27 27 27 110.6163 52.30333 56.0071
twoholes 26 26 26 69.21231 32.32846 34.55962

(b) RMS mesh quality metric alternation

# of iterations average time per iteration (secs)
RMS RMS+IMR RMS+AR RMS RMS+IMR RMS+AR

airplane 22 22 22 146.6168 69.51545 73.66409
duck 19 19 19 148.9768 57.42211 60.39632
fish 21 21 21 90.94667 43.07714 45.96286
hand 17 17 17 169.1671 80.60529 85.38824

mechanic 23 23 23 131.273 61.91391 65.51522
twoholes 19 19 19 94.75368 43.78737 48.22474

(c) AREA mesh quality metric alternation

# of iterations average time per iteration (secs)
AREA AREA+IMR AREA+AR AREA AREA+IMR AREA+AR

airplane 20 20 20 1.4225 1.201 1.239
duck 21 21 21 1.162381 0.977143 1.009524
fish 19 19 19 1.176842 0.983158 1.023158
hand 16 16 16 1.68625 1.425 1.471875

mechanic 21 21 21 1.31 1.108095 1.147619
twoholes 20 20 20 1.0885 0.911 0.947

Figure 5 shows the elemental mesh quality distribution for the fish mesh after optimization was performed via the
AREA+AR scheme. In this case, the meshes optimized by the AREA+AR alternation scheme and the AREA solver
exhibited similar quality distributions.

As the results of the above experiments demonstrate, in order to yield a large reduction in the time to conver-
gence, the mesh quality metric for the optimization solver should be combined with a quality metric for which the
corresponding optimization solver is significantly faster to converge. A further reduction in the time to convergence
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Figure 4: Mesh quality distribution (0.4 to 1) of the mechanic mesh (a) before and (b)-(c) after mesh optimization was
performed via the (b) EDGE and (c) EDGE+IMR optimization solvers.
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Figure 5: Mesh quality distribution (0.4 to 1) of the fish mesh (a) before and (b)-(c) after mesh optimization was
performed via the (b) AREA and (c) AREA+AR optimization solvers.

may be possible through an increased frequency in the use of the fast metric in the optimization process. In or-
der to determine whether or not this is true, an experiment with the alternation schemes EDGE+IMR+IMR and
EDGE+IMR+IMR+IMR was performed. Figure 6 shows the convergence histories for these alternation schemes as
applied to three test meshes.

As can be seen in Figure 6, the time to convergence decreased with an increase in frequency of application
of the IMR metric in the alternation scheme. A significant reduction in the convergence time was observed when
comparing the results of the EDGE+IMR and EDGE+IMR+IMR alternation schemes. The times to convergence for
the EDGE+IMR+IMR alternation scheme were as follows: 1079.86 seconds for the airplane mesh, 760.63 seconds for
the duck mesh, 640.01 seconds for the fish mesh, 964.69 seconds for the hand mesh, 1008.43 seconds for the mechanic
mesh, and 597.87 seconds for the twoholes mesh. The corresponding percentage reductions in the optimization time
are as follows: 29.8% for the airplane mesh, 29.3% for the duck mesh, 28.6% for the fish mesh, 28.5% for the hand
mesh, 28.5% for the mechanic mesh, and 28.8% for the twoholes mesh, respectively. At least a 28% improvement
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Figure 6: Plots of mesh quality vs. time for the EDGE+IMR alternation scheme with varying frequency of use of the
IMR metric. The plots are zoomed in and show only the convergence history at the beginning of the optimization.
The performance of the EDGE+IMR, EDGE+IMR+IMR, and EDGE+IMR+IMR+IMR schemes was investigated in
this experiment.

in time to convergence over the EDGE+IMR alternation scheme was obtained for the EDGE+IMR+IMR alternation
scheme. Overall, the percentage decrease in the optimization time when using the EDGE+IMR+IMR alternation
scheme instead of the EDGE solver for mesh optimization was approximately 67%.

Further improvement was observed when the EDGE+IMR+IMR+IMR alternation scheme was employed. How-
ever, the improvement over the EDGE+IMR+IMR alternation scheme was slightly smaller than the improvement
that was observed between the EDGE+IMR+IMR and EDGE+IMR alternation schemes. The timing results for
the EDGE+IMR+IMR+IMR mesh quality metric alternation were: 789.01 seconds for the airplane mesh, 561.38
seconds for the duck mesh, 473.49 seconds for the fish mesh, 708.55 seconds for the hand mesh, 740.53 seconds
for the mechanic mesh, and 443.34 seconds for the twoholes mesh. These correspond to the following percentage
reductions in the mesh optimization time: 27% for the airplane mesh, 26% for the duck mesh, 26% for the fish
mesh, 27% for the hand mesh, 27% for the mechanic mesh, and 25% for the twoholes mesh, respectively. Thus, the
EDGE+IMR+IMR+IMR alternation schemes exhibited a 77% reduction in the time to convergence when compared
with the EDGE optimization solver in the minimization of (1). These results demonstrate that the efficient mesh qual-
ity metric can be applied for frequently in a mesh alternation scheme in order to reduce the time to convergence of the
associated optimization solver.

4. Conclusions

The choice of mesh quality metric significantly impacts the time to convergence of the mesh optimization tech-
nique. In this paper, we proposed a mesh quality metric alternation scheme whereby the original (inefficient) mesh
quality metric was alternated with a more efficient metric on alternate iterations of the optimization procedure. Its
purpose is to reduce the execution time of the optimization solver, while solving the original mesh optimization prob-
lem.

Our experimental results show that the majority of mesh quality metric alternation schemes considered required
less time than the original mesh optimization procedure. It was demonstrated that because the IMR and AMR metrics
are more efficient than the EDGE and RMS metrics, the former metrics can be alternated with the latter metrics to
reduce the time to convergence of the original optimization methods with the inefficient metrics. Mesh alternation
schemes applying the EDGE+IMR, EDGE+AR, RMS+IMR, and RMS+AR combinations gave a 40-55% reduction
in the optimization time. Increasing the frequency of the efficient metric further reduced the mesh optimization time.
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For example, EDGE+IMR+IMR and EDGE+IMR+IMR+IMR converged faster than EDGE+IMR. The improve-
ment rates from the original EDGE optimization were 67% and 77%, respectively, for the EDGE+IMR+IMR and
EDGE+IMR+IMR+IMR alternation schemes. Alternation based on the AREA metric showed only 12% improve-
ment because optimization involving AREA is not significantly slower than that of the more efficient metrics.

In conclusion, alternation of the inefficient metric from the original problem with a more efficient metric on alter-
nate iterations can significantly reduce the time of the mesh optimization procedure. The greatest reductions occurred
when two metrics corresponding to optimization solvers with very different convergence times were combined. Future
research will focus on determining the optimal combination of quality metrics for a given mesh optimization problem
and how changing the metric can cause a greater reduction in the mesh quality per step.
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