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A b s t r a c t - - W e  give necessaxy and sufficient conditions for the existence of a common nonnegative- 
definite (positive-definite) solution to the pair of matrix equations AXA* = BB* and CXC* = DD*, 
and derive a representation of the general common nonnegative-definite (positive-definite) solution 
to these two equations when they have such common solutions. This paper can be viewed as a 
supplementary version of that derived by Young et al. [1] since GroI3 [2] has given a counterexample 
to point out a mistake in their basic Theorem 1. The presented example shows the advantage of the 
proposed approach. (~) 2004 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Let C m×n be the set of all m x n complex matrices. We denote by Un the subset of C ~×n 
consisting of all unitary matrices. For X E C re×n, let X*, Af(X), and ~ ( X )  be the conjugate 
transpose, the nullspace, and the column space of X, respectively. We denote by In and O the 
n x n identity matrix and the zero matrix, respectively. 

Some authors have established the problem for determining the general Hermitian nonnegative- 
definite solution to the matrix equation 

AXA* = BB*, (1) 
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with known matrices A, B E C m×n. For instance, Baksaiary [3], Grog [2], Khatri and Mitra [4], 
and Zhang and Cheng [5] have derived the general Hermitian nonnegative-definite solution to 
the matrix equation (1), respectively. Moreover, Dai and Lancaster [6] have studied the similar 
problem and emphasized the importance of (1) within the real setting. More generally, Young 
et al. [1] have obtained a representation of the general common Hermitian nonnegative-definite 
solution to the pair of matrix equations (1) and 

C X C *  = DO*, (2) 

with known matrices C, D E C px~. But Grog [2] has given a counterexample to point out that 
their representation is not true. However, up to now, nobody (we knew) has obtained a correct 
representation for the general common Hermitian nonnegative-definite solution to the pair of 
matrix equations (1) and (2). 

The first aim of this paper is to determine the general common nonnegative-definite solu- 
tion to the pair of matrix equations (1) and (2). To guarantee the consistencies of the matrix 
equations (1) and (2), in the following we assume 

n(B) _c n(A), n(D) c_ ~(C). (3) 

The problem for determining the general common nonnegative-definite solution to the pair of 
matrix equations (1) and (2) can be precisely stated as follows. 

PROBLEM 1. Given matrices A, B C C mxn and C, D E C pxn satisfying (3). Determine necessary 

and sufficient conditions for the existence of  a common Hermitian nonnegative-definite solution 

to the pair of matrix equations (1) and (2). Furthermore, give a representation of  the general 
common Hermitian nonnegative-definite solution to these two equations when they have such 

common solutions. 

The second aim of this paper is to determine the general common positive-definite solution 
to the pair of matrix equations (1) and (2), i.e., specify the freedoms in the common Hermitian 
nonnegative-definite solutions to the pair of matrix equations (1) and (2) such that they are 
positive-definite. The problem can be precisely stated as follows. 

PROBLEM 2. Given matrices A, B 6 C mxn and C, D C C pxn satisfying (3). Determine necessary 

and sufficient conditions for the existence of a common Hermitian positive-definite solution to 
the pair of  matrix equations (1) and (2). Furthermore~ give a representation of  the general 
common Hermitian positive-definite solution to these two equations when they have such common 

solutions. 

The solutions to Problems 1 and 2 are, respectively, established in Sections 2 and 3. In 
Section 4, an example is presented to illustrate the proposed solutions. 

2. S O L U T I O N  T O  P R O B L E M  1 

This section considers solution of Problem 1 proposed in Section 1. We first introduce the 
following three lemmas. 

LEMMA 1. (See [1, Lemma 2, 7, p. 17].) Given matrices F,  G E C "~xn. Then FF*  = GG* if  
and only if G = FT for some T C Us. 

LEMMA 2. (See [8, p. 270].) Given matrices M E C mxp and N e C rn×n. Let M -  be an arbitrary 

but fixed generalized inverse of M.  Then the matrix equation M X  = N has a solution i f  and 
only i f  M M - N  = N.  When this condition is met, the general solution to the equation is given 

by 
X = M - N  + (I  - M - M )  ]I, 

where Y is free to vary over C pX~. 
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LEMMA 3. (See [2, p. 124, 3, Theorem 1].) Given matrices A, B E C m×~ satisfying 7~(B) C_ 
7~(A). Let A -  be an arbitrary but fixed generalized inverse of A. Then a representation of the 
general Hermitian nonnegative-definite solution to the matrix equation (1) is given by 

X = [A -B  + (In - A - A )  Y] [A -B  + ( I n -  A - A )  Y]*, (4) 

where Y is free to vary over C ~×~. 

Based on Lemmas 1-3, the following lemma can be immediately derived. 

LEMMA 4. Suppose A, B C C "~x~ and C, D E C p×'~ satisfying (3). Let A -  and [C(I~ - A - A ) ] -  
be arbitrary but fixed generalized inverses of A and C( I ~ - A - A ) ,  respectively. Then the matrix X 
possessing the form (4) is a solution to the matrix equation (2) if  and only if the matrix Y possesses 
the form 

Y = [C(I~ - A - A ) ] -  (DT - C A - B )  + W - [C(I, - A - A ) ] -  C(I~ - A - A ) W ,  (5) 

where W is free to vary over C '~×n, and T C U~ satisfies 

[C(In - A-A)]  [C(I~ - A - A ) ] -  (DT - C A - B )  = D T  - C A - B .  (6) 

PROOF. The "only if" part. Suppose the matrix X possessing the form (4) is a solution to the 
matrix equation (2). Then 

[ C A - B  + C(I,~ - A - A ) Y ]  [ C A - B  + C( I ,  - A - A ) Y ] *  = DD*. 

Using Lemma 1 derives 

C A - B  + C( I ,  - A - A ) Y  = D T  

for some T E U,~. This, together with Lemma 2, implies relations (5) and (6). 

The "if" part. Suppose the matrix Y possesses the form (5) with (6). It follows from (4) that 

CXC* = [ C A - B  + C(I,~ - A - A ) Y ]  [ C A - B  + C( I ,  - A - A ) Y ] *  . (7) 

Substituting (5) into (7), we have 

c x c *  = z z *  (8) 

with 

Z = C A - B  + C(I~ - A - A )  [C(I,, - A - A ) ] -  (DT - C A - B ) .  (9) 

Combining (9) and (6) yields Z = DT. This, together with (8), implies that the matrix X 
possessing the form (4) is a solution to the matrix equation (2). 

The proof is completed. | 

Combining Lemmas 3 and 4, the solution to Problem 1 can be stated as follows. 

THEOREM 1. Suppose the hypotheses of Lemma 4 are satisfied. Then the pair of matrix equa- 
tions (1) and (2) has a common Hermitian nonnegative-definite solution if  and only if  there 
exists T 6 Un such that (6) holds. When the condition is met, the general common Hermitian 
nonnegative-definite solution to these two equations is given by (4) with (5), where W is free to 
vary over C nxn, and T ~ Un is an arbitrary parameter matrix satisfying (6). 
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3.  S O L U T I O N  T O  P R O B L E M  2 

This section considers solution of Problem 2 proposed in Section 1. We first present the 
following two lemmas. 

LEMMA 5. Given matrices M E C T M  and N E C mxp. Let M -  be an arbitrary but fixed 
generalized inverse of M. Further, assume 

M M - N  = N. (10) 

Then 
T¢ ( M - N G )  N T¢ ( (I~ - M - M ) H )  = {0}, (11) 

for any G E C pxq and H E C mxq. 

PROOF. If y E TC(M-NG) N Ti((In - M - M ) H ) ,  then 

y = M - N G a  (12) 

and 
y = (In - M - M ) H b  (13) 

for some vectors a and b. I t  follows from (13) tha t  M y  = 0. This, together with (12) and (10), 
gives y = 0. Therefore, (11) holds. ~ I 

LEMMA 6. Suppose the hypotheses of Lemma 4 are satisfied, and the matrix X possesses the 
form (4) with (5) and (6). Then rank X = n if and only if 

rank B = rank A, (14) 

r a n k [ A - A  Y] = n, (15) 

and 
T¢ ( ( A - B ) ' )  n T¢ (Y* (I~ - A - A ) ' )  = {0}. (16) 

PROOF. First, it follows from (4) tha t  

rank X = rank 

_< rank 

= rank 

_< rank 

= rank 

( A - B  + (In - A - A ) Y )  

( A - B )  + rank ( ( I , ~ -  A - A )  Y )  

B + rank ((In - A - A )  Y )  

B + rank (In - A - A )  

B + n - rank A. 

Therefore, r a n k X  = n if and only if (14), 

rank ( A - B  + (In - A - A )  Y) = rank ( A - B )  -4- rank ((In - A - A )  Y )  (17) 

and 
rank ((In - A - A )  Y) = rank (In - A - A )  (18) 

are satisfied. 
Second, applying Theorem 3.4.17 from [9], relation (18) is equivalent to 

A/ ' (Y* )c3TL( ( I ,~ -A-A)* )  = {0}, 

or equivalently, 
TO(Y) n A f  (In - A - A )  = {0}. (19) 

Since H(In  - A - A )  = TO(A-A), relation (19) is equivalent to (15). 
Third, Lemma  5, [10], and (3), imply tha t  (17) is equivalent to (16). 
Combining the above three aspects completes the proof. I 

Based on Lemmas  5 and 6, the solution to Problem 2 can be stated as follows. 

THEOREM 2. Suppose the hypotheses of Lemma 4 are satisfied, and the matrix X possesses the 
form (4) with (5) and (6). Then X is a common Hermitian positive-definite solution to the pair  
of matrix equations (1) and (2) if and only if relations (14)-(16) are satisfied. 
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4. T H E  E X A M P L E  

Consider the pair of matrix equations (1) and (2) with the parameter matrices (see [2]) 

A = [ 1  1],  C = [ 0  1],  B = D = [ 1  0].  

Obviously, m = p  = 1, n = 2, and (3) is satisfied. By choosing 

1 1 ] *  
A - = [ ~  

we derive 

Again choosing 

[C(I2 - A - A ) ] -  = [ -1 
we have that  (6) holds for any T E U2. We write 

T = t3 t4 ' 

where ti E C, i = 1, 2, 3, 4, satisfy 

It~l 2 + It212 = 1 ,  

1]*, 

[ta[ 2 + It4[ 2 = 1, tlt-a + t2t4 = O. 

Using Theorem 1, we derive that  the general common nonnegative-definite solution to the pair 
of matrix equations is given by 

X =  [ (1- t l ) t l  (1 -(1 - t l)  -]- [ t 2 1 2 t 1 )  - -  I t 2 [  2 ( 1 -  t l ) t -1 -  1t212 ] : 1  Lr2 - 2 Re(t1) /1 - 1 I t  1 -- 1 1 . (20) 

Furthermore, using Theorem 2, we derive that  the general common positive-definite solution to 
the pair of matrix equations is given by 

[ 2 -  2Re(t1) f i - 1 ]  
x = L tl - 1 1 ' It1[ < 1. 

REMARK 1. Let tl = - z  and t2 = u in (20). Then (20) turns into [2, equation (2.5)]. However, 
reference [2] did not give a representation of the general common nonnegative-definite solution 
to the pair of matrix equations (1) and (2) when the parameter matrices A, B, C, and D are 
arbitrarily chosen. 
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