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Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic indi-
viduals obtain higher scores on the Raven’s Progressive Matrices (RSPM) test than they do on the Wechsler IQ,
in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral pro-
cesses underlying these differences are not well understood. This study investigated whether activity in the fluid
“reasoning” network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by
Keywords: task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study
Autism autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved
fMRI in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle
Reasoning occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in
Connectivity the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we
PPI then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI
Intelligence analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior
occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus
and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as com-
plexity increased in autistic participants. These results suggest that autistic individuals, when confronted with in-
creasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition
to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest

that the enhanced reliance on visual perception has a central role in autistic cognition.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction Block Design, pattern discrimination and mental imagery tasks

(Souliéres et al.,, 2011; Stevenson and Gernsbacher, 2013).

One of the most stable and intriguing properties of autistic intelli-
gence is that the relative level of difficulty of the different tasks used
to estimate intelligence is not the same for autistic and non-autistic peo-
ple. For instance, autistic individuals obtain a better score when evaluat-
ed with the Raven’s Progressive Matrices (RSPM) test (Raven, 1976)
than with the Wechsler IQ test, whereas non-autistic individuals obtain
similar scores on both tests (Dawson et al., 2007; Charman et al., 2011;
Nader et al., 2014). In parallel, autistic individuals tend to exhibit a rel-
ative advantage on visuospatial tasks in comparison to verbal tasks, as
reflected by their ability on visual search, embedded figures, Wechsler’s
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The unique pattern of cognitive performance described above is ac-
companied by an alteration in underlying patterns of cerebral activity
and connectivity (Samson et al.,, 2012; Tyszka et al., 2014). Stronger re-
cruitment of visual perceptual brain regions can be found in a wide
array of tasks using faces, objects and words as stimuli (Samson et al.,
2012), including higher order tasks such as fluid reasoning (Sahyoun
etal., 2010; Souliéres et al., 2009; Yamada et al., 2012). In terms of func-
tional connectivity, initial investigations yielded results supporting
widespread long-range underconnectivity and local overconnectivity
in autism (Courchesne and Pierce, 2005; Just et al., 2007). More recent
studies temper this view, demonstrating that local over-connectivity
depends on the specific type of analyses conducted (Vissers et al.,
2012) and that perceptual long-range functional connectivity is some-
times stronger in autistic relative to non-autistic participants (Keehn
et al,, 2013; Leveille et al., 2010; McGrath et al., 2012). White matter
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microstructural alterations are also found and correlate with autistic
signs and symptoms (Gibbard et al.,, 2013; Ikuta et al., 2014;
McFadden and Minshew, 2013), performance in visuospatial tasks
(McGrath et al., 2013), and fluid reasoning abilities (Ellmore et al.,
2013).

Fluid reasoning relates to the ability to infer logical solutions when
solving novel problems (Cattell, 1987). A spatially extended brain net-
work underlies fluid reasoning, with crucial components in prefrontal
and parietal regions (Jung and Haier, 2007; Perfetti et al.,, 2009). Activity
in the fronto-parietal reasoning network is modulated by reasoning
complexity and is associated with individual reasoning ability levels
(Gray et al., 2003; Lee et al., 2006; Perfetti et al., 2009). Increasing
reasoning complexity is associated with widespread increases in activi-
ty in the reasoning network, with marked increases in dorsolateral pre-
frontal cortex (Kalbfleisch et al., 2007; Kroger et al., 2002; Wendelken
et al., 2008). Higher reasoning abilities are associated with higher activ-
ity in frontal and parietal regions (Perfetti, 2009), and particularly in
posterior parietal cortex (Lee et al., 2006).

In autistic individuals, solving fluid reasoning problems is accompa-
nied by higher activity in occipital and temporal regions, but lower
activity in some frontal (middle frontal gyrus) and parietal regions
(precuneus), compared to non-autistic individuals (Souliéres et al.,
2009), and lower structural connectivity between frontal language
areas and temporal regions (Sahyoun et al., 2010; Yamada et al.,
2012). In a previous fMRI study (Souliéres et al., 2009), we recorded
brain activity while participants performed the RSPM, the emblematic
fluid reasoning test (see examples in Fig. 1). Autistic participants per-
formed the self-paced RSPM task with an accuracy similar to that of
their comparison group, but unexpectedly exhibited a 40% shorter re-
sponse time. During the resolution of the matrices, left middle occipital
gyrus (BA18) was disproportionally engaged in autistic participants,
suggesting that autistic reasoning might rely more heavily on the in-
volvement of occipital regions and their associated perceptual processes
during fluid reasoning. However, in light of recent findings identifying
increased activity in perceptual areas in autistic individuals in a wide
range of tasks (see Samson et al., 2012 for a meta-analysis), one can
question whether the increased activity in occipital areas during a rea-
soning task contributes to reasoning processes per se. We inferred
that observing connectivity between this region and other elements of
the reasoning network that was modulated by problem complexity
would provide further evidence that occipital areas genuinely contrib-
ute to autistic reasoning.

The objective of this study was to characterize how regional cerebral
activity and connectivity are modulated by task complexity in autistic
individuals during fluid reasoning. We were specifically interested in
verifying whether the increased activity previously observed in visuo-
spatial areas in autistic individuals during matrix reasoning would be
associated with activity and connectivity modulations according to

A) Figural

B) Analytical

problem complexity. We therefore conducted psychophysiological in-
teraction analyses (PPI) on data from our previous RSPM study
(Souliéres et al., 2009), with two sets of seed regions. The first set was
based on areas of maximal activity common to both groups while solv-
ing the RSPM. Often in studies with clinical samples, the selection of
seed regions is based on task-related activity patterns observed in the
control group, with those seed regions possibly being slightly displaced
from activity peaks in the clinical group. This selection approach could
result in a bias towards detecting reduced functional connectivity in
the clinical sample. Here, we employed a more neutral approach,
selecting seed regions based on the conjunction of task-related activity
observed in both groups. Then, using a second set of seed regions based
on areas of between-group differences in task-related activity, we more
specifically addressed our primary goal to examine the contribution of
occipital regions to autistic reasoning.

We predicted that autistic participants would exhibit higher func-
tional connectivity involving the occipital seeds with increasing reason-
ing complexity, relative to non-autistic participants, as suggested by
previous observations of stronger reasoning-related activity and ana-
tomical local connectivity in occipital regions (Sahyoun et al., 2010;
Souliéres et al., 2009). Given numerous previous findings of lower
parieto-frontal functional connectivity in autism and the lower frontal
activity seen during reasoning in autistic individuals in our previous
study, we also predicted lower functional connectivity between pre-
frontal and posterior parietal regions during the resolution of the
more complex reasoning items in autistic relative to non-autistic
participants.

2. Methods
2.1. Participants

MRI data were collected from 15 autistic participants (aged 14-35,
M = 22.40, SD = 5.95, 2F) and 18 non-autistic participants (aged
14-36, M = 21.72, SD = 5.20, 3F) (dataset from Souliéres et al., 2009;
see participant characteristics in Table 1). Participants were matched
on age, Wechsler Full-Scale IQ and handedness. Autistic participants re-
ceived a diagnosis according to DSM-IV criteria and were evaluated
with two diagnostic instruments, the Autism Diagnosis Observation
Schedule (ADOS-G; Lord et al., 2000) and Autism Diagnostic Interview
(ADI-R; Le Couteur et al., 1989), by a multidisciplinary team of expert
clinicians. A comparison group of participants self-reporting no psychi-
atric or neurological conditions were recruited from the local popula-
tion. Primary exclusion criteria for both groups were uncorrected
visual impairment, use of psychoactive or vasoactive medication as
well as use of illegal drugs or excessive alcohol consumption. A neurol-
ogist reviewed all structural scans to rule out any anatomical abnormal-
ity. All participants gave written informed consent to participate. The

C) Complex Analytical
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Fig. 1. Examples similar to items from the Raven’s Standard Progressive Matrices. This fluid reasoning test is composed of 60 matrix problems of increasing complexity. To solve the
matrices, participants have to choose among 8 choices the one that best fill in the missing entry (bottom right of the matrix). The three examples represent the three complexity levels

included in our study: figural, analytical and complex analytical.


Image of Fig. 1
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Table 1
Participant information.
AUT Non-AUT p
Sample size (sex) 15 (2F, 13M) 18 (3F, 15M)
Age M (SD) 22.40 (5.95) 21.72 (5.20) 0.73
Full scale IQ M (SD) 100.87 (12.05) 106.22 (12.97) 0.23
Verbal IQ M (SD) 99.20 (14.39) 110.17 (11.50) 0.02
Performance 1Q M (SD) 102.80 (11.98) 100.72 (14.39) 0.65
Manual preference M (SD) 67.93 (45.68) 57.89 (49.15) 0.55
ADI-R M (cut-off)
Social 23.27 (10)
Communication 18.47 (8)
Behavior 7.00 (3)

Note. IQ was assessed using Wechsler scales (WAIS-III and WISC-III), manual preference
was tested using the Edinburgh Inventory test and autistic traits were evaluated with
the Autism Diagnostic Interview-Revised (ADI-R).

study was approved by the institutional review boards of Regroupement
Neuroimagerie/Québec and Riviére-des-Prairies Hospital.

2.2. Task

A computerized version of the RSPM test was used (see Fig. 1 for ex-
amples similar to the items in the RSPM test). For each of the 60 test
items, participants selected the missing entry in a matrix among 8 possi-
ble choices, with no time limit. The RSPM task was slightly modified from
its original paper version to suit the fMRI environment. First, the two
rows of answer choices were shifted horizontally to simplify the map-
ping between answers and response pads. Participants had to answer
by pressing a button with their left (choices 1-4) or right hand (choices
5-8). The number of left hand versus right hand responses was
counterbalanced. The item remained visible until an answer was given
by the participant, followed by a fixation period varying from 4 to 7 s fol-
lowing an exponential distribution. The second modification made to the
original test was to present the 60 items in a randomized order (instead
of ascending order of complexity as in the original test), to avoid any pre-
sentation order/difficulty confound in the analyses.

2.3. Procedure

Participants first had two practice sessions of a relatively easy pat-
tern matching task sharing the same stimulus presentation specificities
as the RSPM task. The first practice session was done while sitting in
front of a computer screen, while the second was done in a mock scan-
ner. These practice sessions allowed participants to familiarize them-
selves with the tasks and fMRI environment. The fMRI testing session
took place immediately after completing the mock scanner practice ses-
sion. The RSPM task took between 14 to 35 min, as the participants were
instructed to take as much time as needed to solve each item. Last, a
structural MRI scan was acquired. The pattern matching task data
were not used in the current study.

2.4. Image acquisition

Images were acquired using a Siemens Trio 3 T scanner with an
8-channel phased-array head coil. Functional data were obtained
using an echo planar imaging (EPI) BOLD sequence, using a variable
epoch design (48 contiguous slices, 3 mm cubic voxels, TR = 2850 ms,
TE = 30 ms, flip angle = 90°, FOV = 192 mm?), and structural data
were T1 weighted (MP-RAGE, 176 slices, 1 mm cubic voxels, TR =
2530 ms, TE = 3.48 ms, flip angle = 7°, FOV = 256 mm?).

2.5. Data analysis
2.5.1. Behavioral data

The 60 RSPM test items were divided into 3 complexity levels: figural
(16 items), analytical (23 items) and complex analytical (21 items). First,

the items were divided into figural versus analytical types based on two
previous classifications (Lynn et al., 2004; van der Ven and Ellis, 2000).
The figural items can be solved with visual strategies, such as visual pat-
tern completion. Conversely, the analytical and complex analytical items
require abstraction and application of one or more rules (Carpenter et al.,
1990). The analytical items were then further divided into two complex-
ity levels based on RSPM accuracy data from 26 non-autistic adults in our
research database. The complex analytical items required the application
of more complex rules and/or a combination of rules and resulted in
lower accuracy than the easier analytical items and figural items. Group
(Autistic, Non-autistic) x Complexity (Figural, Analytical, Complex ana-
lytical) Analysis of Variance (ANOVA) were conducted on accuracy and
response times using SPSS (IBM Corp. (2012) version 21.0).

2.5.2. Image analysis

Images were preprocessed with SPM5 (http://www.fil.ion.ucl.ac.uk/
spm/) following the same procedure as in Souliéres et al. (2009). Statis-
tical modeling and visualization were done with SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/) and MRIcron (Rorden and Brett, 2000).

2.5.2.1. Preprocessing. Slice timing was corrected to the middle slice of
the volume, and then a two-pass realignment involving first registration
to the first image and then to the mean of the realigned images, follow-
ed by reslicing with 4th degree b-spline interpolation. Realigned images
were spatially normalized using the SPM5 EPI template. Eight mm full-
width at half maximum FWHM source image smoothing was applied
and images were resampled to 2 x 2 x 2 mm. Finally, normalized EPI
images were smoothed using an isotropic Gaussian smoothing kernel
with FWHM of 9 x 9 x 9 mm, to compensate for residual individual
and group anatomical differences.

2.5.2.1.1. Eye and head movement. To verify the presence of atypical
oculomotor movement sometimes reported in autism we compared
saccade density during the reasoning task in the two groups. We ex-
tracted the time course of the BOLD contrast signal activity within two
12.5 mm spherical ROI (one for each eye), for each participant. An esti-
mate of the net saccade density during the RSPM was obtained by com-
puting the standard deviation of the activity time course, and compared
between groups with a t test.

Head motion data (head translation and rotation estimates) was ex-
tracted during the preprocessing realignment and included as covari-
ates in the first-level models. Moreover, as to insure that there was no
group difference in head movement, head motion data was directly
compared between groups. Mean displacement rate (mmy/s) and rota-
tion rate (degrees/s), as well as peak-to-peak translation (x, y, z) and ro-
tation (pitch, roll, yaw) for each axis, were computed and compared
with independent samples ¢ tests.

Table 2
Performance on the RSPM task.
AUT Non-AUT P

RSPM task (60 items)
Percent correct 78.57 (19.36) 76.16 (17.16) 0.520
RT 12.52 (6.89) 17.29 (10.79) 0.010
Figural (16 items)
Percent correct 92.26 (11.54) 88.43 (10.75) 0.340
RT 6.89 (1.97) 8.75 (2.57) 0.033
Analytical (23 items)
Percent correct 84.82 (9.04) 82.18 (8.30) 0.403
RT 10.98 (3.79) 15.08 (5.73) 0.022
Complex analytical (21 items)
Percent correct 58.63 (17.18) 57.87 (13.47) 0.889
RT 19.69 (6.28) 28.05 (11.09) 0.017

Note. Performance on the Raven’s Standard Progressive Matrices (RSPM) expressed in
percentage of correct answers and in response time (RT; s).
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2.5.2.2. Statistical modeling. For each participant, a first-level general lin-
ear model was generated with three task regressors (figural, analytical
and complex analytical), using all trials (correct and incorrect), and six
motion estimate regressors. Individual contrasts for each of the three
levels of complexity were used in the subsequent second-level model.
Within and between-group mixed-effect analyses on the Complexity
factor (figural < analytical < complex analytical) were computed using
a threshold of p < 0.001 uncorrected with extent threshold K = 50 con-
tiguous voxels. Additional analyses were conducted in each group to
verify the influence of response times on task-related activity, by enter-
ing response times as a covariate in a t-test.

2.5.2.2.1. Selection of seed regions. Two sets of seed regions were se-
lected for connectivity analyses. A first set of seed regions was derived

1. Simard et al. / Neurolmage: Clinical 9 (2015) 467-478

from a conjunction analysis of the overall RSPM task-related activity
across all levels of complexity, allowing identification of areas of activity
common to both groups. Using conjunction analysis for seed selection
ensured having high levels of activity in both groups in order to guide
the seed selection for the connectivity analyses. Coordinates of local
task-related maximal activity were identified in each of the frontal,
parietal and occipital lobes. These seeds were located in left inferior
occipital gyrus (BA18), left superior parietal lobule (BA7) and right infe-
rior frontal gyrus (BA9).

A second set of seed regions was selected using the results of the
between-group contrast analysis exploring the complexity factor, in
order to represent areas maximizing activity differences between
the two groups. Peak coordinates of clusters more active in autistic

Table 3
Statistical modeling results using a complexity contrast (figural < analytical < complex analytical), p < 0.001 unc, K = 50 contiguous voxels.
Brain region BA Left Right
T scores X Y Z T scores X Y Z
Autistic group
Frontal lobe
Inferior frontal gyrus 44 7.36 50 10 30*
45 7.89 —44 28 28*
48 7.77 40 32 24*
Precentral gyrus 44 7.83 —42 4 34*
Middle frontal gyrus 6 7.33 —26 0 56* 6.34 30 0 56*
Parietal lobe
Superior parietal lobule 7 10.25 —24 —64 50*
Temporal lobe
Fusiform gyrus 19 8.41 36 —76 —14*
Occipital lobe
Inferior occipital gyrus 18 13.82 —28 —90 —6* 14.43 28 —94 —4*
Middle occipital gyrus 18 8.62 34 —86 12*
19 10.10 —26 —72 34*
Insula
Insula 47 5.86 —28 22 —4*
Sub-solar 47 5.00 30 24 0*
Subcortical
Red nucleus 0 4.89 —4 —24 —10*
Cerebellum
Cerebellum 0 6.27 —6 —74 —26* 6.53 10 —74 —26*
Lobule VIla 0 4.22 34 —66 —50*
Cerebellar tonsil 0 4.16 2 —54 —38
Non-autistic group
Frontal lobe
Middle frontal gyrus 0 4.74 36 60 8
8 9.51 30 8 56*
44 11.08 —48 24 34*
45 7.13 50 28 34
Inferior frontal gyrus 44 8.33 46 8 28*
47 591 30 26 —2*
48 9.59 —48 26 24*
48 10.61 —44 16 30*
Parietal lobe
Superior parietal lobule 7 10.69 18 —66 58
Occipital lobe
Inferior occipital gyrus 18 18.14 28 —94 —4*
19 15.26 -32 —88 —10*
Insula
Sub-solar 47 7.08 —28 26 —2*
Subcortical
Pallidum 0 5.11 16 -2 0
Caudate nucleus 0 5.06 —10 8 12*
Globus pallidus 0 4,77 —16 -2 0
Red nucleus 0 4,05 —4 —22 —10 3.67 6 —22 -8
AUT > non-AUT
Occipital lobe
Superior occipital gyrus 19 3.96 —16 —82 26
Middle occipital gyrus 18 3.53 —22 —90 20
Non-AUT > AUT
Frontal lobe
Middle frontal gyrus 9 4.44 —42 20 34
Parietal lobe
Precuneus 0 4.10 -2 —58 38
7 4.07 2 —56 54

" Clusters significant at p < 0.05, FWE corrected.
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Table 4
PPI analyses Based on common areas of activity (conjunction seeds) (p < 0.001 unc.).
Brain region BA Left Right
T scores X Y Z T scores X Y Z
Right inferior frontal gyrus seed (52 10 28)
Non-AUT > AUT
Frontal lobe
Middle frontal gyrus 44 5.10 —32 10 34
Superior frontal gyrus 32 423 18 32 34
Precentral gyrus 6 3.78 —38 —4 40 4.05 32 —16 46
6 3.46 —36 —12 44
SMA 4 3.55 10 —20 60
4 3.42 2 —20 70
Paracentral lobule 4 3.73 —6 —30 60
Parietal lobe
Precuneus 5 3.82 —6 —42 60
0 3.78 4 —38 58
Supramarginal gyrus 42 3.68 —58 —44 24
Temporal lobe
Middle temporal gyrus 20 3.88 54 —36 —14
Fusiform gyrus 19 3.71 —32 —70 —18
Occipital lobe
Calcarine gyrus 17 3.78 4 —60 16
Cuneus 7 3.42 6 —78 40
18 3.40 10 —88 24
Insula
Posterior cingulate cortex 0 3.61 —6 —38 14
Cerebellum
Lobule VIla 0 5.07 —32 —56 —44
0 4.68 —24 —80 —26
0 3.94 —40 —70 —20
Lobule V 0 3.95 12 —40 —-12
0 391 14 —-32 —14
Cerebellar vermis Lobule VIIb 0 3.47 0 —70 —30
Subcortical
Caudate nucleus 0 5.90 20 0 24*
0 5.54 16 -8 22
0 534 18 —16 22
Hippocampus 20 4.23 28 —18 —16
Parahippocampal gyrus 28 3.82 16 0 —24
AUT > non-AUT
None
Left superior parietal lobule seed (—34 —46 50)
AUT < non-AUT
Frontal lobe
Middle frontal gyrus 44 3.96 —30 10 32
Superior frontal gyrus 6 3.62 24 —-10 58
Temporal lobe
Middle temporal gyrus 48 4.05 —48 —-20 —4
Occipital lobe
Calcarine gyrus 18 3.67 10 —78 2
Insula
Sub-lobar 48 3.89 —32 —24 14
Subcortical
Hippocampus 20 3.55 32 —8 —18
Cerebellum
Lobule Vila 0 3.87 —40 —70 —22
0 3.82 —4 —64 —36
Cerebelar vermis Lobule VIIb 0 3.58 0 —70 -30
AUT > non-AUT
None
Left inferior occipital gyrus seed (—32 —86 —10)
AUT < non-AUT
Frontal lobe
Middle frontal gyrus 44 4,72 —32 10 34
Inferior frontal gyrus 45 3.76 56 32 12
Parietal lobe
Precuneus 18 3.64 24 —60 20
Temporal lobe
Middle temporal gyrus 48 3.78 —48 —20 —6
Occipital lobe
Cuneus 19 4.25 —16 —84 38
Middle occipital gyrus 19 4,18 30 —-72 22
Superior occipital gyrus 19 3.72 22 —76 26
Calcarine gyrus 18 3.46 10 —70 4
17 3.46 8 —74 4
19 3.40 22 —-72 8

(continued on next page)
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Table 4 (continued)

Brain region BA Left Right
T scores X Y z T scores X Y z

Lingual gyrus 19 3.40 26 —54 -8
Subcortical
Caudate nucleus 0 4.01 —18 10 22

0 3.53 —16 14 16
AUT > non-AUT
Frontal lobe
Superior frontal gyrus 9 4.65 —18 54 42

9 439 —10 58 42
Middle frontal gyrus 9 3.65 —36 36 46

9 3.64 —34 40 44
Temporal lobe
Inferior temporal gyrus 37 3.66 62 —58 —6
Parietal lobe
Superior parietal lobule 7 4.15 20 —62 70
Occipital
Middle occipital gyrus 0 414 44 —88 8

" Clusters significant at p < 0.05, FWE corrected.

participants (autistic > non-autistic), as well as in non-autistic partici-
pants (non-autistic > autistic), were identified on the complexity con-
trast (Figural < Analytical < Complex Analytical), yielding seeds in the
left superior occipital gyrus, left middle frontal gyrus and left precuneus.

2.5.2.3. Psychophysiological interaction analyses (PPI). The modulation of
functional connectivity by task complexity was assessed using a PPI ap-
proach (Friston, 2011; Friston et al., 1997; Gitelman et al., 2003). Using a
6 mm radius sphere around each of the seeds, eigenvariates (reflecting
the mean activity of voxels showing maximum variance within the
sphere) were extracted for each participant, while adjusting for the ef-
fects of interest. Each extracted time series was then entered in a PPI
analysis model in order to form the interaction between the seed region
activity and task complexity (Figural < Analytical < Complex Analytical).
This step created 3 vectors: the interaction term, the volume of interest
(VOI) eigenvariate and the relative complexity contrast vector. First-
level analyses were then performed using the movement parameters
and the 3 vectors. Finally, 6 s-level factorial models, one per seed region,
were computed to illustrate the interaction between functional connec-
tivity involving the seed regions and task complexity.

3. Results

3.1. Behavioral data

The Group x Complexity ANOVA on accuracy revealed a significant
main effect of Complexity, F(2, 90) = 63.019, p < 0.001, but no signifi-
cant effect of Group, F(1, 90) = 0.964, p = 0.329, and no significant in-
teraction, F(2, 90) = 0.133, p = 0.876. Post-hoc comparisons confirmed
a lower accuracy for complex analytical (58.25%) problems than for fig-
ural (90.35%) and analytical problems (83.50%), both p < 0.001. The
Group x Complexity ANOVA on response times revealed a significant
main effect of Group, F(1, 90) = 14.047, p < 0.001, and of Complexity,
F(2, 90) = 55.185, p < 0.001, with no significant interaction, F(2,
90) = 2.242,p = 0.112. Autistic participants (12.52 s) were significantly
faster than non-autistic participants (17.29 s) by an average of 4.77 s.
Response times were longer for complex analytical (23.87 s) than for
analytical problems (13.03 s), p < 0.001, and analytical than figural
problems (7.82 s), p = 0.002 (see Table 2).

3.2. fMRI data

A linear contrast examining reasoning complexity (Figural <
Analytical < Complex Analytical) revealed an extended network involv-
ing frontal, parietal, occipital, cerebellar and basal ganglia regions, all as-
sociated with increasing reasoning complexity (Table 3). Entering
response times as a covariate in within-group analyses did not result

in any significant changes in the findings. Significant between-group
differences in the effects of complexity on task-related activity were re-
vealed in several areas. First, increased complexity-related activity was
observed in the left superior occipital gyrus and the left middle occipital
gyrus for autistic participants relative to non-autistic participants.
Second, non-autistic participants showed increased activity in the left
middle frontal gyrus (MFG) and bilateral precuneus, relative to autistic
participants (Fig. 2). Fig. 2C and D further illustrates that left MFG was
only recruited for complex analytical problems in autistic participants,
and that precuneus was not significantly recruited during the task in
the autistic group. These results suggest a stronger reliance on occipital
areas for autistic participants as task complexity increased.

3.2.1. Eye and head movement

The eye movement analysis showed similar levels of net saccade
density during the RSPM task between the autistic participants (3.96)
and non-autistic participants (4.44; t = 0.89, p = 0.38).

Head motion analyses did not reveal any significant between-group
differences. Similar mean displacement rates were observed in autistic
(0.032 mm/s) and non-autistic participants (0.038 mmy/s; t = 0.72,
p = 0.48). Similar mean rotation rates were observed in the two groups
(autistic group: 0.025°/s; non-autistic group: 0.036°/s; t = 1.28,p =
0.21). No significant differences were observed in the peak-to-peak
translations or rotations (all p > 0.05).

3.3. PPl analyses

3.3.1. Conjunction seeds

Conjunction seeds (right IFG (BA9), left SPL (BA7) and left inferior
occipital gyrus (BA18)) represent the common areas of activity in
both groups during the RSPM task. Their associated time series were
used in PPI analyses in order to assess how these key fluid reasoning re-
gions interact with other brain regions as complexity increases. Within-
group analyses in the autistic group revealed an interaction between the
frontal seed (right IFG) and the left IFG. The occipital seed showed an in-
teraction with frontal, temporal, occipital, parietal regions as well as the
cerebellum. Moreover, the parietal seed interacted with the left IFG, left
IPL, left angular gyrus, right postcentral gyrus and left cerebellum. The
within-group analyses in the non-autistic group showed interaction
between the 3 seeds and multiple regions in frontal, parietal, temporal
and occipital areas. A between-group contrast (AUT > non-AUT)
showed that autistic participants had greater connectivity than non-
autistic participants (p <0.001, unc.) between the occipital seed (left in-
ferior occipital gyrus) and areas in the left superior frontal gyrus, right
SPL, right middle occipital gyrus and right inferior temporal gyrus. In
contrast, non-autistic participants had greater connectivity than autistic
participants between all 3 seeds and multiple other regions involved in
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Table 5
PPI analyses Based on areas of maximal between-group differences in activity (maximum difference seeds) (p < 0.001 unc.).
Brain region BA Left Right
T scores X Y Z T scores X Y Z
Left superior occipital gyrus seed (—16 —82 26)
AUT group
Frontal lobe
Superior frontal gyrus 9 4,56 —18 50 42
Temporal lobe
Middle temporal gyrus 22 5.02 —68 —38 4
20 4.02 —56 —36 —-12
21 3.85 —56 -2 —18
Superior temporal gyrus 21 4.05 —56 0 —14
Occipital lobe
Lingual gyrus 19 3.88 22 —50 2
Calcarine gyrus 17 435 -2 —80 10 4,06 6 —76 16
18 4,64 14 —74 16
Superior occipital gyrus 18 4,62 —14 —98 24
18 4.51 —16 —88 24
Cuneus 18 414 —4 —-92 26 4.16 4 —88 22
Subcortical
Parahippocampal gyrus 37 3.89 —26 —50 0
19 5.56 28 —56 0
Non-AUT group
Frontal lobe
Middle frontal gyrus 10 4,10 —38 56 4
9 431 26 30 38
4.22 30 28 48
Precentral gyrus 6 5.88 24 —16 78
Postcentral gyrus 4 5.72 42 —20 46
4 5.20 10 —38 80
Superior frontal gyrus 9 443 —12 34 46
8 3.85 16 24 56
11 3.71 —22 54 4
Inferior frontal gyrus 38 421 —40 24 —14
45 4.02 42 30 2
47 4.09 —36 30 0 3.66 48 18 —14
47 3.67 —32 32 0
SMA 6 4.17 8 0 68
Middle orbital gyrus 47 3.94 —34 44 -8
Middle cingulate cortex 24 3.92 8 16 30
0 3.82 12 2 36
0 3.77 12 6 36
Superior medial gyrus 10 3.83 8 62 4
10 3.67 10 64 8
Temporal lobe
Middle temporal gyrus 48 7.15 —48 —20 —6*
21 5.56 66 —40 —4
21 4.11 —62 —20 —-12 5.44 56 —38 -8
21 3.71 —58 —26 -8
22 3.93 64 —48 12
20 4.02 —58 —38 —10
22 3.93 —54 —10 —-12
21 3.66 —52 —28 -8
Superior temporal gyrus 22 4.89 —64 —22 4
41 4.02 48 —32 10
48 4,63 —38 —26 6
20 3.79 40 10 —28
22 3.68 —66 —40 18 3.75 56 -2 —6
22 3.67 62 —10 -2
Fusiform gyrus 19 422 —38 —70 —18
Heschl’s gyrus 41 4.21 36 —32 12
Inferior temporal gyrus 20 3.82 52 —-12 —28
20 3.72 48 —-12 —30
Parietal lobe
Angular gyrus 39 7.40 —44 —64 34*
Middle cingulate cortex 5 3.73 —16 —34 44
Supramarginal gyrus 42 3.71 —66 —32 20
Occipital lobe
Calcarine gyrus 17 7.63 8 —66 14*
Subcortical
Thalamus 0 4.86 —12 —12 6 5.84 20 —14 10
0 3.66 —18 —12 -2
Putamen 0 4.64 —30 —12 —4
Amygdala 34 3.80 28 2 —16
Cerebellum

(continued on next page)
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Table 5 (continued)
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Brain region BA Left Right
T scores X Y z T scores X Y z
Lobule VIla 0 5.45 —36 —48 —46 4.50 46 —50 —40
0 4.68 —30 —-72 —38 4.16 36 —72 —44
0 431 —16 —74 —30 4,06 32 —76 —38
0 3.69 40 —70 —36
0 4.75 28 —56 —46
Lobule VI 0 4.22 —22 —50 —30 4.52 28 —62 —28
0 3.70 —18 —52 —22 3.67 44 —70 —36
0 3.66 —30 —36 —36
Lobule IX 0 4.23 6 —50 —48
Lobule V 0 3.91 —26 —34 —34
0 3.68 —12 —50 —20
Left middle frontal gyrus seed (—42 20 34)
AUT group
None
Non-AUT group
Frontal lobe
Precentral gyrus 6 5.67 16 —20 72
6 5.65 28 —22 76
4 3.69 44 —18 52
Inferior frontal gyrus 44 523 —44 20 22 4.07 48 14 32
44 432 —34 24 28 4.00 40 8 30
Superior frontal gyrus 6 4,59 26 22 62
6 3.86 22 6 46
6 3.79 28 8 70
Middle frontal gyrus 45 413 46 34 28
45 3.69 46 40 22
Paracentral lobule 4 3.66 —16 —28 80
Parietal lobe
Angular gyrus 7 553 38 —66 42
Postcentral gyrus 4 5.57 12 —36 78
Precuneus 0 5.57 12 —58 42
Inferior parietal lobule 7 3.84 —36 —62 52
40 3.68 —38 —-50 40
40 425 —44 —54 44
Subcortical
Caudate nucleus 0 5.69 —12 —4 18 6.73 20 —14 20
0 5.10 20 2 18
Pallidum 0 4.45 —14 4 -2
25 3.78 —12 0 —6
Putamen 48 3.80 30 —18 8
Cerebellum
Lobule [-1V 0 443 -2 —46 —14
0 3.87 —10 —44 —24
Lobule VI 0 434 28 —62 —34
Lobule VIla 0 3.69 30 —76 —44
Lobule VIIla 0 3.68 —34 —46 —50
Left precuneus seed (—2 —58 38)
AUT group
None
Non-AUT group
Frontal lobe
Middle frontal gyrus 6 448 —34 4 54
Superior frontal gyrus 6 4.05 26 4 46
Inferior frontal gyrus 48 3.70 —52 20 24
Middle orbital gyrus 47 3.69 —38 46 —6
Parietal lobe
Inferior parietal lobule 40 4.10 —52 —44 50
40 3.98 —50 —50 44
Temporal lobe
Fusiform gyrus 20 4.06 —28 -2 —38
19 4.22 34 —72 —12
Superior temporal gyrus 20 3.79 42 12 —26
22 3.91 —64 —26 6
22 3.66 —64 —48 20
Middle temporal gyrus 22 3.90 —62 —38 6
21 3.67 —62 —32 2
Subcortical
Pallidum 25 5.44 12 4 —6
0 3.72 22 -8 0
Putamen 0 3.85 —12 10 —4 424 18 12 0
Thalamus 0 436 22 —18 2
0 3.87 16 —22 0
0 3.77 8 —24 -2
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Brain region BA Left Right
T scores X z T scores X Y z
Cerebellum
Lobule VIla 0 3.85 50 —52 —40
0 3.84 30 —62 —34
0 3.69 12 —78 —26
Lobule VI 0 3.81 26 —60 —32
0 3.71 28 —64 —30
Lobule V 0 3.68 —6 —50 —10
Lobule -1V 0 3.65 14 —38 —28

reasoning (frontal, parietal, temporal and occipital regions) as complex-
ity increased (Table 4). Overall, non-autistic participants exhibited more
complexity-related connectivity than autistic participants in the select-
ed frontal, parietal and occipital seeds (Fig. 3), demonstrating that autis-
tic individuals exhibit reduced modulation of connectivity by reasoning
complexity in those areas.

3.3.2. Maximum difference seeds

In order to explore group-specific patterns of connectivity in relation
to complexity, maximum difference seeds were used to identify the key
areas associated with reasoning complexity that are unique to each
group in within-group analyses. In the autistic group, reasoning com-
plexity modulated connectivity between the occipital seed (left superior
occipital gyrus) and circumscribed frontal, temporal, occipital and sub-
cortical regions (Table 5). However no interaction involving the frontal
and precuneus seeds were seen. In the non-autistic group, reasoning
complexity modulated connectivity between each of the 3 seeds and
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an extended network of cortical and subcortical regions (Fig. 4). This
second set of PPI analyses also suggests less extended network interac-
tions involved in reasoning in autistic individuals relative to non-
autistic individuals.

4. Discussion

Our objective was to investigate how task complexity modulates the
level of activity and connectivity among brain regions during fluid rea-
soning in autism. While both groups showed similar accuracy in solving
RSPM problems, autistic participants performed faster than non-autistic
participants at all complexity levels, as we previously reported in a
study identifying occipital cortex as being more active in autistic indi-
viduals during matrix reasoning (Souliéres et al., 2009). Here we
demonstrated that this increased activity was actually modulated by
reasoning complexity. Moreover, while autistic participants exhibited
less modulation of fronto-parietal activity and connectivity as reasoning

B.
FIGURAL ANALYTICAL COMPLEX
ANALYTICAL
FIGURAL ANALYTICAL COMPLEX
ANALYTICAL
FIGURAL ANALYTICAL COMPLEX
ANALYTICAL

Fig. 2. Complexity contrast. A. Non-autistic > autistic contrast (in blue): increased activity in left middle frontal gyrus and bilateral precuneus as complexity increased. AUT > non-AUT
contrast (inred): increased activity in the left superior occipital gyrus and the left middle occipital gyrus as complexity increased (p < 0.001 unc, K = 50 contiguous voxels). B, C, D. Percent
signal change in the three regions of between-group differences displayed for each task complexity level, in the autistic group (in red) and non-autistic group (in blue).
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Parietal seed Frontal seed Occipital seed
(Left SPL) (Right IFG) (Left Inf. Occ. Gyrus)

Fig. 3. PPl analyses based on common areas of activity (conjunction seeds). Non-autistic > autistic contrast (in blue): As complexity increased, non-autistic participants exhibited a wider
increase in functional connectivity with other elements of the reasoning network for the 3 regions of interest, in comparison with autistic participants. Autistic > non-autistic contrast (in
red): As complexity increased, autistic participants showed a higher functional connectivity than non-autistic participants only for the occipital seed, for which they displayed an increase
in connectivity between the left inferior occipital gyrus (seed) and areas in the left superior frontal gyrus, right superior parietal lobule, right middle occipital gyrus and right inferior tem-
poral gyrus (p < 0.001, unc.). Green spots indicate seeds.

AUT seed Non-AUT seeds
(Left Sup. Occ. Gyrus) (Left Mid. Front. Gyrus) (Precuneus)

AUT group NON-AUT group

7

Fig. 4. PPI analyses based on areas of maximal between-group differences in activity (maximum difference seeds). Non-autistic participants (in blue) demonstrated a wide connectivity
with other elements of the reasoning network for the three seeds. Autistic participants (in red) only showed functional connectivity for the occipital seed, which exhibited an interaction
with frontal, temporal, occipital and sub-cortical areas (p < 0.001, unc.). Green spots indicate seeds.
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complexity increased, connectivity involving occipital areas was more
consistently modulated by task complexity in autistic than non-
autistic participants. Occipital regions are not only known for their
involvement in visuospatial processes, but also in the identification of
correct answers with abstract rules (Skosnik et al., 2002), number sub-
traction and addition (Benn et al., 2012). The greater use of these re-
gions as complexity increases in a reasoning task has an equivalent in
typical individuals, albeit to a lesser extent (Goel, 2007; Souliéres
et al,, 2009; Yamada et al,, 2012).

In contrast, compared to autistic participants, non-autistic partici-
pants more strongly engaged a combination of regions related to verbal
and visuospatial processing as task complexity increased. The left mid-
dle frontal gyrus is known to be involved in inner speech (Geva et al.,
2011; Jones and Fernyhough, 2007), working memory (Liakakis et al.,
2011) and other verbal processes (Prado et al., 2013). The precuneus
in both hemispheres is involved in visuospatial imagery, episodic mem-
ory retrieval and self-referential processing (Cavanna and Trimble,
2006). In this group an occipital to frontal/parietal activation shift is
seen when participants inhibit perceptual information to engage in log-
ical reasoning, and by extension with increasing reasoning complexity
(Houde et al., 2000). The present results suggest that this shift might
not be as visible in autistic individuals, as perceptual processes able to
support this type of reasoning are engaged more strongly. Thus, we
suggest that autistic individuals rely more specifically on visuospatial
processes to resolve complex matrices whereas non-autistic individuals
rely more prominently on a combination of verbal and visuospatial
processes.

Our hypothesis that autistic participants would exhibit higher
cortical connectivity in the posterior parts of the reasoning network
as task complexity increased, compared to non-autistic participants,
was partially confirmed. Indeed, a stronger long-range functional
connectivity was identified in autistic participants, relative to non-
autistic participants, between the left inferior occipital gyrus and
the left superior frontal gyrus and the right SPL as task complexity in-
creased. The possibility of enhanced connectivity between visual as-
sociative areas and other parts of the brain, even the most distant,
has been raised by several prior studies (Leveille et al., 2010;
Keehn et al., 2013; Shen et al., 2012; Supekar et al., 2013), views at
odds with dominant accounts of reduced long-range connectivity
(Dichter, 2012; Just et al., 2012). In combination with the demon-
stration of enhanced activity associated with visual processing in
many contexts in autism (Samson et al., 2012), we believe that au-
tism is characterized, not only by enhanced perceptual performance,
but also by enhanced role of perceptual processing in higher order
cognitive processes (Mottron et al., 2013).

By contrast, none of the analyses involving seeds in prefrontal cortex
revealed increased functional connectivity in autistic participants rela-
tive to non-autistic participants. To the contrary, autistic participants
generally exhibited less connectivity in the anterior elements of the
network, a finding also reported by previous studies (Sahyoun
et al., 2010; Yamada et al., 2012). McGrath and colleagues also
obtained similar results in a mental rotation task, as they observed
a general decrease in functional connectivity as task complexity
increased in autistic individuals, the visual cortex being the only
exception to this decrease (McGrath et al., 2012). This decreased
modulation of the fronto-parietal network could suggest that autistic
individuals are less influenced by task complexity than non-autistic
individuals, as they showed less change in the network’s connectiv-
ity as complexity increased, while maintaining equal accuracy.
Considering that both groups showed similar accuracy, and autistic
individuals responded more quickly during the task, we cannot
conclude that our results are best interpreted as “altered” network
activity in the network as suggested by Yamada et al. (2012). Rather,
they may reflect lower complexity-induced modulation of the net-
work in autistic individuals, with potential positive consequences
on performance.

As the enhanced perceptual functioning (EPF) model suggests, autis-
tic cognition is, among other elements, characterized by a stronger en-
gagement of perceptual processes and a different equation between
neuronal engagement and task difficulty (Mottron et al,, 2013). Our re-
sults of a stronger engagement of visuospatial processes and lower
modulation of the reasoning network as complexity increases during
reasoning directly contribute to this model and add to the body of
work describing a stronger engagement of perceptual processes in
higher cognition in autistic individuals.

4.1. Limitations and future directions

This study focussed on the influence of visuospatial processes on
fluid reasoning in autistic individuals and may not reflect all the cogni-
tive process involved in other aspects of intelligence. Also, we chose to
use a liberal threshold (p < 0.001 uncorrected) in order to observe the
full extent of between-group differences in the cerebral activity and
connectivity underlying reasoning, as a more stringent threshold may
smooth out some interesting differences. Finally, our sample was com-
posed of participants with measured intelligence in the normal range
only; hence, these results may or may not apply to the whole spectrum
of autistic intelligence.

Nevertheless, these results provide us with a better understanding of
the atypical, yet not dysfunctional, reasoning abilities of autistic individ-
uals (Dawson et al.,, 2007). Indeed, the relative advantage of autistic in-
dividuals at the RSPM might be linked to a more efficient recruitment of
posterior brain regions analyzing the visuospatial information provided
in the problems. Further studies could explore the effect of complexity
in other domains of autistic cognition, as well as how the modulation
of cognitive processes in relation to complexity occurs in autistic indi-
viduals with lower reasoning abilities. This could lead to the application
of these findings to optimizing learning and work environments for
autistic individuals.
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