
Biochimica et Biophysica Acta 1788 (2009) 2204–2216

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r.com/ locate /bbamem

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
A protective role for lipid raft cholesterol against amyloid-induced membrane
damage in human neuroblastoma cells

Cristina Cecchi a,b,⁎, Daniela Nichino b,c, Mariagioia Zampagni a, Caterina Bernacchioni a, Elisa Evangelisti a,
Anna Pensalfini a,1, Gianfranco Liguri a,b, Alessandra Gliozzi b,c, Massimo Stefani a,b, Annalisa Relini b,c

a Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
b Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Italy
c Department of Physics, University of Genoa, Italy
Abbreviations: Aβ, amyloid-β peptide; ADDLs, Aβ-de
atomic force microscopy; AICD, Amyloid Precursor Prote
methyl-β-cyclodextrin; BSA, bovine serum albumin; CR
CTX-B, cholera toxin subunit B; DAOS, N-ethyl-N-(
dimethoxyaniline; DMEM, Dulbecco's Modified Eagle's
oxide; DPH, 1,6-diphenyl-1,3,5-hexatriene; DRMs, de
EDTA, ethylenediaminetetraacetc acid; FBS, foetal bovi
trahexosylganglioside; HEPES, N-2-hydroxyethylpipera
HFIP, hexafluoro-2-isopropanol; HRP, horseradish pero
phosphate buffered saline; PEG-cholesterol, polyoxyetan
phenylmethylsulfonylfluoride; WGA, wheat germ agglu
⁎ Corresponding author. Department of Biochemical S

Viale Morgagni 50, 50134 Florence, Italy. Tel.: +39 055
8905.

E-mail address: cristina.cecchi@unifi.it (C. Cecchi).
1 Present address: Department of Molecular Biology a

California, Irvine, CA 92697, USA.

0005-2736/$ – see front matter © 2009 Elsevier B.V. A
doi:10.1016/j.bbamem.2009.07.019
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 25 March 2009
Received in revised form 16 July 2009
Accepted 23 July 2009
Available online 6 August 2009

Keywords:
ADDLs
Lipid raft cholesterol
ADDLs-GM1 colocalization
Amyloid-induced membrane damage
Alzheimer's disease
Increasing evidence supports the idea that the initial events of Aβ oligomerization and cytotoxicity in
Alzheimer's disease involve the interaction of amyloid Aβ-derived diffusible ligands (ADDLs) with the cell
membrane. This also indicates lipid rafts, ordered membrane microdomains enriched in cholesterol,
sphingolipids and gangliosides, as likely primary interaction sites of ADDLs. To shed further light on the
relation between ADDL–cell membrane interaction and oligomer cytotoxicity, we investigated the
dependence of ADDLs binding to lipid rafts on membrane cholesterol content in human SH-SY5Y
neuroblastoma cells. Confocal laser microscopy showed that Aβ1–42 oligomers markedly interact with
membrane rafts and that a moderate enrichment of membrane cholesterol prevents their association with
the monosialoganglioside GM1. Moreover, anisotropy fluorescence measurements of flotillin-1-positive rafts
purified by sucrose density gradient suggested that the content of membrane cholesterol and membrane
perturbation by ADDLs are inversely correlated. Finally, contact mode atomic force microscope images of
lipid rafts in liquid showed that ADDLs induce changes in raft morphology with the appearance of large
cavities whose size and depth were significantly reduced in similarly treated cholesterol-enriched rafts. Our
data suggest that cholesterol reduces amyloid-induced membrane modifications at the lipid raft level by
altering raft physicochemical features.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease and other neurodegenerative disorders in-
volve alteration of neuronal physiology, particularly at the synaptic
level. Such alteration is thought to be mainly caused by Aβ1–40 and
Aβ1–42 oligomers [1–3], which are also thought to cause cell impair-
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ment and death [4,5]. Mounting evidence supports the idea that the
initial events of both Aβ oligomerization and oligomer cytotoxicity
involve the interaction of the secreted Aβ peptides with the cell
membrane [6–8]. However, in spite of the remarkable research efforts
spent in the last years, the molecular basis of Aβ–membrane inter-
action and the ensuing structural modifications of the latter remains
substantially elusive. Indeed, the question as to whether oligomer
receptors or preferential interaction sites on the cell membrane do
exist still awaits a convincing answer. The question ismade evenmore
intriguing by the increasing data indicating that amyloids grown from
different peptides and proteins could behave similarly in their
cytotoxic effects and, conversely, that structurally different amyloids
grown under differing conditions from the same peptide/protein can
display different cytotoxicities [9]. These evidences support the idea
that amyloid cytotoxicity results from aggregate interaction with
the cell membrane, with non-specific permeabilization of the latter
[6,10–13].

A recent paper has shown that annular protofibrils grown from Aβ
peptides are relatively stable and harmless to cultured neuronal cells
and do not permeabilize synthetic lipid vesicles, contrary to similar
protofibrils grown from prefibrillar oligomers at the lipid surface [14].
These data, together with immunological evidence, led the authors to

https://core.ac.uk/display/82033099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cristina.cecchi@unifi.it
http://dx.doi.org/10.1016/j.bbamem.2009.07.019
http://www.sciencedirect.com/science/journal/00052736


2205C. Cecchi et al. / Biochimica et Biophysica Acta 1788 (2009) 2204–2216
suggest that the toxic annular protofibrils may form pore structures
into themembrane resembling those arising from pore-forming toxins.
However, the studies onmembrane permeabilization have been carried
out mainly on synthetic lipid vesicles lacking the complex lipid and
protein structure of the cell membrane. Therefore, any conclusion that
amyloids are endowedby themselveswithnon-specific lipidmembrane
permeabilizing behaviour, although of value, cannot be directly extrap-
olated to cells, both in culture and in tissue, mainly as far as the
specificity of the permeabilization effect is concerned.

The cell plasma membrane displays a complex structure with
different regions coexisting in dynamic equilibrium. Among these,
caveolae and lipid rafts – purified as detergent-resistant membrane
fractions (DRMs) – appear to play key roles in many cellular processes,
including endocytosis, signalling, oxidative stress, apoptosis, ion
homeostasis andmembrane protein trafficking and turnover [reviewed
in 15,16]. DRMs are cholesterol-, sphingolipid- and ganglioside-rich
ordered membrane microdomains freely floating through the more
fluid lipid bilayer, which display very short half-lives and persistence
times of the molecules embedded within them [17].

Lipid rafts contain a variable set of membrane proteins and their
clustering is thought to provide a spatial and temporal meeting
point for signalling molecules, as well as for molecules involved in
processing and trafficking of membrane proteins. This includes the
amyloid precursor protein (APP) and at least some of the proteases
carrying on its cleavage [18–21]. In particular, lipid rafts have been
proposed to function as platforms where neurotoxic oligomers of
proteins andpeptides, including the prionprotein and theAβpeptides,
are assembled [22]. Actually, lipid rafts appear directly involved in
prion protein stabilization and in the pathological conversion of the
cellular (PrPc) to the scrapie (PrPsc) form [23,24]. Moreover, the PrPc

conformation can be stabilized upon association with lipid rafts in
the secretory pathway [25]. Accordingly, it has been proposed that
soluble Aβ peptide and prion protein aggregation can be raft-asso-
ciated processes [26] and that any alteration of cholesterol (as well as
sphingolipid) homeostasis can be a shared primary cause of a number
of neurodegenerative diseases [27]. These findings, together with
the presence, in the raft domains, of ligand-gated calcium channels
(the AMPA and NMDA glutamate receptors) involved in Ca2+ influx
into neuronal synaptic ends [28,29] and in Ca2+ permeabilization of
amyloid-exposed cells [30,31] has implicated lipid rafts also in func-
tional impairment of cells exposed to beta amyloid [32,33].

In spite of these and other recently reported data, no clear
mechanistic evidence is presently available concerning the molecular
and biochemical features of the relation between lipid rafts, their lipid
content and dynamics, the generation of the aggregate precursors,
as well as amyloid growth and toxicity. Recently, a study aimed at
providing information on the proteins involved in extracellular Aβ
internalization inside primary neuronal cells has suggested a caveolae-
independent, raft-mediated mechanism. This implies lipid rafts as
contributors not only to Aβ biogenesis and accumulation [34–36]
but also to extracellular Aβ translocation [37] and aggregation [33].
Actually, it appears that APP fragments such as its intracellular
domain (AICD) are able to interact with flotillin-1, a lipid raft marker
protein, suggesting that it may recruit APP to lipid rafts favouring its
localization and processingwithin these domains [38]. A recent report
highlights a Fyn-dependent mechanism as a possible molecular basis
of membrane-bound Aβ oligomer recruitment to lipid rafts [39].

Two alternative scenarios involving lipid rafts, based on conflicting
experimental results have been proposed to describe the effect of
cholesterol in Aβ generation and aggregation in AD. The high neuronal
membrane cholesterol model for AD claims that high cholesterol
favours APP processing with increased Aβ generation and aggregation
through lipid raft clustering bringing into close contact the resident
populations of APP and its processing enzyme β secretase-1 (BACE-1)
[40]. The alternative low neuronal membrane cholesterol model
claims that most of the APP is normally located in non-raft membrane
domains. Accordingly, low membrane cholesterol would favour raft
disassembly and BACE-1 translocation to non-raft domains support-
ing its contact with APP and enhancing cleavage of the latter with Aβ
generation and aggregation [40]. Taken together, the findings
reported in the last decade depict lipid rafts both as key domains
where APP processing occurs and as primary interaction sites of
ADDLs (and, possibly, other amyloid aggregates). However, much
must still be learnt about the effective specificity and the biochemical,
molecular and biological significance of such interaction.

To shed further light in the complex relation between the physico-
chemical features of lipid rafts and the ability of Aβ oligomers to
interact with the cell membrane, we investigated the ability of ADDLs
to bind raft-enriched membranes purified from normal human
neuroblastoma cells or from the same cells enriched or depleted in
cholesterol. The purified rafts were imaged by atomic force micros-
copy and their structural order was investigated by fluorescence
anisotropy. We found that, in our model cells, any modification of the
cholesterol content in the cell plasma membrane affects Aβ1–42
oligomer interaction with the latter. Our data agree with a number of
previously reported findings indicating that increased cholesterol
content in the plasma membrane reduces membrane disassembly by
Aβ oligomers and protects against its cytotoxicity [7,41].

2. Materials and methods

2.1. Materials

All reagents were of analytical grade or the highest purity available.
Foetal bovine serum(FBS), phosphate buffered saline (PBS), hexafluoro-
2-isopropanol (HFIP), polyoxyetanyl-cholesteryl sebacate (PEG-choles-
terol), methyl-β-cyclodextrin (β-CD), mevastatin (Mev), filipin III
and other chemicals were from Sigma (Milan, Italy) unless otherwise
stated.Wheat germagglutinin (WGA)-conjugatedfluoresceinandAlexa
Fluor 647-conjugated cholera toxin subunit B (CTX-B) were from
Molecular Probes (Eugene, OR). Aβ1–42 and reversed Aβ42–1 peptides,
as trifluoroacetate salts, were from Bachem (Bübendorf, Switzerland).
Aβ1–42 amine-reactive succinimidyl esters of carboxyfluorescein
(Aβ42-FAM) were from AnaSpec (San Jose, CA). Aβ peptides were
dissolved in HFIP at 1.0 mM concentration and incubated for 1.0 h at
room temperature to allow complete peptide monomerization [42].
Then, aliquots of peptide solutionsweredried under nitrogen and stored
at −80 °C. Aggregate concentrations were those of the monomeric
Aβ1–42 peptide.

2.2. Cell culture and membrane cholesterol modulation

Human SH-SY5Y neuroblastoma cells were obtained from A.T.C.C.
(Manassas, VA) and cultured in DMEM/F-12 Hamwith 25 mM HEPES
and NaHCO3 (1:1) supplemented with 10% FBS, 1.0% glutamine
and 1.0% antibiotics. Cell cultures were maintained in a 5.0% CO2

humidified atmosphere at 37 °C and grown until 80% confluence.
Cells were used for a maximum of 20 passages. The increase of the
membrane cholesterol content was achieved by supplementing the
cell culture media with 0.1 mM PEG-cholesterol for 1.0 h at 37 °C, as
previously described [7]. Membrane cholesterol depletion was
achieved by incubating the cells with 1.0 mM β-CD for 30 min at
37 °C in serum-free medium or with 10 µM Mev for 48 h at 37 °C in
the presence of 1.0% FBS. The amount of cholesterol in membrane
fractions and in purified rafts was assayed by the Amplex Red
Cholesterol Assay Kit (Molecular Probes, Eugene, OR) [43]. Sample
cholesterol was oxidized by 1.0 U/ml cholesterol oxidase for 30 min at
37 °C to yield H2O2 and the corresponding ketone product. In the
presence of 1.0 U/ml horseradish peroxidase (HRP), H2O2 reacted
with 150 µM 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red
reagent) with a 1:1 stoichiometry to generate the highly fluorescent
resorufin [44]. At the end of the incubation, sample fluorescence was
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measured at 544 nm excitation and at 590 nm emission. Cholesterol
contentwas determined by comparisonwith a reference curve built by
assaying various cholesterol amounts (in the 50–1000 ng range). The
amount of sphingomyelin in rafts purified from SH-SY5Y cells was
assayed by a photometric method with the Sphingomyelin Assay Kit
(CaymanChemical, AnnArbor,MI). Briefly, sample sphingomyelinwas
hydrolyzed by sphingomyelinase to phosphorylcholine and ceramide
for 60 min at 37 °C. The choline resulting from the subsequent incuba-
tion of phosphorylcholine with alkaline phosphatase was oxidized by
choline oxidase with production of H2O2. The latter was reacted in the
presence of peroxidase with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-
3,5-dimethoxyaniline (DAOS) and 4-aminoantipyrine, yielding a blue
color product with an optimal absorption at 595 nm [45]. Sphingo-
myelin was quantified by comparison with a reference curve built by
assaying known amounts of sphingomyelin (in the 25–800 ng range).

2.3. Prefibrillar Aβ aggregate preparation and treatment

Prefibrillar aggregates of the Aβ1–42peptide processed as reported
above were obtained according to the Lambert's protocol [42]. Briefly,
aliquots of Aβ1–42 were dissolved in DMSO to a final concentration of
5.0 mM, incubated in ice-cold F12 medium to 100 µM at 4 °C for 24 h
and then centrifuged at 14,000×g for 10 min. The supernatant, defined
as the amyloid β-derived diffusible ligand (ADDL) preparation,
consisted of a fibril-free solution of globular assemblies 1.5 nm high,
as assessed by tapping mode AFM (Fig. 7B+, inset). Taking into
account a height correction factor of about 2.5 for sample drying under
mild vacuum [46], a globule height of about 4.0 nm was calculated.
This value agrees with the ADDLs height previously measured by AFM
[46]. When needed, the cell cultures were pretreated with 1.0 µM
(final concentration) ADDLs. The same concentrationwas used to treat
isolated raft fractions for fluorescence anisotropy measurements and
AFM analysis. In another set of experiments, the cells were treated
with 3.0 µM fluorescein-labeled Aβ42-FAM aggregates containing a
mixture of Aβ42-FAM peptide with 2 molar equivalents of unlabeled
Aβ1–42 peptide (at a 1:2 ratio) to minimize possible interference of
the fluorophore with the aggregation, while retaining sufficient
fluorescence signal [47].

2.4. Confocal analysis

Labelling ofmembrane cholesterol was achieved by the fluorescent
probe filipin III. Briefly, the cells seeded on glass coverslips were fixed
in 4.0% buffered paraformaldehyde for 20 min at 0 °C and then
incubated with 0.25 mg/ml filipin III in PBS for 24 h at 37 °C. After
washing, the cells were fixed again in 4.0% buffered paraformaldehyde
for 20 min at 0 °C prior to confocal scanningmicroscope analysis. Aβ1–
42 aggregate binding to the plasma membranes was monitored in
neuroblastoma cells seeded on glass coverslips by confocal scanning
microscopy, as previously described [7]. Briefly, cells exposed for
30 min to 1.0 µM ADDLs were counterstained with fluorescein-
conjugatedWGA(5 µg/ml) for 10 min to detect the plasmamembrane
profiles. After washing, the coverslips were incubated with mouse
monoclonal anti-Aβ antibodies 6E10 (Signet, DBA, Italy) and diluted
1:1000 in PBS with 1.0% FBS for 60 min. The immunoreaction was
revealed by incubation for 90 min with Texas Red-conjugated anti-
mouse secondary antibodies (Vector Laboratories, DBA, Italy), diluted
1:1000 in PBS containing 1.0% FBS. Negative controlswere obtained by
substituting the blocking solution for the primary antibody. Aggre-
gate–cell interactions were also analyzed by treating cells with 3.0 µM
Aβ42-FAM oligomers and counterstaining the plasma membranes
with Alexa Fluor 633-conjugated WGA, but without fixing cells in
buffered paraformaldehyde, without permeabilizing the plasma
membrane and without using antibodies. Aβ1–42 aggregate coloca-
lization with the cell surface lipid raft GM1 marker was monitored in
SH-SY5Y neuroblastoma cells seeded on glass coverslips by confocal
scanningmicroscopy. After treatment with 1.0 µM Aβ1–42 aggregates
for 30 min, the cells were fixed in 2.0% buffered paraformaldehyde for
10 min at room temperature. After washing, the coverslips were
incubated with mouse monoclonal anti-Aβ antibodies 6E10 and with
1:1000 diluted fluorescein-conjugated anti-mouse secondary anti-
bodies (Vector Laboratories, DBA, Italy). Then, the cell surface GM1
was counterstained with 10.0 µg/ml CTX-B in cell culture media for
20 min at room temperature. Cell fluorescence was analyzed by a
confocal Leica TCS SP5 scanning microscope (Mannheim, Germany)
equipped with an argon laser source for fluorescence measurements
using excitation lines at 488 nm, 510 nm, 568 nm, 633 nmand 647 nm
for fluorescein, filipin III, Texas Red, Alexa Fluor 633-conjugated WGA
and Alexa Fluor 647-conjugated CTX-B, respectively. A series of optical
sections (1024×1024 pixels) 1.0 µm in thickness was taken through
the cell depth for each examined sample and projected as a single
composite image by superimposition. To quantify the fluorescence
intensity of filipin III, a variable number of cells ranging from 10 to 22
were analyzed in each experiment. Fluorescence signals are expressed
as fractional changes above the resting baseline, ΔF/F, where F is the
average baseline fluorescence in control cells (assumed as 100%) and
ΔF represents the fluorescence changes over the baseline. GM1
colocalization with Aβ1–42 aggregates on the cell membrane was
estimated on regions of interest (12–13 cells) using the ImageJ (NIH,
Bethesda, MD, USA) and JACOP plugin (rsb.info.nih.gov) softwares
[48].

2.5. Aβ aggregate binding to the cell membrane

Aggregate adsorption to the cell surfacewas analyzed as previously
described [7]. Briefly, 5.0×103 cells/well, exposed for 1.0 h to 0.1 mM
PEG-cholesterol or to vehicle, were treated with 1.0 µM Aβ1–42
aggregates for 0 or 30 min in a 96-well plate and then washed twice
with PBS. The residual aggregate–cell complexwas stainedwith 100 µl
of 1.0 µM Congo Red (CR) in PBS for 20 min and measured photo-
metrically at 490 nm (free CR) and 550 nm (bound CR) with an ELISA
plate reader. CR values were reported as percent increases in treated
cells versus untreated cells (taken as 100%).

2.6. Amyloid cytotoxicity assay

The effect of ADDLs on neuroblastoma cell morphology was
investigated by Hoechst 33342 dye staining. Briefly, after exposure to
1.0 µM Aβ1–42 aggregates for 24 h at 37 °C, the cells were incubated
with 20 µg/ml Hoechst for 15 min at 37 °C and fixed as reported above.
Blue fluorescence micrographs of cells were obtained under UV illu-
mination in an epifluorescence inverted microscope (Nikon, Diaphot
TMD-EF) with an appropriate filter set. Aggregate cytotoxicity to
neuroblastoma cells was assessed in 96 well plates by the MTT assay
as previously reported [7]. Briefly, after exposure to 1.0 µM Aβ1–42
aggregates for 24 h at 37 °C, the cell cultures were incubated with a
0.5 mg/mlMTT solution at 37 °C for 4.0 h and then with cell lysis buffer
(20% SDS, 50% N,N-dimethylformamide, pH 4.7) overnight. The
absorbance values of blue formazan were determined at 590 nm. Cell
viability was expressed as percent of MTT reduction in treated cells as
compared to cognate untreated cells, where it was assumed as 100%.
Finally, lactate dehydrogenase (LDH) release into the culture media, a
typical necrotic marker, was measured after cell exposure to 1.0 µM
Aβ1–42 aggregates for 48 h at 37 °C by the LDH assay kit (Roche
Diagnostics, Mannheim, Germany) at 490 nm after blank subtraction at
595 nm.

2.7. Membrane and lipid raft purification

Total cell lysates were obtained from neuroblastoma cells by three
freeze–thaw cycles followed by 5.0 s ultrasonication in ice in 20 mM
Tris–HCl buffer, pH 8.0, containing 1.0% Triton X100, 137 mM NaCl,



Table 1
Interaction with ADDLs affects the morphological features of DRMs.

Raft samples Pore depth
(nm)

Pore size
(nm)

Domain
size (nm)

Domain
height (nm)

Control 455±15 1.68±0.04
Control+Aβ1–42 1.50±0.04 420±20 218±12 0.68±0.02
Chol-enriched 356±16 1.78±0.03
Chol-enriched+Aβ1–42 1.03±0.03 370±30 332±18 0.81±0.04
Chol-depleted 540±40 1.17±0.06
Chol-depleted+Aβ1–42 1.30±0.03 450±30 261±11 1.22±0.04
Aβ1–42 treated cells 0.68±0.04 120±10 470±40 0.83±0.03

Each pore (or domain) size figure was the mean of the widths measured along the pore
(or domain) major diameter and the corresponding in-plane perpendicular direction.
Domain heights were measured with respect to the image background. The data are
expressed as mean±standard error over an ensemble of at least 100 measurements.
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10% glycerol, 6.0 M urea, 0.1 mM PMSF, 10 µg/ml leupeptin, 10 µg/ml
aprotinin and by centrifugation at 14,000×g for 10 min at 4 °C. Mem-
brane fractions were obtained as previously described, with minor
modifications [7]. Briefly, the cells were homogenized in PBS contain-
ing 9.0% sucrose with three freeze–thaw cycles, 5.0 s sonication in ice
and centrifugation at 700×g for 10 min at 4.0 °C. The membrane frac-
tionwas pelleted by a further supernatant centrifugation at 110,000×g
for 1.0 h at 4.0 °C. Protein content in the cell lysates and in the
membrane fractions was measured by the method of Bradford [49].
Lipid raft and non-raft fractions were prepared as described in Romiti
et al. [50]. Briefly, the culture media of control, PEG-cholesterol-,
β-CD-, or Mev-treated SH-SY5Y cells was removed and the cells were
washed twice with ice-cold PBS, scraped, and collected by centrifu-
gation at 1000×g. Then, the cells were dispersed in a 10 mM Tris–HCl
buffer, pH 7.5, containing 150 mM NaCl, 5.0 mM EDTA, 1.0 mM
Na3VO4, 1.0% Triton X-100 (TNE buffer) and protease inhibitors
(10 µg/ml leupeptin and 10 µg/ml aprotinin). After a 20 min
incubation in ice, the cells were disrupted in a Dounce homogenizer
(80 strokes) and centrifuged at 1500×g for 5.0 min at 4.0 °C to obtain
the post-nuclear fraction. The latter was adjusted to 40% (w/v)
sucrose by 1:1 addition of 80% sucrose prepared in TNE buffer, placed
at the bottom of an ultracentrifuge tube and overlaid with two
layers of 30% and 5.0% sucrose in TNE buffer. The gradient was then
centrifuged at 170,000×g for 18 h at 4.0 °C using a Beckman SW50
rotor. The resulting gradient was analyzed by collecting 0.4 ml
fractions from the top of the gradient. Immunoblot analysis was
performed to assess the fractions containing raft microdomains.
Representative amounts of each fraction from the sucrose gradient
were run on 12% (w/v) SDS/PAGE and the separated proteins blotted
onto a PVDF Immobilio-P Transfer Membrane (Millipore Corporation,
Bedford, MA). The blotted membranes were blocked in 1.0% (w/v)
BSA in TBS-Tween (0.1 % Tween 20 in 20 mM Tris–HCl buffer, pH 7.5,
containing 100 mM NaCl) and then incubated with mouse anti-
flotillin-1 monoclonal antibodies (BD Biosciences, San Diego, CA).
After extensive washing, the membranes were incubated with
peroxidase-conjugated anti-mouse secondary antibodies (Pierce,
Rockford, IL, USA) for 1.0 h and the immunolabelled bands were
detected using a SuperSignal West Dura (Pierce, Rockford, IL, USA).
The flotillin-1-positive fractions were pooled and extensively dialysed
against TNE buffer to remove sucrose.

2.8. Steady-state fluorescence anisotropy

Fluorescence anisotropy (r) of 1,6-diphenyl-1,3,5-hexatriene (DPH)
(Sigma Milan, Italy) was used to measure the structural order of the
hydrophobic region of the purifiedDRMsunder steady-state conditions.
Anisotropy measurements were performed at 37 °C by a Perkin-Elmer
LS 55 luminescence spectrometer equipped with manual polarizers.
Excitation and emission wavelengths were set at 360 nm and 425 nm,
with a slit-width of 2.5 nm and 4 nm, respectively. Our system was
initially calibrated usingDPH inmineral oil, which is expected to give an
anisotropy value of 1.0. The g factor was calculated using horizontally
polarized excitation and subsequent comparison of the horizontal and
vertical emissions. The DRMswere incubated for 0, 1, 10, 30 and 60 min
in the presence of either Aβ1–42 aggregates or the Aβ42–1 reverse
peptide, and then further incubated for 30 min with DPH at a 1:250
probe-to-lipid ratio. Fluorescence intensity was measured with the
excitation polarizer in the vertical position and the analyzing emission
polarizer in both the vertical (IVV) and the horizontal (IVH) positions. The
anisotropy constant, r, was calculated using the equation:

r =
IVV � gIVH
IVV + 2gIVH

DRM fluorescence intensity in the absence of DPH was measured
to evaluate the effect of light scattering.
2.9. Atomic force microscopy (AFM)

AFM analysis was carried out on 50 µl aliquots of the purified
DRMs deposited on freshly cleaved mica, incubated for 1.0 h and then
rinsed with Milli-Q water. AFM measurements were performed using
a Dimension 3100 scanning probe microscope (Digital Instruments,
Veeco, Santa Barbara, CA) equipped with a Nanoscope IIIa controller
and a “G” scanning head (maximum scan size 100×100 µm). Tapping
mode AFM would be expected to minimize lateral forces and allow
better imaging of soft samples. Raft membranes were an exception, as
we could not image them in tapping mode, even using different
cantilevers and solution conditions. It is possible that when operating
in tapping mode an oscillation is also induced in the sample. This
would explain why tapping mode imaging of DRMs was impossible.
On the other hand, when operating in contact mode, a force is steadily
applied to the sample, resulting in an improved stability of the sys-
tem. Thus images were acquired in contact mode in liquid by using
V-shaped non-conductive silicon nitride cantilevers (type DNP, Veeco;
115 µm length, nominal spring constant 0.58 N/m) with pyramidal
tips (nominal curvature radius in the 20–60 nm range) and scan rate in
the 0.5–2.0 Hz range. Images were captured as 512×512 pixel images.
The minimum force employed in contact mode imaging was 0.3 nN.

Themorphological features of the sampleswere analyzed in terms of
height and width in cross section in the topographic AFM images. The
heights of the steps associated either to membrane domains or to
cavities were measured with respect to the background. The sizes of
each domain (or hollow) were the mean of the widths measured along
themajor diameter of thedomain (or hollow) and the corresponding in-
plane perpendicular direction. Due to tip size effects, which cause an
apparent increase of the size of the imaged object in the image plane,
domain sizes are overestimated respect to the real ones. To evaluate
the expected widths,w (reported in Table 1), we modelled the domain
as a flat object with half-spherical edges, using the equation:

w = wapp + 2h� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hRT + h2

q

where wapp and h are the measured width and height, respectively,
and RT is the AFM tip radius.

We used a silicon calibration grating with ultrasharp tips (NT-MDT
TGT01, Silicon-MDT Ltd., Moscow, Russia) to measure the curvature
radius RT for four tips of the same type and we obtained a mean value
of 25±7 nm. This value, which is within the range provided by the
manufacturer, has been used to evaluate the correction for tip
enlargement effects, according to the procedure quoted above.

The possible changes in raft morphology induced by the inter-
action with Aβ1–42 oligomers were investigated in samples prepared
as described above incubated for 30 min in the presence of 1.0 µM
ADDLs, rinsed with Milli-Q and imaged in liquid.
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To check the presence of the GM1 ganglioside, after deposition on
the mica substrate the DRMs were incubated for 30 min with rabbit
polyclonal anti-GM1 antibodies (Calbiochem; EMD Chemicals Inc.,
Darmstadt, Germany), diluted 1:1000. The presence of flotillin-1 in
the samples deposited on the mica substrate was assessed by incu-
bating the rafts with 0.5 µg/ml mouse anti-flotillin-1 antibodies (BD
Transduction Laboratories; BD Biosciences, USA) for 30 min.

The domains imaged in the DRMs samples were better character-
ized by incubation with a mixture of carboxypeptidase Y from baker's
yeast, thermolysin from Bacillus thermoproteolyticus rokko Type X
and α-chymotrypsin from bovine pancreas Type VII (Sigma; Milan,
Italy), at final concentrations of 1.0 mg/ml, 5.0 mg/ml and 5.0 mg/ml,
respectively. Protease digestion was carried out by incubating the
rafts with the protease mixture for 2.0 h either before or after sample
deposition on the mica substrate.

To characterize morphologically the Aβ1–42 aggregates, 20 µl
aliquots of ADDLs, obtained as reported above, were deposited on
freshly cleaved mica substrates and dried under mild vacuum. The
images were acquired in tapping mode in air using a Dimension 3100
AFMmicroscope (as detailed above) and a Multimode scanning probe
microscope equipped with an “E” scanning head (maximum scan size
10 µm). Single beam uncoated silicon cantilevers (type OMCL-AC,
Olympus, Japan) were used. The drive frequency was around 300 kHz
and the scan rate was in the 0.3–0.8 Hz range.

2.10. Statistical analysis

Except the AFM data, all other data are expressed as mean±
standard deviation (SD). Comparisons between the different groups
were performed by ANOVA followed by Bonferroni's t-test. A p value
b0.05 was considered statistically significant. AFM data concerning
sample morphological features are expressed as mean±standard
error over an ensemble of at least 100 measurements. All the statis-
tical analyses had a confidence level ≥95%.

3. Results

3.1. Aβ1–42 oligomer binding to the cell surface and its cytotoxic effect
are modulated by membrane cholesterol content

In previous studies we showed that the interaction of amyloid
aggregates of different peptides and proteins with the plasma mem-
branes of several types of cultured cells is significantly inversely
correlated to the membrane content of cholesterol [7,51,52]. Here, we
modulated the cholesterol content in human neuroblastoma cells by
incubating the cells in the presence of PEG-cholesterol, β-CD or Mev.
Cell treatment with PEG-cholesterol significantly increased the
content of cholesterol in the cell membrane (13.55±0.68 µg/mg
protein, p≤0.05) versus control cells (10.84±0.54 µg/mg protein) as
assayed by the Amplex Red Cholesterol Assay Kit. Conversely, mem-
brane cholesterol content was significantly reduced by cell treatment
with β-CD (7.26±0.73 µg/mg protein, p≤0.05) and Mev (9.71±
0.46 µg/mg protein, p≤0.05) versus control cells. These data were
confirmed by confocal analysis of the sensitive fluorescent probe
filipin III (Fig. 1A). Then, we evaluated the ability of our ADDLs to bind
to the plasma membrane of neuroblastoma cells after a 30 min period
of exposure by qualitative confocal microscope analysis of anti-Aβ1–
42 antibody fluorescence (Fig. 1B). In addition, photometric quanti-
tative measurement of specific Congo Red signal showed that, in cells
supplemented with PEG-cholesterol, the increase of plasma mem-
brane cholesterol resulted in a reduced Aβ1–42 oligomer binding to
the plasma membrane (plus 113% CR signal vs untreated cells), as
compared to control cells (plus 142% vs untreated cells). Conversely,
the same oligomers added to the cell culture medium accumulated to
a greater extent at the plasma membrane of cells with lowmembrane
cholesterol content (plus 155% vs untreated cells). To exclude any
possible interference of the cell fixation favouring the intracellular
uptake of ADDLs, the distribution of fluorescein-labeled Aβ42-FAM
aggregates was analyzed in unfixed neuroblastoma cells. Green
fluorescence signal confirmed the different membrane distribution
of ADDLs at our experimental conditions (Fig. 1B).

We also evaluated whether an increased content of membrane
cholesterol was able to prevent amyloid toxicity at our experimental
conditions. As shown in Fig. 1C, the quantitative analysis of the ability
of the treated cells to reduceMTT and themorphological evaluation of
Hoechst 33342 stained cells revealed no marked characteristics of
apoptosis in cells enriched in cholesterol after their exposure to
ADDLs for 24 h. On the other hand, the loss of membrane cholesterol
in cells treated with β-CD or Mev before exposure to the aggregates
resulted in a marked increase in the number of cells displaying
nuclear condensation and a significant impairment of viability respect
to similarly exposed cells with basal cholesterol content. Finally, we
investigated whether neuroblastoma cells exposed to ADDLs for 48 h
underwent a necrotic cell death. As shown in Fig. 1C, a significant
release of LDH in the cell culture media was observed in cells with
basal and, to a greater extent, reduced cholesterol content exposed to
ADDLs. Also in this case, cholesterol-enriched cells displayed a higher
resistance to amyloid toxicity, as compared to control cells, as
revealed by the significant reduction of LDH release in the culture
media.

3.2. Aβ1–42 oligomers colocalize with lipid rafts

Cholesterol is not uniformly distributed into the plasmamembrane.
In fact, it is concentrated into the outer leaflet, particularly in lipid rafts.
The latter appear to exist in a liquid-ordered phase contributing to their
partitioning from the surrounding liquid-disordered glycerophospho-
lipid-rich environment. Lipid rafts are considered primary interaction
sites ofADDLs [39]. Therefore,we sought to assesswhether themodified
ability of our ADDLs to interact with normal, cholesterol-enriched or
depleted cells implied the participation of lipid rafts. Confocal laser
microscopy showed a marked colocalization of Aβ1–42 oligomers with
GM1, a well known lipid raft marker, on the plasma membranes of
our neuroblastoma cells (Fig. 2). In particular, when the images were
merged, a number of yellow areas representing the colocalization of
membrane-bound ADDL with GM1 were seen. The scatter plots of
fluorescence signals over the highlighted areas are shown in Fig. 2
(right). Two different algorithms, the Pearson's correlation coefficient
and the overlap coefficient according to Manders gave similar results.
In particular, the analysis over three different experiments yielded
a colocalization of 43% between GM1 and ADDLs in control cells.
Interestingly, a moderate enrichment of membrane cholesterol in PEG-
chol treated cells appeared to reduce the ADDLs interaction with
the monosialoganglioside GM1 as supported by the low degree of
colocalization (19%) , while an increased colocalization was found in
β-CD (69%) and Mev (67%) treated cells.

Overall, our colocalization data show that Aβ oligomers interact
with the plasma membrane preferentially at the raft domains and
that any structural modification of the latter following increase or
decrease of cell cholesterol results in alterations of ADDL–raft
interaction. These findings agree with previously reported data,
showing that the content of cholesterol in cell membranes or in
synthetic lipid vesicles modulates membrane–aggregate interaction
[7,41], pointing at the membrane rafts as the key sites where those
modifications do occur.

3.3. Isolation and characterization of DRMs

After having analyzed the ADDL–raft interaction in normal,
cholesterol-enriched, or depleted SH-SY5Y cells, we investigated by
confocal microscopy the modification of lipid raft morphology and
distribution in the plasma membranes of cells enriched or depleted in



Fig. 1. (A) Representative confocal microscope analysis of membrane cholesterol content in SH-SY5Y neuroblastoma cells probed by the fluorescent dye filipin III (for details, see
under Materials and methods). Neuroblastoma cells were analyzed at basal conditions (Control), 1.0 h after incubation with 0.1 mM PEG-cholesterol (PEG-chol), 30 min after cell
culture supplementation with 1.0 mM β-methylcyclodextrin (β-CD) and 48 h after incubation with 10 µMmevastatin (Mev). Filipin III fluorescence is expressed as fractional change
above the resting baseline, ΔF/F, where F is the average baseline fluorescence in control cells (assumed as 100%) and ΔF represents the fluorescence changes over the baseline. The
values shown are means±S.D. of three independent experiments each carried out in triplicate. *p≤0.05, significant difference vs control cells. (B) Representative confocal
microscope images showing aggregates penetrating into the plasma membrane of neuroblastoma cells treated with 1.0 µM Aβ1–42 ADDLs (top) or with 3.0 µM Aβ42-FAM
aggregates (middle) for 30 min. Representative blue fluorescence micrographs of Hoechst 33342 stained cells, after exposure to 1.0 µM ADDLs for 24 h (bottom). Untreated cells (−)
are compared with cells exposed to amyloid oligomers at basal conditions, after treatment with PEG-chol, β-CD andMev, respectively (+). The first set of images (top) was acquired
on fixed cells, counterstaining with fluorescein-conjugated WGA to detect the plasma membrane profile (green), while Aβ1–42 aggregates were labelled with monoclonal mouse
6E10 anti-Aβ antibodies and Texas Red-conjugated anti-mouse secondary antibodies (red). The second set of images (middle) was obtained by analyzing unfixed cells treated with
Aβ42-FAM oligomers (green) by counterstaining the plasma membranes with Alexa Fluor 633-conjugated WGA (red). (C) Membrane cholesterol enrichment by PEG-cholesterol
treatment significantly protects neuroblastoma cells against amyloid aggregate toxicity as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
reduction test. The reported values are representative of four independent experiments, each performed in triplicate. Cell viability was checked by LDH release into the culture
medium after exposure to 1.0 µM Aβ1–42 aggregates for 48 h. The values shown are means±S.D. of three independent experiments, each performed in triplicate. *p≤0.05,
signi ficant difference vs control cells.
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cholesterol by labelling the cell surface GM1. GM1-positive mem-
brane domains did not appear uniformly distributed on the plasma
membranes and some more brightly stained domains were observed
in control cells (Fig. 3). PEG-cholesterol treatment apparently in-
creased the brightness of GM1-rich domains, without any evident
alteration of their surface distribution. On the other hand, a substan-
tially reduced CTX-B fluorescence was evident in cholesterol-depleted
cells, confirming that the content of membrane cholesterol is crucial
for lipid raft organization, possibly by regulating in a dose-dependent
manner both their formation and function.



Fig. 2. Representative confocal microscope images showing ADDL colocalization with GM1 (yellow), a typical marker of lipid rafts in neuroblastoma cells. Top, control cells; second
row, PEG-chol treated cells; third and fourth row, β-CD and Mev-treated cells, respectively. Aβ1–42 oligomers were labelled with monoclonal mouse 6E10 anti-Aβ antibodies and
fluorescein-conjugated anti-mouse secondary antibodies (green), while GM1 was stained with fluorescent CTX-B conjugate as a probe (red). The GM1-ADDL colocalization on the
cell membranes was estimated. The scatter plots indicate the colocalization pattern over the selected area of each panel; the sampled pixels were plotted as a function of red (x axis)
and green (y axis) fluorescence intensity, resulting in a partial (top), low (second row) or high (third and fourth row) GM1-ADDL colocalization.
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Next, we investigated the effects of the same treatments directly
on lipid raft fractions isolated from treated or control neuroblastoma
cells. Due to their insolubility in non-ionic detergents at low tem-
peratures, lipid rafts have been defined as detergent-resistant mem-
branes (DRMs). Because of their high lipid-to-protein ratio, DRMs
display a low density and can be isolated by cell lysis with Triton X-
100 and flotation on sucrose density gradients. Sucrose gradient
fractions, purified from human neuroblastoma cells untreated or
treated with PEG-cholesterol or with β-CD or Mev, were analyzed by
Western blot for the presence of flotillin-1, a lipid raft protein marker.
As shown in Fig. 3, flotillin-1 was localized in low density fractions
(2–5) in control cells. In agreement with confocal analysis, cholesterol
enrichment did not affect remarkably the DRM density distribution.
On the contrary, in β-CD and Mev-treated cells most of the flotillin-1
immunoreactivity was shifted to fractions 12–14. However, a minor
flotillin-1 immunoreactivity was still present in fractions 2–5,
suggesting that β-CD or Mev treatment led to a partial, not complete,
disruption of the organization and/or the number of lipid rafts in our
cell model.

After extensive dialysis to remove sucrose, the amount of choles-
terol was quantified in the pooled flotillin-1-positive fractions (2–5)
purified from cells enriched or depleted in cholesterol or from control
cells. As expected, the amount of cholesterol in the plasma membrane
microdomains was significantly increased (+20% vs control cells) or
reduced (−40% vs control cells) upon cell treatment with PEG-
cholesterol or with β-CD and Mev, respectively (Fig. 3). No significant
difference was observed in the total sphingomyelin levels among
DRMs pools obtained from control cells (2.17±0.32 ng/µl), choles-
terol-enriched cells (2.09±0.23 ng/µl) and cholesterol-depleted cells
(1.94±0.45 ng/µl).
3.4. Effects of ADDLs on lipid raft structural order

The effect of cholesterol on membrane fluidity is known to be
complex; cholesterol can either enhance or decreasemembranefluidity
depending on temperature, cholesterol concentration and bilayer
composition [53]. However, under physiological conditions cholesterol
is known to increasemembrane rigidity. Thus,we evaluated the effect of
cholesterol content on the structural order of thehydrophobic regionsof
lipid rafts by measuring the fluorescence anisotropy of 1,6-diphenyl-
1,3,5-hexatriene (DPH) under steady-state conditions at 37 °C. The
relativemotion of the DPH dyemoleculewithin the fatty acid acyl chain
space of the lipid bilayer was determined by polarized fluorescence
and expressed as r, the anisotropy constant, whose value is inversely
proportional to the degree ofmembrane fluidity [54,55]. As expected, in
raft-enriched samples prepared from neuroblastoma cells a moderate
cholesterol enrichment significantly increased the raft structural order,
whereas cholesterol depletion resulted in a higher fluidity (Fig. 4).

We also investigated whether the content of cholesterol in lipid
rafts modified the membrane perturbing effect of ADDLs. We found a
rapid reduction of fluidity in control lipid rafts exposed to 1.0 µM
Aβ1–42 oligomers for various lengths of time (Fig. 4, inset). As the
most ordered structurewas reached in less than 10 min of exposure to
the oligomers, we chose this incubation time for subsequent experi-
ments. No evident difference in DPH fluorescence anisotropy was
detected by exposing lipid rafts toAβ42–1, suggesting that this effect is
specific of the β-sheet structure found in ADDLs. Cholesterol-enriched
lipid rafts did not display any significant change of the anisotropy upon
exposure to Aβ1–42 oligomers or to the reverse Aβ42–1 peptide,
suggesting that cholesterol enrichment protects lipid rafts from
perturbation by Aβ1–42. On the contrary, cholesterol loss resulted in



Fig. 3. A, representative immunoblot analysis of flotillin-1 levels in 14 sucrose gradient
fractions collected from the top (low density) through the bottom (high density) of the
gradient tube, as described under Materials and methods. An aliquot from each fraction
was run on 12% SDS/PAGE, transferred onto a PVDFmembrane and then incubatedwith
mouse anti-flotillin-1 monoclonal antibodies. Flotillin-1-positive fractions enriched in
lipid raft microdomains (from 2 to 5) were pooled and extensively dialyzed against TNE
buffer to remove sucrose. Then the amount of cholesterol in the DRM pools was
determined by afluorimetric assay and expressed as ratio to sphingomyelin content. The
reported values are means±S.D. of four independent experiments, each performed in
duplicate. *p≤0.05, significant difference vs control cells. On the right side of the figure,
representative confocal analysis of the cell surface GM1 distribution in SH-SY5Y
neuroblastoma cells probed by the fluorescent CTX-B conjugate (for details, see under
Materials and methods). Neuroblastoma cells were analyzed at basal conditions
(Control), 1.0 h after incubation with 0.1 mM PEG-cholesterol (PEG-chol), 30 min
after cell culture supplementation with 1.0 mM β-methylcyclodextrin (β-CD) and 48 h
after cell incubation with 10 µM mevastatin (Mev).

Fig. 4. DPH fluorescence anisotropy, r, measured before and after DRM treatment with
Aβ1–42 ADDLs or the Aβ42–1 peptide. The measurements were performed on control,
cholesterol-enriched and cholesterol-depleted samples. A moderate increase of the
content of cholesterol in DRMs purified from PEG-cholesterol (PEG-chol)-treated cells
enhanced DPH anisotropy when compared to DRMs prepared from control cells,
whereas a decrease in the anisotropy was seen in DRMs prepared from cells depleted in
cholesterol upon treatment with β-CD or Mev. Addition of Aβ1–42 oligomers induced a
significant decrease of the fluidity of DRMs prepared from control or cholesterol-
depleted cells, while the reverse Aβ42–1 peptide affected only cholesterol-poor
microdomains. (inset) DPH fluorescence anisotropy, r, measured by incubating rafts for
2, 10, 30 and 60 min in the presence of 1.0 µM Aβ1–42 oligomers. All the data are
means±S.D. of six independent experiments, each performed in duplicate. *p≤0.05,
significant difference vs untreated microdomain fluidity.
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increased rigidity of rafts exposed not only to Aβ1–42 ADDLs, as
expected, but also to Aβ42–1monomers, suggesting that the latter are
able to penetrate and stiffen the raft bilayer as well, although with
reduced efficiency.

3.5. AFM imaging of supported DRMs purified from cells
exposed to ADDLs

The deposition of purified DRMs on mica substrates for AFM in-
spection resulted in the spontaneous formation of membrane multi-
layers, similarly to the behaviour observed when supported bilayers
are formed from liposome deposition [56,57]. The DRM multilayers
completely covered the imaging field and there was nomica substrate
exposed. However they did not appear homogeneous, with mem-
brane domains sprouting from a uniform background (Fig. 5A). The
background thickness with respect to the mica surface, measured by
indenting the background in different points, corresponded to up to
four double layers (each about 5 nm thick). The domains were stable
upon scanning (Fig. 5B) and had a typical lateral size of a few hundred
of nm. Their height with respect to the backgroundwas less than 2 nm
(Table 1). To check whether the sprouting domains had the same
chemical nature of the background, we performed antibody labelling
experiments to detect the presence of GM1 and flotillin-1, typical
components of membrane rafts. Fig. 5D shows a representative image
obtained in the presence of anti-GM1 antibodies. A uniform distribu-
tion of granular structures located in the background is observed,
indicating the presence of GM1 in this region. As the DRMmultilayers
completely covered the imaging field, we can rule out the possibility
of any non-specific interaction of anti-GM1 antibodies with the mica.
No granular structures were observed on the domain surface,
although incubation with anti-GM1 antibodies resulted in domain
fragmentation. A similar behaviour was observed with anti-flotillin-1
antibodies (data not shown). AFM force–distance measurements (not
shown) indicated that the adhesion forces measured on the domains
are much stronger than those on the background, indicating that the
domains are more fluid than the background [58].

To check whether proteins were the main component of these
domains, we incubated the DRMs with a cocktail of proteases, as
described under Materials and methods. DRM treatment with the
proteases before deposition on the mica substrate resulted in the
disappearance of membrane domains and the presence of a homog-
eneous sample surface (data not shown). Conversely, when DRMs
were incubated with proteases after deposition on the mica substrate,
the domains originally present were very unstable upon scanning
(Fig. 6A, B) and disappeared after a few scans. As mentioned above,
successive scans performed in the absence of proteases (Fig. 5A, B)
showed that the domains can be reproducibly imaged and therefore
their instability observed in the presence of proteases can actually
result from the action of the latter. These results suggest that the
background is composed by DRMs, while the slightly higher domains
are formed by fluid phase-separated proteins or lipid–protein com-
plexes present in the DRM preparations.



Fig. 5. (A) Contact mode AFM image in liquid (height data) of DRMs extracted from control cells; (B) a subsequent scan of the same area showing reproducibility of domain imaging.
The image in (B) was taken 15 min after that in (A); (C) height profile obtained from an image section along the horizontal line indicated in (A); (D) imaging of DRMs labeled with
anti-GM1 antibodies. Scan size 2.5 µm; Z range (A, B) 10 nm, (D) 5 nm.
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DRMs purified from cholesterol-enriched and cholesterol-depleted
cells were also imaged by AFM. In samples purified from cholesterol-
enriched cells the lateral size of the membrane domains appeared
reduced as comparedwith that measured in control samples which, in
turn, was reduced with respect to that measured in DRMs purified
from cholesterol-depleted cells (Table 1). This finding could be
explained by the effect of cholesterol on membrane fluidity, resulting
in decreased mobility, and therefore reduced coalescence, of fluid
domains, in agreementwith the fluorescence anisotropy data reported
above.

Next, we investigated the effect of cell exposure to ADDLs on DRM
morphology. DRMs purified from cells treated with Aβ1–42 oligomers
before raft extraction (Fig. 6C) displayed the presence of cavities, or
hollows (white arrows), whose depth and size are reported in Table 1.
Corral-like structures (1.7±0.1) nm high and (260±10) nm in
diameter were also observed (Fig. 6C). Both cavities and corral-like
structures were absent in DRMs purified from cells treated with
Aβ42–1 oligomers before raft extraction (Fig. 6D), suggesting a non
generic interaction of Aβ1–42 with lipid rafts. Fig. 7 compares the
morphologies of DRMs extracted from control (Fig. 7A), cholesterol-
enriched (Fig. 7B) and cholesterol-depleted (Fig. 7C) cells before (−)
and after (+) exposure to ADDLs. The latter are imaged in the inset in
Fig. 7B. The presence of the peptide clearly altered DRM morphology,
giving rise to the formation of cavities in all samples. The quantitative
analysis of the images showed that the depth and size of the cavities
observed in cholesterol-enriched samples were significantly reduced
with respect to those displayed by cholesterol-depleted samples. All
DRMs treated with Aβ1–42 oligomers after purification displayed
cavities with depths and sizes significantly increased as compared to
those found in DRMs purified from cells previously exposed to the
same oligomers. In particular, a four-fold increase in the cavity sizes
was observed (Table 1). These results indicate that a reduced raft
damagewas caused by ADDLs in living cells with respect to that found
in purified DRMs.

In addition to cavity formation, DRM exposure to ADDLs resulted
in changes of domain morphology. In fact, exposure of DRMs purified
from control and cholesterol-enriched cells to ADDLs resulted in a
remarkable reduction of domain heights (as measured with respect
to the image background) to values similar to those observed in
DRMs purified from cells previously exposed to Aβ oligomers. On the
contrary, domain height was substantially unchanged in DRMs
purified from cholesterol-depleted cells (Table 1).

The domain lateral size in DRM preparations from control and
cholesterol-depleted cells exposed to Aβ oligomers was reduced,
while that of DRMs from cholesterol-enriched cells was substantially
unchanged, suggesting that cholesterol hinders the ADDL-DRM (and
possibly raft) interaction. Furthermore, the domain size in DRMs
purified from cells treated with Aβ1–42 oligomers was the same as
that of the DRMs purified from control, not exposed, cells suggesting a
possible recovery of the membrane structure in vivo.

4. Discussion

In the present study we investigated whether membrane choles-
terol can influence ADDL cytotoxicity to human neurotypic SH-SY5Y
cells by modulating either the physical state of the cell membrane,



Fig. 6. Contact mode AFM images in liquid (height data) showing the disrupting effect of proteases on DRM lipid domains (A, B): (A) first scan after a 2.0 h sample incubation in the
presence of proteases; (B) second scan (about 15 min later); (C) DRMs purified from cells pretreated with Aβ1–42 oligomers. The white arrows indicate some of the cavities
resulting from DRM interaction with ADDLs. (D) DRMs purified from cells pretreated with Aβ42–1 oligomers. Scan size 2.5 µm; Z range 10 nm.
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mainly at the lipid raft level, or oligomer binding to themembrane itself,
in most cases a key step in amyloid cytotoxicity. In PEG-cholesterol
supplemented cells, the increase of plasma membrane cholesterol
resulted in a reduced ADDL binding to the plasma membrane, as
compared to control cells. Conversely, the same oligomers appeared to
accumulatemostly at the cell plasmamembranewhen theywere added
to the culture medium of cells depleted in membrane cholesterol
following treatmentwithβ-CDorMev. These results suggest that, in our
neuronal cell model, the cholesterol content of the cell membrane is
inversely correlated with the membrane perturbing effects of Aβ1–42
oligomers. Thesedata agreewithourpreviousfindings,whichshowthat
neuroblastoma cells enriched in membrane cholesterol display higher
resistance to Aβ1–42 oligomer toxicity than untreated or cholesterol-
depleted cells [7]. They are also consistent with previous reports
showing that disruption of cholesterol homeostasis can be detrimental
to cells because toxic Aβ aggregates interact more easily with
cholesterol-poor membranes [41,51,59,60]. In particular, our data
agreewith several reports indicating that the cholesterol content affects
membranephysical features such asfluidity anddensity of lipidpacking,
hindering both aggregate recruitment at the cell membrane and
membrane permeabilization [41]. In particular, the results we ob-
tained in the presence of mevastatin – a specific inhibitor of cholesterol
synthesis– support a cholesterol-dependent effect, rather thanageneric
lipid density-dependent effect at the plasma membrane level.

Previous reports suggest that Aβ binding and aggregation, as
detected by ThT or Congo Red staining, occur in lipid raft domains
where it is favoured by clusters of the key component GM1ganglioside
[39,61]. It has also been hypothesized that Aβ1–42 adopts an altered
conformation upon binding to GM1 and that in such an altered con-
formation it can act as a seed for Aβ fibrillogenesis in AD brain [61].
Finally, previous findings indicate that GM1 clusters are affected by
membrane cholesterol depletion [62]. Actually, our confocal laser
microscope analysis showed a marked ADDL-GM1 colocalization on
plasma membrane rafts in neuroblastoma cells. Furthermore, in our
cell model, cholesterol-depleted lipid rafts displayed enhanced ADDL-
GM1 colocalization with respect to control cells, whereas we found a
significantly reduced ADDL binding to cholesterol-enriched rafts, as
compared to control cells. Our data on ADDL-GM1 colocalization in
cholesterol-enriched or -depleted cells agreewith previously reported
findings on the effect of cholesterol on amyloid aggregate binding to
the cell membrane [41,59,60] and suggest that a mild loss of neuronal
membrane cholesterol results in an increased binding of ADDLs to
neuronal lipid rafts.

There is no consensus on the steady-state fraction of rafts in the
cell membranes, their size, location and lipid/protein composition,
which might reflect rapid raft dynamics accounting for intrinsic raft
heterogeneity in different cultured or tissue cells. There are several
procedures described in the literature allowing purification of lipid
rafts and caveolaemembranes, and the variability of the experimental
result can depend on the method used. In this study we choose a
widely used method to prepare membrane domains enriched in
sphingolipids, monosialogangliosides and cholesterol (DRMs). This
experimental approach provides a more appropriate mimic of the
lipid rafts found in vivo than synthetic raft-like vesicles. However,



Fig. 7. Contact mode AFM images in liquid (height data) of DRMs before (−) and after (+) 30 min incubation with 1.0 µM Aβ1–42 ADDLs. (A+, A−) DRMs prepared from control
cells; (B+, B−) cholesterol-enriched DRMs; (C+, C−) cholesterol-depleted DRMs. The white arrows indicate some of the cavities formed as a consequence of DRM interaction with
ADDLs. Scan size 2.5 µm; Z range 10 nm. The inset in (B+) is a tapping mode AFM image of ADDLs. Scan size 1.0 µm; Z range 5.0 nm.
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whether, and to what extent, these isolated DRMs reflect the physical,
chemical and biochemical organization of lipid rafts in vivo remains to
be elucidated. Taking into account these caveats, we investigated the
ability of ADDLs to interact with purified DRMs and the effect of such
interaction on physical and morphological features of the latter.

Our anisotropy fluorescence measurements of sucrose density
gradient-purified and flotillin-1-positive DRMs confirmed that there is
an inverse relation between cholesterol content and membrane
perturbing effects of ADDLs. TheDPHprobe partitions equally between
the ordered and the disordered phases of membrane lipid domains
[55]. It is evenly distributed throughout all the lipidic regions in the
plasma membrane of a living cell [63,64] and its location is similar
in membranes with different content of cholesterol [65]. Therefore,
the cholesterol-induced effects on DPH fluorescence polarization here
reported reflect differences in DPH motion, rather than in DPH
distribution [65]. By using such technique, we found that DRMs
microdomains purified from cholesterol-enriched cells are less
susceptible to the decrease of fluidity caused by Aβ oligomers as
compared to comparable preparations of DRMs purified from control
cells. Conversely, the loss of cholesterol resulted in a higher
susceptibility of disassembled lipid rafts, not only to Aβ1–42 oligomers
but also to the Aβ42–1 monomeric peptide. These results suggest that
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the more fluid the lipid raft membrane, the greater its ability to bind
non-specifically Aβ1–42 and, possibly, other peptides. We therefore
conclude that the presence of β-sheet structure appears to be required
for themembrane perturbing properties of Aβ oligomers only in DRMs
mimicking raft microdomains with basal cholesterol content, but not
in DRMs purified from cholesterol depleted plasma membranes, in
agreement with previously reported evidences in synaptosomal
plasma membranes [66].

AFM imaging in liquid showed that treatment of DRMswith ADDLs
resulted in the formation of large cavities, or hollows. The ADDL–lipid
interaction may result in lipid depletion from the bilayer, with the
formation of steps reflecting differences between the thickness of a
standard bilayer and that of a thinner phase. Similar effects have been
observed previously in supported lipid bilayers exposed to prefibrillar
amyloid aggregates [56]. A thinner phase may result from lipid
interdigitation, as observed in supported lipid bilayers interacting
with transmembrane peptides [67]. Alternatively, oligomer interac-
tion with the bilayer may induce trans–gauche conformational
changes of the lipids, giving rise to a reduced bilayer thickness [68].
The size and depth of the cavities were significantly reduced in DRMs
purified from cholesterol-enriched cells, suggesting cholesterol
may protect against amyloid-induced cell membrane damage at the
lipid raft level. Overall, our results on DRM morphology agree with
previous experimental data indicating a protective effect of choles-
terol against membrane disassembly by prefibrillar aggregates of
proteins and peptides [41]. The formation of cavities was observed
also in DRMs purified from cells pre-treated with Aβ1–42 oligomers.
However, in this case the depth and size of the cavities were signifi-
cantly reduced, suggesting that living cells are able to resist, at least in
part, ADDL-induced membrane damage.

A typical feature of DRM samples observed by AFM was the
presence of domains protruding from the lipid surface. These domains
were shown to consist of fluid protein or lipoprotein complexes. In
fact, they disappeared in the presence of proteases and displayed
higher adhesion forces than the background. We exploited the pres-
ence of these fluid domains to characterize the differences between
samples with varying cholesterol content and to check the changes
induced by their interaction with ADDLs. The domain size increased
with decreasing cholesterol content (Table 1), reflecting increased
environment fluidity. Actually, increased mobility can favour fluid
domain coalescence. On the contrary, domain height decreased with
decreasing cholesterol content. The latter findingmight be interpreted
as the result of an increased compliance of the cholesterol-depleted
DRM environment. Treatment of DRMs with ADDLs induced changes
in domain morphology that appeared to depend on the content of
cholesterol and suggested domain disassembly. In particular, in
cholesterol-enriched samples the domain size was almost unaffected
by treatment with ADDLs, while in control and cholesterol-depleted
samples the domain size after raft treatment with ADDLs was almost
half of that measured before treatment.

Domain heights were similar in DRMs purified from control cells
and subsequently exposed to ADDLs and in DRMs purified from cells
previously exposed to the same Aβ oligomers, suggesting that domain
modifications are similar when they occur in the whole intact plasma
membrane or in purified membrane fractions. However, pre-treat-
ment with Aβ oligomers did not affect the domain size, which was
compatible with that of untreated control cells.

Overall, our data on DRM domains provide information on the
structural and morphological features of the cell plasma membrane
and its cholesterol- and GM1 ganglioside-enriched raft domains. In
particular, we showed that the content of cholesterol affects the
ability of ADDLs to interact with the cell membrane by modulating
membrane physical features at the raft level. In addition, as far as
we know, we imaged for the first time by AFM the morphological
features of raft domains purified from the plasma membrane of
neurotypic model cells previously enriched or depleted in cholesterol
and the different effects on their structure caused by exposure to
ADDLs.
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