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a b s t r a c t

We propose a novel method to detect and correct drift in non-raster scanning probe microscopy. In
conventional raster scanning drift is usually corrected by subtracting a fitted polynomial from each scan
line, but sample tilt or large topographic features can result in severe artifacts. Our method uses self-
intersecting scan paths to distinguish drift from topographic features. Observing the height differences
when passing the same position at different times enables the reconstruction of a continuous function of
drift. We show that a small number of self-intersections is adequate for automatic and reliable drift
correction. Additionally, we introduce a fitness function which provides a quantitative measure of drift
correctability for any arbitrary scan shape.

& 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Atomic Force Microscopy (AFM) measures the interaction
force between a sharp tip and sample to acquire high resolution
images by serially scanning a sample area while recording these
minute interactions often at sub-nanometer resolution [1–4].
The fact that AFM achieves high resolution imaging over a large
variety of sample types and environments makes it one of the
most frequently used characterization tools in nanoscience. As
AFM mechanically detects sub-nanometer size features, its
accuracy is easily compromised by drift. Drift mainly originates
from thermal fluctuations resulting in the slow expansion and
contraction of instrument parts. Traditionally, in raster scanning
height drift, or z-drift, is corrected using flattening. Flattening is
performed by removing a low order polynomial fit from each
scan line. This rudimentary technique often results in artifacts
where sample features become partially removed or tilted.
Extracting accurate topographic data, therefore, often requires
the user to choose an appropriate combination of different
flattening techniques.

Part of the rationale for a raster pattern is that the data
samples align with a regular grid, making the data ideal for
visualizing in a pixelated image. For each data point raster
scanning requires the probe tip to be at a specific location at a
given time. But non-linearities such as hysteresis and creep
associated with the multidomain properties of high sensitivity
piezoelectric materials make this a difficult engineering task [5–
8]. We have shown that these problems can be overcome with
Sensor Inpainting techniques [9] which use advanced inpainting
algorithms [10–15] to generate accurate images based on posi-
tion sensor data, see Appendix A. The technique, furthermore,
frees scanning probe microscopy from the paradigm of raster
scanning so that data recorded along any arbitrary path can be
used to generate an image.

This enables the use of sinusoidal scan patterns that require
less bandwidth and are better suited to drive high inertia nano-
positioners [16–19]. Fig. 1 shows an Archimedean spiral as a
typical non-raster scan path. For legibility we show a scan path
with only five loops for the inward (solid line) and outward scans
(dashed line). Raster scanning typically only uses either trace or
retrace data for generating an image, but in Sensor Inpainting
100% of the data can be displayed and at least a two-fold increase
in temporal or spatial resolution is achieved. For high temporal
resolution inward and outward scans can be used separately, and
for higher lateral resolution a single image can be generated using
the data collected on the inward and outward scan together. As

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ultramic

Ultramicroscopy

http://dx.doi.org/10.1016/j.ultramic.2013.10.014
0304-3991 & 2013 The Authors. Published by Elsevier B.V.

n Corresponding author. Tel.: þ1 510 486 7081.
E-mail addresses: bertozzi@math.ucla.edu (A.L. Bertozzi),

pdashby@lbl.gov (P.D. Ashby).
1 Tel.: þ1 310 825 4340.

Ultramicroscopy 137 (2014) 48–54

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82033092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.sciencedirect.com/science/journal/03043991
www.elsevier.com/locate/ultramic
http://dx.doi.org/10.1016/j.ultramic.2013.10.014
http://dx.doi.org/10.1016/j.ultramic.2013.10.014
http://dx.doi.org/10.1016/j.ultramic.2013.10.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2013.10.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2013.10.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2013.10.014&domain=pdf
mailto:bertozzi@math.ucla.edu
mailto:pdashby@lbl.gov
http://dx.doi.org/10.1016/j.ultramic.2013.10.014
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


shown in Fig. 1(c) the recorded height h(t) typically contains
contributions from the tilt of the sample s(t) and drift of the
instrument d(t). In the presence of drift, the same point in space
may have different measured heights because of temporal separa-
tion. It is therefore extremely important to have reliable methods
to detect and correct drift in non-raster scan AFM. Using Sensor
Inpainting the tip is not required to follow a linear motion. As a
consequence, sample tilt does not necessarily result in a linear
feature in the recorded height time trace. Fig. 2 shows our attempt
to generalize the naïve fit-and-flatten approach to non-raster scan
paths. Fig. 2(a) shows a time trace recorded using a non-raster
scan pattern over a calibration grating with 8 nm deep features. A
continuous piecewise linear fit is overlaid. The corrected height
signal is shown in the bottom panel. It is clear that the linear
fitting distorts many of the features. Without distinguishing drift
from tilt any fitting algorithmwill potentially distort the measured
topography and result in loss of reliability. Furthermore, for a non-
raster scan it is not obvious how to best choose the length of the
linear segments for line flattening. In Fig. 2(b) we show an
Archimedean spiral scan on evaporated gold; the individual grains
are visible but rings in the raw image resulted from drift. Piece-
wise linear fitting can flatten these artifacts if the appropriate
number of segments is chosen (N¼300). The technique suffers
from the same problems as flattening techniques in raster scan
AFM where height information can easily be altered by the
flattening and having too many segments results in a loss of
topographic information (N¼3000). The requirement to find the
right flattening parameters makes the technique unreliable. In
Section 2 we introduce drift detection using self-intersecting scan
paths. Our new method requires no human interaction and is
significantly more accurate since it detects and corrects drift
independent of sample topography or tilt, unlike flattening which
convolutes drift and topography. In Section 3 we discuss the
performance the self-intersection method, and finally in Section
4 we present a summary and conclusion.

2. Drift correction using self-intersecting scans

2.1. Self-intersecting scan patterns

Our method for measuring and correcting drift is based on
measuring the height at a known position but different times. This
requires the scan pattern to self-intersect, but as Sensor Inpainting
[9] can generate an image from any arbitrary scan path, we are free
to use any suitable path. Fig. 1(a) shows the most commonly used
non-raster scan pattern: the double Archimedian spiral (DAS).
Note that inverting the Y drive signal for the outward spiral
(dashed line) maintains a counter-clockwise motion and leads to
a continuous path with no abrupt changes in scan direction and,
more importantly, it introduces two self-intersections per loop.
Fig. 3(a) shows such a spiral scan with 25 loops. The location of the
self-intersections are indicated by red dots, all of which lie on a
line. Measuring the height of a given position twice with only
small temporal separation does not give a good measure of drift,
and since thermal drift occurs on large time scales, scan paths with
intersections of large temporal separation contain information
better suited for the detection and correction of drift. In the
modulated double Archimedean spiral (MDAS) shown in Fig. 3
(b) the number of self-intersections and their temporal and spatial
distribution is increased by perturbing one spatial coordinate with
a sine wave of period equal to the scan time and amplitude of one-
tenth of the scan size. Fig. 3(c) shows a Spirograph, another type of
sinusoidal scan pattern which generates many more self-
intersections. In Section 2.4 we will introduce a fitness function
which provides a quantitative measure for drift correctability for
each of these scan forms. However, its description requires the
introduction of the least squares difference method first.

2.2. Finding intersections

The first step in using the differences method for drift com-
pensation is to find the self-intersections of the curve that
represents the scan path. For a well-defined curve in continuous
space, intersections are equally well-defined. When the curve is
represented by discrete samples, however, the problem becomes
somewhat more complex and ill-defined. As the AFM's position
sensor gives quantized information at a finite sampling rate, the
intersection detection algorithm can easily generate false inter-
sections, throwing off the differences fitting energy. To combat this
issue, we convolve each of the position sensor signals with a
Gaussian smoothing function with a standard deviation on the
same order as the smallest resolved distance by the sensors. One
solution is to compose the N discrete samples f x!ig

N
i ¼ 1 of the curve

into N�1 connected line segments joining adjacent samples
described by

Xi ¼ fð1�tÞ x!iþt x!iþ1jtAð0;1�g:
Then the line segments can be checked against each other for
intersections in OðN2Þ time by checking all possible intersections
pair-wise. For a more detailed description of the algorithm see
Appendix B.

2.3. Least squares differences algorithm

Error in the height measurement due to z-drift is locally
approximately linear and can be modeled as a smooth function
with small second derivative. This assumption together with the
existence of path self-intersections motivate our approach. Let
x!ðtÞ be a vector containing x(t) and y(t) that describes the scan
path i.e. position of the AFM probe on the sample. Using accurate
sensors to measure these positions we can assume minimal
position errors. As introduced in Fig. 1 the height signal measured

Measured Y-Position y(t)

Measured X-Position x(t) 

Measured Height 
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time
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h(t)=z(t)+d(t)+s(t)

Fig. 1. (a) Illustration of a five loop Archimedean spiral showing inward (solid line)
and outward (dashed line) scan paths. The gray hexagons illustrate recessed
topographic features. (b) Measured X and Y positions versus time. (c) The measured
height h(t) along the scan pass comprises effects from the tilt s(t), drift d(t) as well
as the real topography z(t) which we aim to recover as accurately as possible to
generate a clean topographic image.

T.R. Meyer et al. / Ultramicroscopy 137 (2014) 48–54 49



by the AFM during a particular scan is denoted by h(t), which may
be decomposed into hðtÞ ¼ zðtÞþdðtÞþsðtÞ representing the effec-
tive topography z(t), drift d(t) and tilt s(t) components. We develop
a variational model based on the assumption that d has small
second derivative compared with x. For a scan path which
intersects itself M times, define the times of self-intersection tn;1,

tn;2 so that x!ðtn;1Þ ¼ x!ðtn;2Þ where n¼ 1;2;…;M. At each of these
M points of intersections, we observe that

hðtn;2Þ�hðtn;1Þ ¼ zðtn;2Þ�zðtn;1Þþdðtn;2Þ�dðtn;1Þþsðtn;2Þ�sðtn;1Þ
because the topography z and the tilt s are well-defined functions
of position, the difference vanishes at points of self-intersection

8
n
m

Measured Height h(t)

Scan Time

Corrected Height

Piecewise Linear Fit

Raw

N = 300

N = 30

N = 3000100 nm

Fig. 2. Examples of piecewise linear fitting. The measured height signal along non-raster scan paths. (a) The recorded height h(t) (top) is split into N segments onto which
linear fitting is used to correct the drift component. A corrected height (bottom) results from subtracting the piecewise linear fit from the original data. Because of tilt
flattening distorts many of the topographic features. (b) 500 nm diameter Archimedean Spiral showing the grains of evaporated gold where drift data results in rings (raw).
Piecewise linear fitting can flatten these artifacts (N¼300). However, drift related artifacts remain present when too few segments are chosen (N¼30). Height information is
lost and topographic features are flattened when too many segments are used (N¼3000).
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and thus,

hðtn;2Þ�hðtn;1Þ ¼ dðtn;2Þ�dðtn;1Þ≔dn:

In order to exploit the existence of self-intersections, we propose
the minimum of the energy functional E(f) for the continuous drift
d(t).

Eðf Þ ¼ ∑
M

n ¼ 1
ðf ðtn;2Þ� f ðtn;1Þ�dnÞ2þλ

Z 1

0
jf ″ðtÞj2 dt ð1Þ

The minimization reduces to solving an Euler–Lagrange equation.
We find a sufficiently differentiable function which minimizes E(f)
and thus provides the continuous drift function dðtÞ � f ðtÞ. We note
that the energy is convex so that the Euler–Lagrange equation
finds the unique minimizer. For this particular problem, these
equations result in the system of the form Lλ½f � ¼ h

!
where Lλ is a

linear operator and h
!

is a vector function of the data dn. The
derivations for Lλ and h

!
using a finite basis expansion are given in

Appendix C. While a finite differences approximation is the usual
approach to solving this, restricting the problem to only the span
of a small basis significantly reduces the computational complex-
ity. Since the drift function is assumed to be smooth, a basis of
smooth time-localized functions such as uniformly spaced splines
or Gaussian curves, the latter of which we use, is appealing. The
solution to this problem, f, is thus a smoothed fit to the difference
errors dn. The first term in E(f) enforces fidelity to the measured
drift while the second term enforces smoothness of the final result
and removes noise. Once f is calculated, the signal hðtÞ� f ðtÞ is the
corrected height from the algorithm. Since the height differences
at the self-intersection points are invariant under sample tilt, we
may first subtract the z-drift fit then secondly subtract a plane fit
from the data, henceforth known as tilt removal, without worrying

about an interaction between the algorithms. Performing the tilt
removal first may mistakenly interpret drift as tilt and subtract it
off, permanently distorting the signal. Thus self-intersection drift
correction should precede tilt removal.

2.4. Quality of self-intersections

The different scan paths shown in Fig. 3(a)–(c) result in
different distributions of intersection times throughout the scan.
Each distribution contributes to the quality of information about
drift that the intersections provide. Fig. 3(d)–(f) shows the tem-
poral maps for the discussed DAS, MDAS, and Spirograph scan
patterns. The temporal maps plot intersection time pairs ðtn;1; tn;2Þ.
The diagonal which runs from the lower-left to upper-right
represents intersections with tn;1 ¼ tn;2, while distance from this
diagonal indicates temporal separation jtn;1�tn;2j. Since thermal
drift occurs on large time scales, scan paths with intersections of
large temporal separation contain the best information for thermal
drift discovery and removal.

We propose the first non-trivial eigenvalue of Lλ, labeled
henceforth as ζ, as a measure for the quality of the intersection
information provided by the scan path with intersection times
described by tn;j. This quantity is related to both the likelihood of z-
drift being detected and the strength of the minimum of the
energy function E(f). The corresponding eigenfunction represents a
drift profile d which changes the energy the least, and is thus
closest to being missed by the model. Scan paths which are better
suited for the proposed algorithm will have large eigenvalues
associated with Lλ, and therefore ζ provides a quantitative mea-
sure of scan path quality. The appropriate value of the penalty λ
used for both the correction and fitness calculation remains an

Fig. 3. Typical non-raster scan patterns where the red dots indicate the locations of self-intersections. (a) A double Archimedean spiral (DAS) with 25 loops. (b) More
intersections are achieved by adding a sine-wave modulation in one scan axis producing the modulated double Archimedean spiral (MDAS). (c) A Spirograph scan pattern
with a hundred loops. The temporal maps (T-maps) (d), (e), (f) show the intersection time pairs for all scan paths. A distribution away from the diagonal from lower left to
upper right is optimal for drift correction. A quantitative measure is provided by the fitness ζ. The DAS has a low fitness of ζ� 0:02 indicating poor intersections, adding the
modulation it is increased to ζ � 1:2 for MDAS. The Spirograph has the highest fitness of ζ � 35 but suffers from non-uniform data density, i.e. data collection is denser in the
middle and outside. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

T.R. Meyer et al. / Ultramicroscopy 137 (2014) 48–54 51



ongoing problem in the image processing field. Generally, well-
structured curves with many self-intersections are effectively
corrected with λ¼ 0; however, a low ζλ fitness results when
significant noise is present or the intersection information is
insufficient to describe the drift. Indeed, for particularly poor
intersection data the fitting is singular. Penalization is suggested
to mitigate these situations and guarantees non-singularity. How-
ever, we have generally observed that penalization is only neces-
sary with scans of exceptionally poor ζ fitness. For the comparison
of different scan paths we henceforth use λ¼ 10�3 and the
corresponding ζ as a description of the fitness. Compared to a
simple DAS the modulation in the MDAS increases the fitness ζ
from 0.02 to 1.2. The Spirograph pattern attains an even higher
fitness value than the DAS and MDAS at ζ ¼ 35. However, non-
uniform sampling over the surface area and significantly more
self-intersections than necessary to recover d(t) makes this geo-
metry inherently less attractive. Nevertheless, the Spirograph
demonstrates the wide variety of possibilities and the generality
of the proposed algorithm.

3. Results and discussion

We modified a commercial AFM (MFP-3D, Asylum Research)
to steer the tip along any desired scan path on the sample while
recording the height using tapping mode. To visualize the data
we used Sensor Inpainting [9] using a heat equation algorithm
[12]. (A more detailed description on this image reconstruction
technique is given in Appendix A.) The raw height data is shown
in the top row of Fig. 4 and the bottom row shows the corrected
height using the self-intersection drift correction method. The
first dataset (Fig. 4(a) and (d)) is the same dataset as used for
piecewise linear fitting (see Fig. 2) showing a 500 nm diameter
scan over an annealed gold sample. To better illustrate the

fluctuations in the measured height we generated an inpainted
image using the raw data of the inward and outward scans and
put two halves of the images next to each other (Fig. 4(a)). The
result obtained using the self-intersection drift correction
method (Fig. 4(d)) shows a clean image which preserves the
height of topographic features. Compared to the piecewise
linear fitting technique our drift correction algorithms does
not need any input parameters and hence no human interaction
is required. The double Archimedian scan has 1700 loops which
result in 111k self-intersections with a fitness ζ of 0.8. The
second example is taken on the same gold sample but this time
we use a larger scan size of 1:4 μm with 27k intersections using
the MDAS scan pattern and 471 loops (Fig. 4(b)). With the
resulting fitness ζ of 126 our algorithm easily corrects for the
large z-drift present. Note that the large lateral drift in X and Y is
accurately recorded by the sensors, and thanks to Sensor
Inpainting such drift correctly results in a slightly elongated
image which perfectly represents the scanned surface (Fig. 4(e)).
The third experiment was taken from a silicon calibration
sample with 8 nm deep hexagonal features. The raw data
(Fig. 4(c)) is recorded over 30 μm and shows tilt of the sample.
When using a Spirograph scan path, drift does not result in
concentric rings but artifacts all over the image. As the scan
pattern with 414 loops and 58k intersections results in a very
high fitness of ζ ¼ 447 we achieve better correction of drift
compared to the other spiral paths. In a final step a simple plane
fit is subtracted to correct for tilt (Fig. 4(f)). Due to the z-piezo
control loop delay, a 5 ms offset was applied to the data as was
done in [9]. The length of the recorded datasets for the DAS,
MDAS, and Spirograph were 1.5M, 164k, and 500k samples,
respectively. Without any optimization for execution time the
corresponding computation times were 5, 0.7, and 0.8 s using an
Intel's Core 2 Duo P9500 processor and 4 GB of system memory.
Optimization of the code and use of distributed processing
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Fig. 4. (a) Raw data of a DAS scan of a gold sample inward (left) and outward (right) scans are shown for comparison. (b) Raw data of a larger MDAS scan with large drift in z.
(c) Raw data of a Spirograph scan over an AFM calibration sample. (d) Drift corrected topography using self-intersection method. (e) The combination of drift correction and
Sensor Inpainting perfectly reconstructs the real topography even in the presence of significant drift in X, Y and Z. (f) Drift corrected Spirograph scan.
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including multithreading, graphics processing units, or FPGAs
could easily shorten the computation time in order to be used
for a live display at video rates.

4. Conclusions

Drift in the height signal during image acquisition is a common
issue in all scanning probe techniques. In this work, we have
shown that self-intersection scan paths can be used to effectively
remove z-drift. Our method significantly outperforms a general-
ization of the typical flattening algorithms (piecewise linear fit).
The proposed self-intersection algorithm is invariant under both
tilt and sample geometry, and depends only on the scan path used
to guarantee reliability. We proposed the fitness ζ which measures
how likely the self-intersection method can discover the drift
component. We demonstrate for varying scan patterns, scan size,
and samples that an error-free topography is recovered when drift
is corrected. As thermal drift occurs at low frequencies we find
that the existence of a meager set of self-intersections with a ζ of
0.8 already is sufficient to correct the topographic data. Our
technique is applicable to a large set of possible scan paths now
being explored as fast-scanning alternatives to the raster pattern,
and may be useful for real-time object tracking or cycloid scans
along an object of interest [20,21].
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Appendix A. Image reconstruction from non-raster scan
datasets

With non-raster paths, visualizing the data generally requires it
being put on a grid using inpainting techniques. We do this for the
discrete interpretation of h(t) by first using bilinear interpolation
weights for each sample to distribute it into the four nearest grid
cells. Each grid cell of the boundary data zð x!Þ contains a weighted
average height of nearby samples, and the fidelity parameter λð x!Þ
is the sum of the weights for each grid cell. Therefore areas with
more data will have higher fidelity, and cells with no data will
reasonably have zero fidelity. λð x!Þ is then scaled by a user-
specified amount indicating the strength of denoising. The grid
points which get no data are filled using image inpainting. We
herein use heat equation inpainting, which roughly corresponds to
diffusing the information out to the unknown areas following the
physical laws of heat flow. Briefly, this is performed as follows: the
domain is separated into D¼ fxðtÞjtA ½0; T �g where data is known
andΩ\D where data is missing, withΩ the entire sample area. The
topography map ẑð x!Þ is completed by solving the system of
equations

0¼Δẑ on Ω\D

λðẑ�zÞ ¼Δẑ on D;

which may be solved very quickly with multiscale methods [22],
or by directly solving the finite difference system. λð x!Þ, denoted
with a bar to differentiate from λ of the algorithm, varies with
space and determines the point-wise fidelity to zð x!Þ¼ zð x!ðtÞÞ; a
low value indicates strong denoising.

Appendix B. Finding intersections on quantized datapoints

The data provided by the AFM has multiple sources of error,
including a noise source due to the truncation of the position
signal for finite bit representation (bitnoise). Let lx and ly be the
smallest measurable distance represented by least significant bit
for X and Y direction. The noisy signal received is described in
terms of the path 〈xðtÞ; yðtÞ〉 by the function 〈lx⌊xðtÞ=lxc; ly⌊yðtÞ=lyc〉
where ⌊�c denotes the floor function. This is problematic for the
intersection detection algorithm because the noise can generate
many false intersections, throwing off the differences fitting
energy. To combat this issue, we convolve each of the position
sensor signals with a Gaussian smoothing function with a standard
deviation on the same order as lx and ly. An example of a synthetic
signal being corrected is shown in Fig. 5. The focus of this work is
not to remove this noise, however some processing has shown
necessary for successful performance of the self-intersection
method when considerable noise is present.

The recursive algorithm for finding intersections is as follows:

Function quad_tree_recur(list_of_segments,
bounding_box, depth)

If countðlist_of_segmentsÞoMIN_SIZE or

depth 4 MAX_RECURSION then

For all segments A,B in list_of_segments
If A intersects B in bounding_box then

Add intersection to global list.

EndIf

EndFor

Else

Subdivide bounding_box into equal area rectangles

B1, B2, B3, B4.

For n¼1, 2, 3, and 4

Let sub_list¼those of list_of_segments which

intersect with Bn.

Call quad_tree_recur(sub_list, Bn, depth þ 1);

EndFor

EndIf

EndFunction

This is called with an initial list containing all segments, a
bounding box which contains all segments, and a recursion depth
of zero. When the algorithm is implemented efficiently, it may
process a million line segments in well under a second using
Intel's Core 2 Duo P9500 processor and 4 GB of system memory.
The algorithm is highly parallelizable through the assignment of
independent threads to different branches of the recursion. The
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Fig. 5. The position sensor noise results from the signal being compressed into a
low-bandwidth signal and causes significant problems when detecting self-inter-
sections. In this synthetic case, a scan path is measured with error and corrected
with the convolution approach we describe.
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ideal choice of the two constants in the algorithm depends on the
system and language of implementation, though reasonable
default values are 100 for MIN_SIZE and 8 for MAX_RECURSION.
The running time can generally be reduced to OðN log NÞ by pre-
processing the data with a quad-tree structure [23].

Appendix C. Derivation of Euler–Lagrange equations

Our intention is to solve for the minimizing function f in Eq. (1)
with representation restricted to the span of a basis of functions
fϕig for i¼ 1;2;…;N. Thus, expanding f over this basis with
coefficients ci, notice that

f ðtn;2Þ� f ðtn;1Þ ¼ ∑
N

i ¼ 1
ci½ϕiðtn;2Þ�ϕiðtn;1Þ�

and proceed much the same way as the classical least-squares
approximation. Recall that dj ¼ dðtj;2Þ�dðtj;1Þ is the error in height
taken at the jth difference of the function being fit, d(t).

Let f
!

and d
!

denote the length-M column vectors with,
respectively, components f ðtj;2Þ� f ðtj;1Þ and dj for j¼ 1;2;…;M.
Let c! be the length-N column vector formed by the coefficients
ci where i¼ 1;2;…;N. Denote by A the M�N matrix containing
the basis differences at the crossing points with entries
Aij ¼ϕjðti;2Þ�ϕjðti;1Þ. The error on the differences is thus

J d
!� f

!
J2 ¼ J d

!�A c!J2. Define the N�N matrix M with entries

Mij ¼
Z 1

0
ϕ″

i ðtÞϕ″
j ðtÞ dt:

By algebraic manipulation it may be shown that
Z 1

0
jf ″ðtÞj2 dt ¼ c!T

M c!:

Using these results, the functional in (1) may be now restated in

terms of a minimization over c!

min
c!

J d
!�A c!J2þλ c!T

M c!:

Differentiation with respect to c! leads to the necessary optimality
condition

Lλ c
!¼ ðATAþλMÞ c!¼AT d

!¼ h
!

:

The matrix Lλ is invertible and positive definite if λ40, in which
case the solution is additionally guaranteed to be unique.

For the calculation of the ζλ fitness, we use the orthonormal
Fourier basis and 500 basis elements. This is because the Fourier
basis is simple to calculate, orthogonal, and because ζλ is not
improved by using a more exotic basis choice.
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