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conditions. The effectiveness of the proposed approach is verified by several linear and
nonlinear examples.
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1. Introduction

Over the past 25 years, the Adomian decomposition method (ADM) [1], which was first introduced by the American
Physicist George Adomian, has been used to solve effectively and easily a large class of linear and nonlinear ordinary and
partial differential equations. In his famous book, Adomian [1] showed the possibility of obtaining explicit solutions of wide
varieties of physically significant problems. Moreover, in [2,3] Adomian indicated that no similarity reductions are used
to solve Burger equation, where explicit solution was obtained using the t-partial solution. Adomian et al. [4] analyzed
the mathematical models of the dynamic interaction of immune response with a population of bacteria, viruses, antigens,
or tumor cells. The ADM was used also by Cherruault et al. [5], Kaya and El-Sayed [6], Biazar et al. [7], Hashim et al. [8],
and Lesnic [9] to investigate analytically and numerically some other scientific models. Recently, Sweilam and Khader [10]
applied the ADM to analyze the nonlinear vibrations of multiwalled carbon nanotubes.

In most cases, the ADM provides a rapidly convergent sequence of approximations, often requiring no more than just a
few terms for high accuracy. In addition, the convergence of the ADMwas discussed by Cherruault [11], Cherruault et al. [12],
Cherruault and Adomian [13], and Cherruault et al. [14]. Moreover, many authors have found thismethod to be attractive for
solving boundary value problems [15–33], because it can be used directly without restrictive assumptions, linearization or
Green functions. For examples, Adomian and Rach [15] demonstrated how to solve nonlinear BVPs in several dimensions by
the decomposition method. In their paper, they analyzed various ordinary and partial differential equations with Dirichlet
and Neumann boundary conditions. In [16], Adomian solved the Thomas–Fermi equation subject to Dirichlet boundary
conditions; however, his solution was depend upon evaluating the unknown constants of integration by applying the
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boundary conditions to each evaluated approximate solution.Many other physical and engineering problemswere solved by
the ADM such as the nonlinear oscillator equation by Shawagfeh [17], the heat equation by Hadizadeh andMaleknejad [18],
and Bratu-type equations byWazwaz [20]. Benabidallah and Cherruault [21–23] used the ADM to solve classes of BVPs with
Dirichlet boundary conditions and their analysis is discussed in the next section. Nonlinear boundary value problems of
higher orders have been also investigated by Al-Hayani [26], Wazwaz [27,28], and Hashim [29]. Dehghan [30] applied the
ADM to solve a two-dimensional parabolic equation subject to nonstandard boundary specifications.

In light of this introduction, it is observed that little attention was devoted for applying the ADM to boundary value
problemswith Neumann boundary conditions. Furthermore, the ADMwas not applied in a direct manner to solve such kind
of BVPs. So, the aim of this work is to introduce a direct approach for solving ordinary and partial second-order boundary
value problems with Neumann boundary conditions.

2. ADM

Consider the two-point boundary value problem:

u′′(x) + p(x)u′(x) + q(x)f (u(x)) = r(x), x ∈ [a, b], (1)

with Neumann boundary conditions

u′(a) = α, u′(b) = β. (2)

According to the standard ADM [1], the inverse operator L−1
xx [.] =


[.]dxdx is applied to Eq. (1) resulting in

u(x) = φx + L−1
xx


r(x) − p(x)u′(x) − q(x)f (u(x))


, (3)

where φx = c1 + c2x, c1 and c2 are constants of integration. The method is then based on decomposing φx, the linear and
nonlinear terms u and f (u(x)) as follows:

φx =

∞
n=0

φx,n =

∞
n=0

(c1,n + c2,nx),

u(x) =

∞
n=0

un(x),

f (u(x)) =

∞
n=0

An(u0, u1, . . . , un),

(4)

where An are the Adomian polynomials tailored to the specific nonlinearity and can be computed from the definitional
formula

An =
1
n!


dn

dλn
f


∞
i=0

λiui


λ=0

, n ≥ 0. (5)

The decomposition of the initial term is needed for nonlinear boundary value problems whether ordinary or partial
differential equations are involved, however, it is unnecessary in linear ODEs; see [15] for details. Substituting (4) into (3),
yields the following recursion scheme

u0(x) = φx,0 + L−1
xx r(x),

un+1(x) = φx,n − L−1
xx


p(x)u′

n(x) + q(x)An

, n ≥ 0.

(6)

The approximate solution of Eq. (1) is given by

Φm(x) =

m−1
n=0

un(x) for m > 0. (7)

Thus Φ1 = u0, Φ2 = Φ1 + u1, Φ3 = Φ2 + u2, etc., serve as approximate solutions of increasing accuracy as n increases
and must, of course, satisfy the boundary conditions [15]. To evaluate values of the constants c1,n and c2,n, we begin with
Φ1 = u0 = c1,0 + c2,0x + L−1

xx r(x). Using the boundary conditions (2) results in
c2,0 +


L−1
xx r(x)

′
x=a = α,

c2,0 +

L−1
xx r(x)

′
x=b = β.

(8)

It should be noted that by solving these equations with respect to c2,0, its value is obtained, while c1,0 remains unknown
and consequently u0 is not completely determined; hencewe cannot proceedwith the standard ADM. Recently, an alternate
procedure is proposed in [21,22] to obtain the numerical solutions for a class of boundary value problems. The canonical form
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obtained in these studies is based on integrating equation (1) first from x to b and then integrating the resulting equation
again from a to x. This procedure permits only the use of the boundary condition u′(b) = β and assumes that u(a) =


∞

k=0 ck,
where the values of c0, c1, c2, . . . , etc. are evaluated by using the other boundary condition u′(a) = α. This procedure is of
course simpler than the standard ADM discussed above; however, it does not use all of the boundary conditions in a direct
way. To the best of the authors’ knowledge, such a direct way has not been previously employed to solve second-order BVPs
with Neumann boundary conditions by the ADM. The aim of the present work is therefore to provide a direct approach by
introducing a new definition of the inverse linear operator. The proposed procedure is tested by investigating a number of
two-point boundary value problems with Neumann boundary conditions.

3. The inverse linear operator

Theorem 1. If u′(a) = α and u′(b) = β are Neumann boundary conditions of a second-order ordinary differential equation,
then

L−1
xx u′′(x) = u(x) − (x − Ω)u′(a) −

Ω

2
u′(b) −

1
Ω

 Ω

0
u(x)dx, a ≤ x ≤ b, (9)

where L−1
xx [.] is defined by

L−1
xx [.] =

 x

Ω

dx′

 x′

a
[.]dx′′

+
1
Ω

 Ω

0
dx′


x′

 x′

b
[.]dx′′


, (10)

where Ω is an arbitrary finite constant.

Proof. Suppose that

L−1
xx [.] =

 x

Ω

dx′

 x′

a
[.]dx′′

+
1
Ω

 Ω

0
dx′


x′

 x′

b
[.]dx′′


,

then

L−1
xx [u′′(x)] =

 x

Ω

dx′

 x′

a
[u′′(x)]dx′′

+
1
Ω

 Ω

0
dx′


x′

 x′

b
[u′′(x)]dx′′



=

 x

Ω

[u′(x′) − u′(a)]dx′
+

1
Ω

 Ω

0
x′

u′(x′) − u′(b)


dx′

= u(x) − u(Ω) − (x − Ω)u′(a) +
1
Ω

 Ω

0
x′u′(x′)dx′

−
1
Ω


Ω2

2
u′(b)


= u(x) − u(Ω) − (x − Ω)u′(a) +

1
Ω

 Ω

0
x′u′(x′)dx′

−
Ω

2
u′(b)

= u(x) − u(Ω) − (x − Ω)u′(a) +
1
Ω


Ωu(Ω) −

 Ω

0
u(x′)dx′


−

Ω

2
u′(b)

= u(x) − u(Ω) − (x − Ω)u′(a) +


u(Ω) −

1
Ω

 Ω

0
u(x′)dx′


−

Ω

2
u′(b)

= u(x) − (x − Ω)u′(a) −
Ω

2
u′(b) −

1
Ω

 Ω

0
u(x)dx. �

It should be noted that this theorem can also be readily extended to include second-order partial differential equations.

4. A new approach for solving second-order ODEs and PDEs

In this section, we establish two algorithms for solving linear and nonlinear second-order ordinary and partial differential
equations with Neumann boundary conditions. First, we rewrite Eq. (1) in the form:

u′′(x) = r(x) − p(x)u′(x) − q(x)f (u(x)). (11)

Now, on applying the operator L−1
xx (.) given by Eq. (10) to the last equation, we obtain

u(x) = (x − Ω)u′(a) +
Ω

2
u′(b) +

1
Ω

 Ω

0
u(x)dx + L−1

xx


r(x) − p(x)u′(x) − q(x)f (u(x))


, (12)
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where u and f (u(x)) are decomposed by Eq. (4), the An are computed using formula (5). Substituting (4) into (12), and
according to the ADM, the solution u(x) can be directly computed in the nonlinear case by using the following modified
recursion scheme

u0 = (x − Ω)u′(a) +
Ω

2
u′(b) + L−1

xx [r(x)] ,

un+1 =
1
Ω

 Ω

0
un(x)dx − L−1

xx


p(x)u′

n(x) + q(x)An

, n ≥ 0,

(13)

and in the linear case as follows
u0 = (x − Ω)u′(a) +

Ω

2
u′(b) + L−1

xx [r(x)] ,

un+1 =
1
Ω

 Ω

0
un(x)dx − L−1

xx


p(x)u′

n(x) + q(x)un

, n ≥ 0,

(14)

where algorithms (13) and (10), (14) and (10) comprise an advanced Adomian decompositionmethod (AADM) for nonlinear
and linear cases, respectively. We conclude this section by noting that the approximate analytic solution is given by

Φn(x; Ω) =

n−1
i=0

ui(x; Ω). (15)

The last equation modifies Eq. (7) by considering Φn to be a parametric function of Ω , which plays an important role in
obtaining a class of solutions as shown in the next section.

5. Test examples

In this section, we show that the AADM is effective in studying the analytical and numerical solutions for second-order
boundary value problems with appropriate Neumann boundary conditions. However, it should be noted that the AADM
gives a unique solution, when Ω → 0, in the presence of the dependent variable, say u, explicitly of the ODE structure, as
in Examples 1–4, and a class of solutions in the absence of it, as in Examples 5 and 6.

5.1. Example 1

Consider the following linear ordinary boundary value problem [34]
u′′(x) + u(x) + x = 0, 0 ≤ x ≤ 1,
u′(0) = −1 + csc(1), u′(1) = −1 + cot(1). (16)

On applying the AADM for this problem, we obtain
u0 = (x − Ω) (−1 + csc(1)) +

Ω

2
(−1 + cot(1)) +

1
24


−4x3 + 6Ω + Ω3 ,

un+1 =
1
Ω

 Ω

0
un(x)dx −

 x

Ω

dx′

 x′

0
[un(x′′)]dx′′

−
1
Ω

 Ω

0
dx′


x′

 x′

1
[un(x′′)]dx′′


, n ≥ 0.

(17)

Using this algorithm, we find that the approximate solutions Φ2(x), Φ3(x) and Φ4(x) as Ω → 0 are given by

Φ2(x) = −x + csc(1)

x −

x3

3!


+

x5

5!
,

Φ3(x) = −x + csc(1)

x −

x3

3!
+

x5

5!


−

x7

7!
,

Φ4(x) = −x + csc(1)

x −

x3

3!
+

x5

5!
−

x7

7!


+

x9

9!
.

(18)

It should be noted that problem (16) has a unique solution, given by u(x) = −x+ csc(1) sin(x). We now have the following
Maclaurin series of the exact solution

u(x) = −x + csc(1)

x −

x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− · · ·


. (19)

From the approximate solutions given in (18) we note that Φ2(x), Φ3(x) and Φ4(x) agree with its Maclaurin series (19) up
to x3, x5 and x7, respectively. Therefore, on evaluating more terms of the decomposition series, the Maclaurin series (19)
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Fig. 1. Results of Example 1, comparison of the exact solution with Φ1, Φ2 and Φ3 .

is obtained in the limit. To numerically verify if the proposed approach leads to accurate solutions, we compare the
approximate solutions Φ2(x), Φ3(x) and Φ4(x) as Ω → 0 with the exact solution in Fig. 1. As mentioned in the beginning of
this section, the numerical results show that a unique solution with good approximation is achieved using only a few terms
of the decomposition series solution.

5.2. Example 2

Bratu model appears in a number of applications such as fuel ignition in the thermal combustion theory and also in the
Chandrasekhar model of the expansion of the universe [20]. Therefore, on considering the following Bratu problem [20]

u′′(x) − 2 eu = 0, 0 ≤ x ≤ 1,
u′(0) = 0, u′(1) = 2 tan(1). (20)

and applying the AADM to it, we obtain the following recursion scheme
u0 = Ω tan(1),

un+1 =
1
Ω

 Ω

0
un(x)dx +

 x

Ω

dx′

 x′

0


2An(x′′)


dx′′

+
1
Ω

 Ω

0
dx′


x′

 x′

1


2An(x′′)


dx′′


,

(21)

where n ≥ 0 and An are the Adomian polynomials of the nonlinear term f (u) = eu. On using the definitional formula (5),
the first four terms of An are given by

A0 = eu0 ,
A1 = u1eu0 ,

A2 =


u2 +

u2
1

2


eu0 ,

A3 =


u3 + u1u2 +

u3
1

6


eu0 .

(22)

Using algorithm (21), we find that the approximate solutions Φ2(x), Φ3(x) and Φ4(x) as Ω → 0 are given by
Φ2(x) = x2,

Φ3(x) = x2 +
x4

6
,

Φ4(x) = x2 +
x4

6
+

2x6

45
.

(23)

Problem (20) has the following exact solution u(x) = −2 log[cos(x)], where the Maclaurin series of this solution is given by

u(x) = x2 +
x4

6
+

2x6

45
+

17x8

1260
+

62x10

14 175
+ · · · . (24)
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Fig. 2. Results of Example 2, comparison of the exact solution with Φ2, Φ3 and Φ4 .

The approximate solutions Φ2(x), Φ3(x) and Φ4(x) given in (23) agree with the Maclaurin series expansion of the exact
solution (24) up to x2, x4 and x6, respectively. Therefore, computing more terms of the decomposition series solution, as
Ω → 0, leads to obtaining the Maclaurin series of the exact solution. Moreover, Fig. 2 shows that a numerical solution with
good accuracy is achieved using only a few terms of the decomposition series solution. Note especially that the curve of the
approximate solution Φ4(x) is nearly identical to the exact solution.

5.3. Example 3

Consider the nonlinear oscillator equation [17]
u′′

+ ω2u = λum, 0 ≤ x ≤ 1,

u′(0) = 1, u′(1) = cn

1|

1
4


dn

1|

1
4


,

(25)

wherem is a positive integer. This problem has the exact solution u = sn

x| 14

whenm = 3 (Duffing oscillator), λ =

1
2 and

ω2
=

5
4 , where sn, cn, dn are Jacobi elliptic functions [17]. Using the AADM, the solution can be directly computed by using

the following modified recursion scheme
u0 = x +

Ω

2


cn

1|

1
4


dn

1|

1
4


− 2


,

un+1 =
1
Ω

 Ω

0
un(x)dx + L−1

xx


λAn − ω2un


, n ≥ 0.

(26)

The first few terms of Adomian polynomials for the nonlinear term um can be obtained from (5) as A0 = um
0 , A1 = mum−1

0 u1,
and A2 = mum−1

0 u2 +
1
2m(m − 1)um−2

0 u2
1. The approximate solutions Φ2(x), Φ3(x) and Φ4(x) as Ω → 0 are given by

Φ2(x) = x −
5x3

24
+

x5

40
,

Φ3(x) = x −
5x3

24
+

73x5

1920
−

11x7

1344
+

x9

1920
,

Φ4(x) = x −
5x3

24
+

73x5

1920
−

79x7

9216
+

593x9

322 560
−

307x11

1 182 720
+

11x13

998 400
.

(27)

The Maclaurin series of the exact solution is given by

u(x) = x −
5x3

24
+

73x5

1920
−

79x7

9216
+

24 487x9

13 271 040
− · · · . (28)

Again in this example, the approximate solutions Φ2(x), Φ3(x) and Φ4(x) agree with the Maclaurin series expansion of the
exact solution given in (28) up to x3, x5 and x7, respectively. Furthermore, the numerical results presented in Fig. 3 show
that a good approximation is achieved using only a few terms of the decomposition series solution.
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Fig. 3. Results of Example 3, comparison of the exact solution with Φ2, Φ3 and Φ4 .

5.4. Example 4

Consider the nonlinear Burger equationu′′
+ uu′

+ u =
1
2

sin(2x), 0 ≤ x ≤
π

2
,

u′(0) = 1, u′

π

2


= 0.

(29)

Considering the AADM, the solution can be computed by using the following modified recursion scheme
u0 = x − Ω −

1
16Ω


2Ω sin(2x) + cos(2Ω) − 4Ωx + 6Ω2

− 1

,

un+1 =
1
Ω

 Ω

0
un(x)dx − L−1

xx


un +

n
k=0

uku′

n−k


, n ≥ 0.

(30)

UsingMATHEMATICA and algorithm (30),weobtain the approximate analytic solutionsΦ2(x), Φ3(x), Φ4(x) andΦ5(x)when
Ω → 0 in terms of the trigonometric functions sine and cosine. In addition, when using the Maclaurin expansions of the
sine and cosine functions, these approximate solutions or Φ ’s can be written as infinite power series of x as follows:

Φ2(x) = x −
x3

3!
−

3x5

40
+ · · · ,

Φ3(x) = x −
x3

3!
+

x5

5!
+

109x7

5040
+ · · · ,

Φ4(x) = x −
x3

3!
+

x5

5!
−

x7

7!
−

703x9

120 960
+ · · · ,

Φ5(x) = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
+

8887x11

5 702 400
+ · · · .

(31)

It is clear from (31) that by evaluating more terms we can obtain closer and closer approximations to the Maclaurin
expansions of the exact solution of problem (29), that is u(x) = sin(x).

5.5. Example 5

Consider the following linear ordinary boundary value problem
u′′

= ex,
u′(0) = 1, u′(1) = e. (32)
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On applying the AADM for this problem, we obtain the following recursion scheme
u0 = ex + µ, where µ =

1 − eΩ

Ω
,

un+1 =
1
Ω

 Ω

0
undx.

(33)

From this recurrence relation, we obtain un = 0, for all n ≥ 1, consequently the exact solution is given by u = u0. This
example shows that the AADM can give a class of solutions.

5.6. Example 6

On considering the following nonlinear BVP
u′′

− (u′)2 = 0,

u′(0) = −1, u′(1) = −
1
2

(34)

and applying the AADM, we obtain the following recursion scheme
u0 = −x + µ0; An =

n
i=1

u′

n−iu
′

i

un+1 =

 x

Ω

 x

0
Andx


dx +

1
Ω

 Ω

0


x
 x

1
Andx


dx +

1
Ω

 Ω

0
undx.

(35)

From this algorithm, we can easily obtain the following approximants

Φ2(x) = −x +
x2

2
+ µ1,

Φ3(x) = −x +
x2

2
−

x3

3
+ µ2,

Φ4(x) = −x +
x2

2
−

x3

3
+

x4

4
+ µ3,

Φ5(x) = −x +
x2

2
−

x3

3
+

x4

4
−

x5

5
+ µ4,

(36)

where the µi are constants in terms of Ω . As n → ∞, then u = − log(x + 1) + µ, which is a class of exact solutions, where
µ = limit µi as n → ∞.

Remark 1. Before applying the AADM technique to PDEs in the next three examples, it should be noted that Adomian and
Rach [31] andWazwaz [35] have proved that partial solutions are equal in the decompositionmethod for linear or nonlinear
partial differential equations. Therefore, we shall consider the boundary conditions but not the initial conditions for studying
the possibility of calculating a class of solutions using our new approach.

5.7. Example 7

Consider the following linear partial boundary value problem for the heat equation∂u
∂t

=
∂2u
∂x2

, 0 ≤ x ≤ 1, t ≥ 0,

ux(0, t) = et , ux(1, t) = et cosh(1).
(37)

The heat problem (37) has a class of exact solutions given by u(x, t) = et sinh(x) + µ4, where µ4 is an arbitrary constant.
Applying the AADM, we obtain the following recursion scheme

u0 =


(x − Ω) +

Ω

2
cosh(1)


et ,

un+1 =
1
Ω

 Ω

0
un(x, t)dx +

 x

Ω

dx′

 x′

0

∂un(x′′, t)
∂t

dx′′
+

1
Ω

 Ω

0
dx′


x′

 x′

1

∂un(x′′, t)
∂t

dx′′


,

(38)
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where n ≥ 0. As in Example 6, the arbitrary constant µ4 also generates a class of exact solutions. It is therefore sufficient
to show that the exact solution u(x, t) when µ4 = 0 matches the exact solution obtained through our algorithm (38) as
Ω → 0. Using algorithm (38), the approximate analytic solution Φ6(x, t) as Ω → 0 is given by

Φ6(x, t) = et

x +

x3

3!
+

x5

5!
+

x7

7!
+

x9

9!
+

x11

11!


. (39)

By evaluating more terms, we find that

u(x, t) = lim
n→∞

Φn(x, t) = et sinh(x), (40)

which is the exact solution of the given linear heat equation with the specified Neumann boundary conditions when µ4
vanishes.

5.8. Example 8

Consider the following inhomogeneous wave equation [36]
utt = uxx + 2π2e−π t sin(πx), 0 ≤ x ≤ 1, t ≥ 0,
ux(0, t) = πe−π t , ux(1, t) = −πe−π t .

(41)

Proceeding as above, we obtain the following recursion scheme
u0 = (x − Ω)πe−π t

−
Ω

2
πe−π t

+
1

πΩ


2 cos(πΩ) + 2πΩ sin(πx) + π2Ω(3Ω − 2x) − 2


e−π t ,

un+1 =
1
Ω

 Ω

0
un(x, t)dx +

 x

Ω

dx′

 x′

0

∂2un(x′′, t)
∂t2

dx′′
+

1
Ω

 Ω

0
dx′


x′

 x′

1

∂2un(x′′, t)
∂t2

dx′′


,

(42)

where n ≥ 0. Again, as in the last example, Φ5(x, t) can be written as infinite power series of x as follows:

Φ5(x, t) = e−π t

πx −

(πx)3

3!
+

(πx)5

5!
−

(πx)7

7!
+

(πx)9

9!
−

(πx)11

19 958 400
+ · · ·


. (43)

Evaluating more terms therefore results in

u(x, t) = lim
n→∞

Φn(x, t) = e−π t sin(πx), (44)

whichmatches the exact solution u(x, t) = e−π t sin(πx)+µ5t +µ6 whenµ5 andµ6 vanish, whereµ5 andµ6 are arbitrary
constants.

5.9. Example 9

Consider the following nonlinear Burger equation [37]ut + uux − uxx = 0, 0 ≤ x ≤ 2, t ≥ 0,

ux(0, t) =
1
t

−
π2

2t2
, ux(2, t) =

1
t

−
π2

2t2
sech2

π

t


.

(45)

Proceeding as before, we obtain the following recursion scheme
u0 = (x − Ω)


1
t

−
π2

2t2


+

Ω

2


1
t

−
π2

2t2
sech2

π

t


,

un+1 =
1
Ω

 Ω

0
un(x, t)dx + L−1

xx


∂un

∂t
+

n
k=0

ukun−k


, n ≥ 0.

(46)

Using this algorithm, the approximate analytic solution Φ5(x, t) as Ω → 0 is given by

Φ5(x, t) =
x
t

−
π

t

πx
2t


−

1
3

πx
2t

3
+

2
15

πx
2t

5
−

17
315

πx
2t

7
+

62
2835

πx
2t

9
, (47)

which agrees up to x9 with the Maclaurin series expansion of the exact solution u =
x
t −

π
t tanh


πx
2t


+ µ7, when µ7 goes

to zero, where µ7 is an arbitrary constant.

Remark 2. As shown from the results of Examples 1 through 9, and in many similar problems, three terms are usually
sufficient to closely approximate the exact solution. However, four or more terms can be readily and easily computed as
demonstrated in other examples. It should be noted that inmost cases a few terms are adequate to achieve practical solutions
for engineering design and systems analysis.
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6. Conclusion

In this research, the advanced Adomian decomposition method (AADM) for solving two-point BVPs with Neumann
boundary conditions has been introduced. This extension is based on a new definition of the inverse linear operator. The
main advantage of this approach is the direct way of dealing with the Neumann boundary conditions. In addition, a unique
solution is resulted or a class of approximate solutions are otherwise obtained. The AADM is validated by discussing several
linear andnonlinear ordinary andpartial two-point boundary value problems. It is shown that for a sufficiently small number
of components, the approximate and exact solutions become nearly identical.
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