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We consider the two point Neumann boundary value problem
—u"=(x)=A(u(x)); xe(0,1)
u'(0)=0=u'(1)

where A is a positive parameter, fe C*[0, oc), f(2)>0 for #>0, and for some
8>0, flu)<O0 for ue[0, f) (semipositone) and f(v)>0 for u>ff. We discuss
existence and multiplicity results for positive solutions. In particular, we prove that
if the set S= (n2%/f"(B), 0*/—2F(B)), where ne N, Flu)=[4f(s)ds and 0 is the
unique positive zero of F, is nonempty, then there exist at least 2n + 1 positive
solutions for each Ae S. Furthermore, if />0 on [0, #) and /" <0 on (f, o), then
we prove that there are exactly 2n+ 1 positive solutions for each ie S. We also
discuss examples to which our results apply. 7 1993 Academic Press, Inc.

1. INTRODUCTION

Consider the nonlinear Dirichlet boundary value problem
—u"(x)=A4(u(x));  xe(0,1) (1.1)
u(0)=0=u(1) (1.2)

where 4> 0 is a constant, fe C*[0, o), f(0) <0 (semipositone), /=0 on
(0, o0). Recently, existence, uniqueness, and multiplicity results have been
established for the semipositone problem (1.1)-(1.2) (see Castro and
Shivaji [3], Khamayseh [6]). See also [1, 2, 4, 5] for higher dimensional
results for the Dirichlet case. However, to date, all the results for the semi-
positone problem have been obtained in the Dirichlet case. The case of the
semipositone problem with Neumann boundary condition

w(0)=0=u'(1) (1.3)
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has yet to be analyzed. In this paper we give information about the number
of positive solutions of {1.1) and (1.3) for a certain range of A. We leave the
higher dimensional case for future study.

Our major results are:

TuEOREM 1.1. Let fe C’[0, ), f(0)<O0, f(u)>0 for u>0,
lim, , .. flu)>0, B the unique positive zero of [ and 8(>p) the unique
positive zero of F(sy={y f(t)dt. Further, let S=(n*/f"(B), 0°/—2F(p)) be
nonempty. Then for A€ S, there exist at least three positive solutions of (1.1)
and (1.3).

THEOREM 1.2. Let f satisfy the same hypotheses as in Theorem 1.1. Let
neN and assume further that S, = (n’n*/f'(B), 0°/—2F(B)) is nonempty.
Then for A€ S,, there exist at least 2n+ 1 positive solutions of (1.1) and
(1.3).

THEOREM 1.3.  Assume the hypotheses of Theorem 1.2 and further assume
S>>0 o0n (0,8) and f" <0 on (B, o). Then for i€ S, there exist exactly
2n+ 1 positive solutions of (1.1) and (1.3).

Remark 1.1. Note that if f/(f)— oo, then n?n*/f’(8)— 0. Moreover,
observe that —F(f)= — (5 f(u) du< — f(0) . (See Fig. 1.1) But 8> f§ and
if f>1, then 6%/ —2F(B)> B/—2/(0). Thus 0°/—2F(f) is bounded away
from zero no matter what f'(f) is. Hence given an neN, it is clear
geometrically that there are large classes of functions (see Fig. 1.2) for
which S, is nonempty.

Now to illustrate Theorems 1.1 and 1.2, consider the simple example
f(u)=e“—e“, a>0. Here = 1. Then 0?/—2F(f) > B/—2/(0) = 1/2(e"— 1),

FIGURE 1.1
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FIGURE 1.2

w*n*/f'(B) = n’n*/ae* and 1/2(e“ —1)>r’n’/ae* for a large. Thus given
neN, 3a, such that for all a>a, S, is nonempty and the boundary value
problem

—u'(x)= Ae™ I —e);  xe(0,1)

wW(0)=0=u'(1)

has at least 2n+ 1 positive solutions for all 1€ §,,.

Next to illustrate Theorem 1.3 consider f(u)=tanh[A(u— f)]. Then
f">0o0n (0, B), f"<0 on (B, ©), f'(f)=A and f(0)= —tanh 4B <0 for
A>0, f>0. Thus given neN, f/2tanh A8>n’n?/4 for A sufficiently
large. Hence there exists 4, such that for 4> A4, S, is nonempty and the
boundary value problem

—u"(x)=Atanh[A(u(x)— f)]; xe (0, 1)
w(0)=0=u'(1)

has exactly 2n + 1 positive solutions for all 1€ S,,.

The method we use to prove our results is the extension of the
Quadrature Technique introduced by Laetsch in [7] for the Dirichlet
case. See also [2,3,6] for various useful extensions of the Quadrature
Technique in the Dirichlet case. We discuss the extension in the next
section and in Section 3 we prove Theorems (1.1)-(1.3).

We conclude this introduction with the note that no two positive
solutions of (1.1) and (1.3) are ordered when f(u)/u is increasing.
In fact this result is true in higher dimension with more general boundary
conditions such as:

Bu(x)=0; xe o
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where @ is a bounded region in R”, Bu(x)=oh(x)u(x)+ (1 —o)du/dv,
Ju/dv is the outward normal derivative, € [0,1], #:3Q2 = R, h=1 when
x=1, and J€2 is a smooth boundary. For details see Miciano [8].

2. QUADRATURE TECHNIQUE FOR NEUMANN BOUNDARY VALUE PROBLEMS

Consider the Neumann boundary value problem

—u"(x)=Af(u(x)); xe(0,1) (2.1)
W' (0)=0=u'(1) (2.2)

where >0 is a constant, fe C', /">00n (0, ), f<0on [0, f)and f >0
on (f, o). Since f is autonomous the following lemmas hold:

Lemma 2.1, If u(x) is a solution of (2.1)-(2.2), then u(l —x) is also a
solution of (2.1}-(2.2).

LemMMA 2.2, If u(x) is any solution of (2.1)-(2.2), then u(x) is symmetric
about any point xy€ (0, 1] such that u'(x,) =0 (ie., u(xo—z)=u{x,+ z) for
all ze [0, min{xy, I —x4}]).

Proof. Define w (z)=u(x;—z) and w,(z)=u(xy+ z). Then both w,
and w, satisfy the initial value problem —w"(z)=Af(z), w(0)=u(x,),
w'(0) = 0. Hence the result.

Remark 2.1. Any zero of fis a solution of (2.1)-(2.2).

Now consider positive solutions u#(x) of the form shown in Fig. 2.1. Here
u(Q)=a, u(1)=7, 0<a<f<y, and ¥” >0 on (0, t,) and u”" <0 on (t,, 1),
where 1,€ (0, 1) is such that u(1;) = 8. To study positive solutions v(x) of
the form shown in Fig 2.2, that is, positive solutions with n —1 interior
critical points at k/n; k=1, 2, .., n— 1, it suffices by Lemma 2.2, to study
only solutions v,(x) of the form in Fig. 2.2 on the interval [0, 1/n] instead
of [0, 1]. Notice that solutions of the form v,(x) are easily obtained from
solutions u(x) of the form in Fig. 2.1 on [0, 1], by setting v,(x) = u(nx) for
x€ [0, 1/n]. Moreover, recall Lemma 2.1, that is, if u(x) is a solution then
u(l —x) is also a solution. Thus the study of solutions of the form
in Fig. 2.1 on [0, 1] will provide information on all types of positive
solutions.

We now apply the quadrature technique to (2.1)-(2.2). First mulitiply
(2.1) by «’(x) to obtain

u(x)u'(x)+ Af(u(x)) u'(x)=0 (2.3)
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which is equivalent to

dx 2 ]

where F(u) = {4 f(s) ds. Integrating (2.4), we have

[w'(x)1?
2

+AF(u(x))=C (2.5)

where C is a constant. Applying the boundary conditions and the
assumption that u(0)=o and u(1), we see that AF(a)= C = AF(y). Hence
for each ae [0, f) such that u(0)=«, y(a) € (f, 8] is the unique solution of
F(o) = F(y). Here 6 is the positive zero of F. (See Fig. 2.3.)

Thus if u(0)=a (2.5) becomes

= J2A[F(2)— Fu(x))];  xe[0,1]. (2.6)

Integrating (2.6) on [0, x] and applying the boundary conditions, we
obtain

u{x)

\/J m =/ix; xe[0,1]. 2.7)

Substituting x =1 in (2.7), we have

f:i_f’(“)———df———zc(a) (say). (2.8)

2% JF@) = F(s)

N 1
Fla )= F(y)p i

FiGure 2.3
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In fact the following result is true:

THEOREM 2.1. Let feC'[0, o«c) with f(0)<O0, lim,_  f(u)>0, f >0
on (0, ov), B, denote the unique positive zero of f and 8(> ), denote the
unique positive zero of F(s)= [3f(t)dt. Given A>0 if Jue S=[0, B) such
that G(a) = \/I then (2.1)-(2.2) has a unique positive solution u(x) satisfying
u(0)=a, u(1)="1y, where y(a) is such that F(y)=Fa) and u' >0 on (0, 1).
Furthermore G(a) is a continuous and differentiable function in S. Its
derivative is given by

dGa) f H(a)— H(s(f—a)+a) 3
dot 2f [F(a)— F(s(f —a) +2)]>?

dv) y)—H(S(B—"/H/) d 210
(da foo [ F(a) — F —oz)+a)]3/2 &) (2.10)

where H(s)=2F(s)+ (f—s) f(s). (For proof, see Miciano [9].)

3. ProOOFS OF THEOREMS 1.1-1.3

Proof of Theorem 1.1

In order to prove Theorem 1.1, we recall G(x) and prove the following
inequalities:

6* 5 26?2
(a) 2R <[G(0)] <—_—Fm
4 16
b —<[ lim G I ——.
(b) f,(ﬁ)<[u1n/} (2)] <f’(ﬁ)

Then since the only possible bifurcation points on the curve of solution
(4, B), are w’n?/f"(B);n=0, 1, ..., from (b) it follows that [lim, , ;- G(«)]*=

*n?/f’(B). Hence by our hypothesis, that is, n?/f"(f)< 0>/ —2F(f), the
range of [G(2)]? contains S= (n%/f'(B), 8?/—2F(B)) and hence from
Theorem 2.1, Lemma 2.1 and Remark 2.1, Theorem 1.1 follows. (See
Fig. 3.1.)

Proof of (a). Consider G(a) = 1//2 [ ds//F(x) — F(s).

Then

lim G(a)= ds

1 0
£ 0" “\/}L J—Fis)

= G(0). (3.1)
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FiGure 3.1

Since F"(s)=f"'(s)>0 for s> 0, we have

_;(ﬂ)s, O<s<f
—F(s)=
AP
—[B_B](O s), p<s<b.
(See Fig. 3.2.)
Thus
B
L _NEEB Ossh
\/—F(s)\ \/ 6—8
“Rpe—s Pt
F
A
o v
F(B)"""“":\ e
FIGURE 3.2

409:178:1-8
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Rewriting G(0) in (3.1) we have
I % ds 1 8 ds

G)=—=| —=+—%| ——==

© fjo \/—FS)+\/_IH / — F(s)

<_[ 2.5+

J Fﬁ)

Also from Figure 3.2 we see that

\/_

(3.2)

—F(s)< —F(B)Vse[0,8].

Hence

r’ ds _l_j" ds
NNV T]
0

(3.3)

Then from (3.2) and (3.3)

0 L8
=3~ O TRy

Proof of (b). First observe that

7la) #(x) ds

Jﬂa_— ff VZisy

Gla)=

-

where Z(s) is defined as

[F(a)—F(ﬂ)](s—m) a<s<f
f—a
2= TRy - Bp)

|2 o0 pes<y

(See Fig. 3.3)
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F
a s P Y
Fa)} """""" :
F(s) | N
F(ﬁ) i
FiGURE 3.3

Furthermore,

JF_“iE"“j TR iy ds

Fla)~ F(B) ,Ai‘ Fo)—FB) s ;s
B

=JFm w2V VHn—nﬂ) miVi )

UYL 20— (3.4)
JF@)—F(B) JF(y)—F(p)

Nowasa—f",7y—f*

Wpmx’ 8 4 lim by __8 (3.5)

A Fa)—FB) ) 8 F —FB) B

Hence (3.4) and (3.5) imply that

Jim G lim [ 2 m
=_1_[ 2,2 J
v5 B V7<m

N /f'(ﬂ)'

A%
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Next

xs~

F(oz F(s

AN T
J ds
|

]

:- x\;v— %l

TU—B
ds

.
7J \/F(y F(B)
\/—\/——F—(‘ \/JFT—_

and thus as « — 7, using (3.5), we obtain

2
lim G(x)= .
N7

Then from (3.6) and (3.7), we obtain

(3.7)

2
—==x lim G(x)<

4
U REEN/AT
Hence
[11m Gl)]*< ——6—
f(ﬂ) “f(B)

Proof of Theorem 1.2

Consider positive solutions with n— 1 interior critical points as shown in
Fig. 3.4. By Lemma 2.2, the analysis of these types of solutions is achieved
by studying nondecreasing positive solutions on the interval [0, 1/n].
(See Figure 3.5.) But the existence of a nondecreasing solution, say v(x)
on [0, 1/n] is equivalent to the existence of a nondecreasing solution
u(x)=rv(x/n) on [0, 1], since

U o/x\ 1 . 1
—u(x)= 5" (E>=Pif(v(5>>=Pif(u(x))

u’(0)=;11-v’(0)=0,

wiy=2v (1) =0

<

and
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0 1 1
[}
v
0 1 1
)
FIGURE 3.4

Hence from Theorem 2.1 a solution with » — 1 interior critical points of the
form shown in Fig. 3.5 exists enly if 4/n” belongs to the range of [G(x)]>.
In fact u(1 — x) is also a second solution (see Lemma 2.1) with » — 1 critical
interior points.

Now if S, =(16n%f'(B), 0°/—2F(B)) is nonempty and if ieS,, then
A/m*e (16/f7(B), 62/ —2F(B)) for each m=1,2, .., n. Thus by Theorem 1.1
and Lemma 2.1, for each m=1, 2, .., n, we obtain two solutions with m
interior critical points. These solutions along with the solution u = f, gives
us at least 2n+ 1 positive solutions for ieS,. Hence Theorem 1.2 is
proven. (See Fig. 3.6.)

Proof of Theorem 1.3

In order to prove Theorem 1.3, we recall dG(x)/dx given by (2.10) and
show dG(x)/da <0. Now

dG(a)_ J H(x)— H(s(—a)+2)
do 2\/_0[F(oc — F(s(f—a) + ) 1%

<d>'> 1 J“ H(y)—H(s(B—7)+7)
- as
dx) 2 /2% [Fla)— F(s(f—2)+2)]"?
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FIGURE 3.5

FIGURE 3.6

Figure 3.7
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1

o A
-2F(P)
FIGURE 3.8

where H(s)=2F(s)+ (f—~s5) f(s). Then H'(s)=f(s)+(8—s) f'(s), and
H"(s)=(B—s5)f"(s). But f(0)<0, f(f)=0 and here we assume that
f(s)>0 for se(0,f) and f"(s)<0 for se(f,0). Hence H(0)<O,
H'($)=0 and H”"(s)>0 for s#p. (See Fig.3.7). Thus H(x)—
H(s(f—a)+a)=0and H(y)— H(s(B—7)+7y) =0 Vse (0, 1). But we know
that dy/dx <0, so dG/dx<0. Hence from Theorem 1.2 we obtain exactly
2n+ 1 positive solutions. (See Fig. 3.8.)

REFERENCES

1. K. J. BRown, A. Castro, aND R. SHivasi, Non-existence of radially symmetric non-
negative solutions for a class of semi-positone problems, Differential Integral Equations 2,
No. 4 (1989), 541-545.

2. K. J. BrowN, M. M. A. IBraHiM, AND R. SHiva), S-shaped bifurcation curves,
J. Nonlinear Anal 5, No. 5 (1981), 475-486.

3. A. CasTrO AND R. SHivall, Non-negative solutions for a class of non-positone problems,
Proc. Roy. Soc. Edinburgh Sect. A 108 (1988}, 291-302.

4. A. CasTRO AND R. SHivas, Non-negative solutions for a class of radically symmetric non-
positone problems, Proc. Amer. Math. Soc. 106, No. 3 (1989), 735-740.

5. A. CastrO AND R. SHivall, Non-negative solutions to a semilinear Dirichlet problem in a
ball are positive and radially symmetric, Comm. Partial Differential Equations 14,
Nos. 8 & 9 (1989), 1091-1100.

6. A. KHamaysed, “Positive Solutions for a Class of Nonlinear Semipositone Dirichlet
Boundary Value Problems,” M.S. Thesis, Mississipi State University, 1990.

7. T. W. LaerscH, The number of solutions of a nonlinear two point boundary value
problem, Indiana Univ. Math. J. 20 (1970/71), 1-13.

8. A. R. MiciaNo, Nonorderedness of Positive Solutions for Classes of Semipositone
Problems, Best graduate student paper, Annual Meeting of MAA (LA-MS Section), 1989.

9. A. R. MiciaNo, “Multiple Positive Solutions for a Class of Semipositone Neumann Two
Point Boundary Value Problems,” M.S. Thesis, Mississipi State University, 1990.



