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1. INTRODUCTION 

The study of sums of independent random variables defined on a tree 
has not been systematically treated in the literature, except for the case 
of the random tree generated by a Galton-Watson process. Harris [2, 
p. 751 conjectured that if a supercritical Galton-Watson process performs 
a random walk, then conditional on nonextinction, the proportion of 
particles of the nth generation lying in the interval (- CO, np + axnl/s) 
converges in probability to 4(x), the normalized normal distribution. 
Here, p and a2 denote, respectively, the mean and the variance of the 
random walk. Ney proved, for a slightly different model, that this is 
indeed the case. In [8] he dealt with Kolmogorov [7] binary cascade 
problem, and in [9] he extended his results substantially. Kharlamov [6] 
has used similar techniques to obtain limit theorems in the theory of 
multitype age dependent branching processes. 

Joffe conjectured in [3] that the aforementioned convergence holds 
with probability one. In [4] we proved that conjecture for the binary tree. 
The present paper is the beginning of a systematic study of the sums 
of independent identically distributed random variables taken along each 
branch of a given tree and among other things proofs are given of results 
announced in [5]. 

In Section 2, we introduce the notation to be used in the description 
of trees. A crucial role is played by the function OI(~, k) which counts the 
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number of couples of paths of length n, having in common some subpath 
of precise length k. In Section 3, we describe the model. Section 4 
contains nine lemmas of a computational nature from which the theorems 
of Section 5 immediately follow. In Section 6 we apply one of those 
theorems to branching random walks to prove the conjecture stated in 
[3], assuming for the sake of simplicity that nonextinction occurs with 
probability one. 

The random characteristic function of the random point distribution 
is used systematically; this leads to substantial simplifications on the 
second order methods used in [6, 8, and 91. The decomposition in (3.9) 
is essential to our method. Theorems 1 and 3 of Section 5 give very 
general conditions for the convergence with probability one of the 
random point distribution to the normal distribution. These conditions 
may be difficult to apply; for this reason we derive by the same techniques 
the more specialized Theorems 2 and 4. Theorems 3 and 4 require fewer 
assumptions on the tree and more assumptions on the tail of the random 
variables than Theorems 1 and 2. It would be interesting to have an 
example of a tree for which the conclusion of Theorem 3 holds for 
random variables having moments of sufficiently high order but fails 
for some random variable having first and second moments only. 
Theorem 5 gives a necessary and sufficient condition on the tree for 
mean square convergence. Theorem 5 indicates limitations to the exten- 
sion of Theorems 1 and 3. It would also be interesting to find an example 
of a tree for which mean square convergence holds but not almost 
everywhere convergence. 

In Section 6 it is shown that for the random tree of a Galton-Watson 
process the 01(n, k), properly normalized, form a martingale; this easy 
observation seems to have many applications which we hope to investigate 
in the future. 

2. NOTATIONS AND DEFINITIONS 

For the purpose of this paper a tree (Y, <) is a set Y with a partial 
order < satisfying the following conditions: 

(i) Each nonempty subset of Y has an infimum in Y. Let 
0 = inf Y. 

(ii) For each DI E Y, the set P, = (@ 1 0 < p 6 IX> is finite and 
totally ordered by <. 
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(iii) For each positive integer n the set Y, = {a 1 1 P, 1 = n} is 
finite and 1 Y, ) > 1. (For any set A, j A 1 denotes the cardinality of A.). 
Let 5, = / Y,j. 

Elements of Y, will be referred to as paths of length n or members of 
the nth generation. Define ol(n, k) by 

a(n, k) = 1 ((7, 7’) E Y, x Y, ; 7 A 7’ E Y,}I, (2.1) 

where as usual A denotes the inf. Clearly we have 

For any T E Y, we define the tree (Y, <) where 

r7 = {cd 1 T  < a], (2.3) 

clearly Y inherits the structure of a tree where T plays the role of 0. 
We denote by ol,(n, k) the corresponding quantities to (2.1) for Y, 
similarly let 

Y,T = YT n Y, and M4 = I YnT I. (2.4) 

We have the following relations, where k denotes the length of T: 

n-k 
(2.5) 

(2.6) 

Let p,,,, = (~(n, k)/f2(n)). We say that the tree Y is regular if: 

(2.7) 

Let g be a nonnegative nondecreasing function defined on the integers: 

(a) We say that the tree Y is g-regular if it is regular and if: 

hm i g(k) p(~, k) = f g(k)p, < co. 
n+= k=;O I;=0 

cw 
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(b) We say that the tree Y is weakly g-regular it 

12 k=O 
(2.9) 

A g-regular tree is obviously weakly g-regular. 
For any integer m > 2, we define the m-adic tree to be the one for 

which all [,(k + 1) = m where k denotes the length of r. For the 
m-adic tree we have 

a@, k) = (m - 1) WP-k-1 if 0 6 K < n, (2.10.1) 
a(n, n) = mn, (2.10.2) 
p(n, k) = p, = (m - 1) m-k-l if k < n, (2.10.3) 
p(n, n) = m-n. (2.10.4) 

In particular the m-adic tree is, therefore, g-regular for any function 
g(k) < Mck with c < m. 

3. DESCRIPTION OF THE MODEL 

We consider a family of independent identically distributed random 
variables X, indexed by Y - 0. To simplify notations and statement of 
the theorems, we assume X’s to have mean 0 and variance 1. We denote 
by Q(t) the characteristic function of X. From the central limit theorem 
we know that 

lim ~p~(&.-~/~) = e+*12. 
?l+m 

For each fixed t  and n sufficiently large, v(tn-1/2) will be bounded away 
from 0 and this will be always understood even if not mentioned later. 

At each path r of length n we associate the random variables 

s, = 1 43 > (3.2) 
0<8<7 

s * z 
7 

s n-112 
T .  

The finite set {S,*}TEYn defines a random point distribution on the real 
line. By assigning at each point the weight (l/t,), we define a random 
probability measure 

where V, denotes the characteristic function of the Bore1 set B. 
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The random characteristic function ‘Y,(t) of p,, is given by 

Y%(t) = + c eits7*. (3.4) 
n 7EY” 

Let Pk be the u-field generated by the X, , -r E (JF=r Yj . We define the 
following useful quantities where k < n: 

u,Z(t) = E 1 Yn(t) - qP(t?z-l/2)(2, (3.5) 

&k.(t) = Yn(t) - EV&) I PJ (3.6) 

Bn,k(t) = E(Yn / Sk) - qytn--1/y, (3.7) 

C,,,(t) = p(tn-v) - e-t”/2. (3.8) 

We want to study the convergence of Y/n(t) to the characteristic 
function e-t2/2 of the normal distribution. 

Clearly we have 

I Yn(t> - @” I G I A,,, I + I B,,, I + I G,, 1. (3.9) 

4. SOME LEMMAS 

The following lemmas hold. 

LEMMA 1. EYJt) = p~“(t/n”“). 

LEMMA 2. or&“(t) = I y(t/d’2)12’g c;=,p(% k)(l 9(tln1’2)l-2k - 1) 

LEMMA 3. E(YJt)] Fk) = l/f, z:,,yk eif~r+‘2s~~7(n) $-k(tn-1’2). 

LEMMA 4. E j A’,,k j = l/,$,2 ) ~(tn-1i2)j2cn-k) Z:Z; cx(n, k + I) x 
(I fjD(tn-ly2~ - 1). 

Proofs. Lemma 1 is obvious. To prove Lemma 2, note that 

an2(t) = EY-‘,pn - 1 +z.-l~z)~zn, 

then 

EY,‘Y, = & n Ir,7,zliXyn Ee’t(s,*--s:‘). (4.1) 
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Observe that if k denotes the length of 7 A r’ the first kX’s in S,* - S$ 
cancel, and we are left with the difference of two sums of n - k independ- 
ent random variables. Each term in the sum of (4.1) is going to con- 
tribute to / ~(tn-~/~)/~(~-~). Using the definition of ol(n, k) in (2.1) 
Lemma 2 is easily proved. 

To prove Lemmas 3 and 4, note that we can express YJt) as: 

(4.2) 

where 
y, = eitn-‘ieS,TT and T, = 1 eitd’a(sT’-s,)a 

(4.3) 
7'EYZ 

Observe that eitn-“gs 7 and T, are independent random variables and that 
the T, are jointly independent random variables (T E Y,). It follows that 
the Y, are conditionally &-independent. Using this remark, Lemma 3 
is proved by taking the conditional expectation on 9k in (4.3) and 
observing that t7(n) is the cardinality of Yn7. 

To prove Lemma 4 is now quite straightforward. Using (4.2) and 
proceeding as in the proof of Lemma 2 we have 

and 

E 1 A,,, 12 = + c c Eeitn-“2’s~-s~“(T, - ET,)(li”,, - ET/). (4.4) 
12 TEY,& T’EYk 

From the previous remark, if we take first the conditional expectation 
on & in (4.4), all the terms with T # T’ vanish in the sum, and we are 
left with 

E / A,,, j2 = & c E 1 1’ - ET, 12. (4.5) 
n iEYX 

To compute E 1 T, - ET, I2 we proceed as in the proof of Lemma 2 
but working this time with the family YnT. We obtain 

n-k 

E ( T, - ET, I2 = 1 +z-~~~)[~(~-~’ 2 c&z - k, E)(I I@+/~)(-~” - 1). (4.6) 

Substituting (4.6) in (4.5) and using (4.4) we have proved Lemma 4. 
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LEMMA 5. Let ck(n) = cyzk (j]n)(~~(tz,j)~~~~). Let k, 7 co in such a 
way that g, c,,,(n) < 03 then An,&.(t) converges to zero with probability 
one. 

Proof. Using the expansion F(tn-l12) = I - (t2/2n) + 0(1/n) ure 
obtain from Lemma 4 

= $ 1 ~(tn-1/2)12(n-k) f i$ 
4n, j)(t’ + o(W)). 

n 1=k 

The lemma follows by using the Borel-Cantelli lemma. 

LEMMA 6. If the tree is weakly g-regular with g(k) = kl+a, OL > 0, 
then Lemma 5 holds if we take k, 3 log@ n with j3 > (l/a). 

Proof. From ~:j”=ljl+ap(n,j) 3 ka xTzkjp(n, j) we obtain that there is 
a constant C such that 

the lemma follows from the convergence of the series 1 1 /n logy n 
with y > 1. 

LEMMA 7. Let d,(n, k) = P(( Xl + *.. + X, j > nl&). 
For any sequence k, increasing to irzfinity such that x, d,(n, k,) ( CD, 

for any E > 0, we have Bn,k, + 0 almost surely. 

Proof. From (3.7) and Lemma 3 we have 

B,,, = ~$-“(tn-l/~) $ Ts (e.itn-l’zsT - 1) &(n). (4.7) 
le 

To show that Be.,.% goes to zero it is clearly sufficient to prove that 

q,,Jt) = $ C E?~~~~“~T[,(~) goes to one. 
n TEY, 

But v,,,.(t) is the characteristic function of the random measure 

D,,,(B) = l/E, ILyle V/B(S,n-1/2) e,(n), where Va is the characteristic 
function of the Bore1 set B. The lemma will be established if we can 

607/10/3-6 
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prove that, with probability one, the sequence D, k converges weakly 
to &, the probability measure which assigns probabi%y one at zero. Next 
observe that 

ED,,,(B) = P(X, + ..’ + Xkln1/2 E B). (4.8) 

Let B,+ = [E, co) and B,- = (- 00, -e]. We have 

and 

P(D,,,(B,-) < a) < +. 

It follows from the Borel-Cantelli lemma that with probability one 
D,,JBF+) -+ 0 and Dn,JBe-) --t 0, the lemma follows easily from 
elementary properties of weak convergence. 

COROLLARY. If EX2 logy 1 X 1 < co with y > 1 and zy k, ,< C log n 
whereO<@<(y- 1)/3thenB n,k, goes to zero almost surely. 

Proof. Is easily established from the lemma and the following 
computation 

d(n, 4 = P(l 4 + ... + X, 1 > d2) < kP(1 X j > (d2/k)) 

< Ck3[c2n log’(d2/k)]-1 

as soon as en1J2/k is larger than one. 

Remark. The expression in (4.8) does not involve the structure of the 
tree, so we are losing here information by using the lemma of Borel- 
Cantelli. This is why we have to require more assumptions on the 
moments of X in order to use the lemma. The next lemma will avoid 
this argument at the price of some assumptions on the tree. 

LEMMA 8. If Y satisjies the following two conditions (i) Y is weakly 
g-regular for g(k) = k; 

(ii) (” + B 
.a. + t&z) -+ 0, for some sequence k, t GO. Then 

n,k,, + 0 almost surely. 
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Proof. From (3.7) and the inequality 1 eit - 1 / < 1 t /, we obtain 

(4.9) 

We majorize / S, 1 by CaG, \ X, j, regrouping all the terms in X, we 
easily obtain from (4.9) 

Using the Cauchy-Schwartz’s inequality we obtain 

which can be expressed as 

(4.10) 

Note that by (2.3) and (2.4) we have 

The previous inequality and the assumptions of the lemma imply that 
M n,k, is bounded; so is Nn,k which by the strong law of large numbers 
converge almost surely to 6ne. Hence, the lemma results from the 
decomposition in (4.10). 

LEMMA 9. If YJt) -+ ept212 almost surely for each t then with probabil- 
ity one pa converges weakly to the normal distribution. 

Proof. The proof is quite standard, and a brief sketch is given here 
for the sake of completeness. Let A = {(t, w) 1 !Yn(t, 0) + e-12/2} and 



410 JOFFE AND MONCAYO 

A,, A, be the t and w sections of A. Let p be the Lebesgue measure on 
the real line R. By Fubini theorem 

where VA, and VA, are the characteristic functions of the sets A, and A, , 
respectively. Hence, p(A,) = 0. The lemma results then from elementary 
property of weak convergence of measure and the Fourier inversion 
formula. 

5. THEOREMS FOR RANDOM WALKS ON TREES 

Now we have the machinery to obtain immediately the following 
theorems. 

THEOREM 1. Let Y be a weakly g-regular tree with g(k) = k and 
ck(n) be as in Lemma 5 of Section 4. Assume that there is an increasing 
sequence k, f co such that 

(4 C c&-9 < ah 

(b) %--f 0, 

(4 
6 + ... + Ire, - o 

7 n 

then pn converges weakly to the normal distribution with probability one. 

THEOREM 2. If Y is weakly g-regular with g(k) = kl+&, 01 > 0 and 

if (El *** c,,Jn) -+ 0 with k, > 1ogB n for a fl, /I > (1 /a) then pn converges 
weakly to the normal distribution with probability one. 

THEOREM 3. Let c,Jn) b e as in Lemma 5 and d,(n, k) be as in Lemma 7 
of Section 4. If there is a sequence k, such that 

(4 1 ck,(n) < cc, 
(b) cd&z, k,) < rx) for all E > 0, 

then pa converges weakly to the normal distribution with probability one. 
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THEOREM 4. Let EX2 log/ 1 X 1 < CO with y > 1, and assume the 
tree to be weakly g-regular with g(k) = kl+h and 01 > 3/y - 1, then pCLn 
converges weakly to the normal distribution with probability one. 

THEOREM 5. A necessary and suficient condition for the convergence 
in mean square of Y,(t) to e-t2/2 is that as ngoes to infinity 

Proofs. To prove the first four theorems, we show first that for each t, 
!PVL( t) converges almost surely to e- 1212 and then we conclude by Lemma 9 
of Section 4. Theorem 1 is then a consequence of Lemmas 5 and 8 of 
Section 4 and of formula (3.9). Th eorem 2 follows from Theorem 1 and 
Lemma 6 of Section 4. Theorem 3 is immediate from the Lemmas 5 
and 7 of Section 4, while Theorem 4 is an easy consequence of Lemma 6 
and the corollary of Lemma 7 of Section 4. 

To prove Theorem 5 use Lemma 2 of Section 4 and the expansion 
y(tn-1/2) = 1 - (t/2n) + c(n) with c(n) --f 0 as n goes to infinity. 

6. GALTON-WATSON TREE WITH MEAN LARGER THAN ONE 
AND FINITE VARIANCE 

For a detailed reference of Galton-Watson process see Harris [2] or 
the forthcoming book of Athreya and Ney [l]. We can view a Galton- 
Watson process as a random tree in which the number of branches 
f,(n + I), where n is the length of T, are independent identically 
distributed random variables which are defined on a probability space 
(Sz, 9, P) and take on nonnegative integer values; we will assume here 
that the mean m = Et7(n + I ) is finite and larger than one and the 
variance o2 is finite. In order to simplify matter and to avoid to have to 
condition on nonextinction we will also assume that P(t,(n + 1) = 0) = 
0. We call Sn the u-field generated by 4,( j + 1) for j = 1, 2,..., n - 1, 
where j is the length of -r. 

In this case ol(n, k) for k = 1, 2 ,..., n, f,(n), t(n) a.s. o are random 
variables and from formula (2.1) we easily established the following 
relations, where V,,, is the characteristic function of the set appearing 
in (2.1): 
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for K = n, 

and 

fork=n+I, B(~C+I,~+~)=S~+I* (6.3) 

Taking conditional expectations with respect to 99% we obtain the 
following. 

LEMMA 1. For k ,<n- l,E{cu(n+ 1,K)/9’J=m2~(n,rZ); 

for k = n, E{,(n + 1, ?z) ) S,} = (u” + ?n2 - m) ol(n, n); 

for k = n + 1, E{cu(n + 1, n + 1) 1 9Jm> = m& a.s. (w), 

from which the next lemma follows after taking expectations. 

LEMMA 2. For k < n - 2, E{ol(n, k)) = m2+-k--2($ + m2 - m); 

for k = n - 1, E{or(n, n - l)} = (~2 + m2 - m) ma-l; 

for k = n, E{ol(n, n)} = mn. 

In particular for k fixed and n 3 k + 2, (ar(n, k)/m21t) is a martingale with 
respect to 9Ym . 

Proof. By lemma 1: if k < n - 2, then 

q,+, k)} = ,9(n-k-2)~{4,(~ + 2, k)) = m2(~-k-2)m2E{oI(k + 1, k)) 

= m2(7+-k-2)m2(~2 + m2 - m) E(a(k, k)} 

= m2(+k-2)m2(~2 + mz - m) mk, etc. 

Let j?, = l/m2” &,,g(k) ol(n, k) where g is a nondecreasing and 
nonnegative function and g(k) < Mck for k = 0, 1, 2,... with c < m, 
then we get the following lemma. 

LEMMA 3. {& 3 ‘%&=IA... is submartingale, and since sup,E(&) < CQ 
it follows by the submartingale convergence theorem that /I, + /3 a.s. (w) 
where /I is an a.s. (w) jinite random variable. 
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Proof. By Lemma 1, 

= -& “t’g(k) mqn - 1, k) + g(” - 1)(u2 + m2 - m) L-1 +.&> mL,l 
I k=O 

= -& /kl g(k) m%(n - 1, k) + g(” - 1)(u2 - m) L-1 + g(n) mL/ 
k=O 

>, fine1 a.s. (w) since g is nondecreasing. 

Also by Lemma 2 

EiL = & nf2 g(k) &Jn-y02 + $ - m) 
k=O 

+ 
mn-l(u2 + m2 - m) 

n12n 
& - 1) Lg(n)$ 

and by hypothesis we obtain 

n-2 

Ej?, < M c ckm-k-2(u2 + m2 - m) 
ASO 

+ MC*-l(02 + m2 - m) rn+-l + Mcnm-n 

< M(n - 1) m--4(u2 + m2 - m) + M(u2 + m2 - m) + M < GO, 

from which Lemma 3 follows. 

GALTON-WATSON RANDOM WALK. Let {Xn,m}n,m=l 23 be a se- , 3 . . . 
quence of independent identically distributed random variables, defined 
on a probability space (a’, T, P’), having mean zero and variance one. 
(Sz, 9, P) is the probability space on which the previous random tree is 
defined and let (6, @:, P) be the product probability space of Sz and Q’. 
Next we define the random variables (XT%} defined on (8, g, P) by 
X,((w, a’) = xn,&)(J)> which we call a Galton-Watson random walk 
and which describes random walk of particles reproducing according to 
a Galton-Watson process. 

THEOREM. For a Galton-Watson random walk we have that {pm} 
converges weakly, with probability one, to the standard normal distribution. 



414 JOFFE AND MONCAYO 

Proof. It is enough to check that the conditions of Theorem 2 of 
Section 5, namely: 

(1). SUPlz CLI @+qa(% k)lL2) < a, 

(2). (l/n)(L + E2 + *** + tkn) --f 0, as n goes to infinity where 
K, = [c(log n)“] + 1 with (l/a) < ,!3 < 1 are satisfied a.s. (0). (1). follows 
by Lemma 3 by considering g(K) = K1+~ because then 

(2). follows by considering the inequality 

kl + 52 + ... + 5‘k, 

n 
< (knmkn/n>(&,/mkn), 

tknm- kn -+ Wa.s. (w), where Wis a.s. (w) a finite random variable (see [2, 
p. 131) while k,mkn/n -+ 0 as n --f co, since /I can be chosen as small as 
we please. This proves the theorem. 

7. REMARKS 

1. The method used to prove the theorems of Section 5 is very 
different that the one used in [4] for the binary tree. In [4], we obtained, 
to begin with, a weak version of Theorem 5 from which it was possible 
to conclude that, for o( > 0, !Pml+a + e--12/2, as 1z goes to infinity, almost 
surely. Then we estimated / Y,,, - !K; 1 for I ,< p < noL. Such an 
estimation was easy because of the symmetry of the tree. Now a Galton- 
Watson tree also behaves in a symmetric manner; thus, the method of 
[4] could lead to the theorem of Section 6. For a general tree, however, 
the computations become very involved and do not seem to give more 
general results than our Theorem 1. 

2. For the Galton-Watson random walk (which included the m-adic 
tree) it has been shown in [3] that 

is a martingale. Ney, in a private communication, has informed one of 
us that Watanabe had made the same observation in the context of 
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branching diffusion (see also [l]). It is easy to see that the Wn(t) converge 
almost surely to IV(t). On the other hand, we were unable to show 
uniform convergence in t or even almost sure continuity of the limit. 
If this could be done it would lead to a very elegant proof of the theorem 
of Section 6, based on the simple substitution of t by tn-li2 in (7.1). 

3. This paper raises many questions: here we list some of them. 

(a) Study of sums of independent random variables on partially 
ordered sets. 

(b) Study of the speed of convergence of the !Pn(t). 

(c) Here we have studied a version of the central limit theorem. 
It would be interesting to study versions of the strong law of large 
numbers and of the law of the iterated logarithm. 

(d) Renewal theory on a tree: one formulation could be the 
following: considering the {S,> as a real random function on the tree, 
the problem is to study the properties of the t-section of that function. 

(e) The study in (d) could lead to a systematic treatment of the 
age-dependent Galton-Watson process. 

(f) Generalization of Section 6 to the multitype Galton-Watson 
process. 

We hope in the future to obtain some results leading toward the 
solution of these problems. 

Added in proof. The conjectures mentioned in the introduction were proved in: 
A. J. STAM, On a conjecture by Harris. 2. Wahrscheinlichkeitstheorie Vu. Geb. 5 (1966), 
202-206. 
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