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The statistical entropy of the Nariai black hole in a thermal equilibrium is calculated by using the brick-
wall method. Even if the temperature depends on the choice of the timelike Killing vector, the entropy
can be written by the ordinary area law which agrees with the Wald entropy. We discuss some physical
consequences of this result and the properties of the temperatures.
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1. Introduction

It has been claimed that the entropy of a black hole is pro-
portional to the surface area at the event horizon [1], and the
Schwarzschild black hole has been studied through the quantum
field theoretic calculation [2]. One of the convenient methods to
get the entropy is to use the brick-wall method, which gives the
statistical entropy satisfying the area law of the black hole [3].
Then, there have been extensive applications to various black holes
[4–26]. In fact, there is another way to obtain the entropy which
regards the entropy of black holes as the conserved Noether charge
corresponding to the symmetry of time translation [27]. For the
Einstein gravity, the Wald entropy is always given by the AH/(4G),
where AH and G are the surface area at the event horizon and
the Newton’s gravitational constant, respectively. Actually, there
are many extensive studies for the entropy as the Noether charge
in the general theory of gravity including the higher power of the
curvature [28–33].

The fact that the cosmological constant seems to be positive in
our universe deserves to study the Schwarzschild black hole on the
de Sitter background, which can be easily realized in the form of
the Schwarzschild–de Sitter (SdS) spacetime. It has the black hole
horizon and the cosmological horizon, and the observer lives be-
tween them. In this spacetime, the temperature of the black hole
is different from the temperature due to the cosmological horizon
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when 0 < M < 1/(3
√

Λ), where M and Λ are the mass of the
black hole and the cosmological constant, respectively. Therefore,
we are in trouble to study the thermodynamics of the system since
it is not in thermally equilibrium due to the different temperatures.
Nevertheless, there are several studies for the entropy through the
improved brick-wall method for the SdS black hole [34–36] and
the Kerr–de Sitter black hole [37]. In order to avoid the difficulty
due to the non-equilibrium state of the SdS black hole, they have
considered two thin-layers near the black hole horizon and the
cosmological horizon, and then calculated the entropy for each
thin layer.

On the other hand, for the special limit of M = 1/(3
√

Λ)

in the SdS spacetime, the two horizons are coincident in the
Schwarzschild coordinate. However, the Nariai metric is obtained
through the coordinate transformation to avoid the coordinate sin-
gularity, where the two horizons are still separated [38–41]. The
Nariai spacetime is in thermally equilibrium since the black hole
and the cosmological horizon give the same temperatures. Thus,
we can treat the whole Nariai spacetime as one thermodynami-
cal system. However, even in spite of thermodynamic equilibrium,
there are few thermodynamic studies. Moreover, one can define
two kinds of temperatures for the Nariai black hole: the Bousso–
Hawking temperature and the Hawking temperature since there
exist two different normalizations of timelike Killing vectors [39].

In this Letter, we would like to study the statistical entropy of
the Nariai black hole by using the brick-wall method. In Section 2,
we introduce the SdS spacetime and the Nariai spacetime, and
define two kinds of temperatures based on the different normaliza-
tions of the Killing vectors. We will also apply the Wald formula to
the Nariai black hole in order to get the entropy without resort to
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normalizations of the Killing vector. Since both of the surface grav-
ity and the Noether potential are proportional to the normalization
constant of the Killing vector, the Wald entropy is independent
to the normalization of the Killing vector. In Section 3, the en-
tropy will be calculated by using the brick-wall method. Although
the energy and the temperature depend on the normalization of
the timelike Killing vector, the normalization-independent statisti-
cal entropy can be obtained, which is compatible with the Wald
entropy. Finally, summary and discussion are given in Section 4.

2. Temperatures and Wald entropy in Nariai black hole

Let us start with the four-dimensional Einstein–Hilbert action
with the cosmological constant Λ, which is given by

I = 1

16πG

∫
d4x

√−g(R − 2Λ). (1)

The equation of motion obtained from the action (1) becomes

Rμν − 1

2
gμν R + Λgμν = 0. (2)

The static and spherically symmetric solution of Eq. (2) is written
as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2 dΩ2

2 , (3)

with

f (r) = 1 − 2M

r
− 1

3
Λr2, (4)

where Ω2 is two-dimensional solid angle defined by dΩ2
2 = dθ2 +

sin2 θ dφ2. Hereafter, we will consider only the Schwarzschild–
de Sitter spacetime with Λ > 0. For 0 < M � 1/(3

√
Λ), it has two

horizons of the black hole horizon rb and the cosmological hori-
zon rc . In this case, the metric function (4) can be neatly written
as f (r) = (1 − rb/r)[1 − (Λ/3)(r2 + rbr + r2

b )] = (r − rb)(rc − r)(r +
rb + rc)/[r(r2

b + rbrc + r2
c )]. For M = 0, it has only the cosmological

horizon with rc = √
3/Λ.

The symmetry of time translation in the SdS spacetime can be
described by a timelike Killing vector, which is written as

ξ = γt
∂

∂t
, (5)

where γt is a normalization constant. In the standard normaliza-
tion, γt is obtained from the condition to satisfy ξμξμ = −1 at
the asymptotically flat Minkowski spacetime. For instance, its value
usually becomes γt = 1 for a Schwarzschild metric. In the SdS
spacetime, there is no asymptotically flat region, so that we should
consider the reference point rg where the gravitational accelera-
tion vanishes due to the balance between the forces of the black
hole by the mass and the cosmological horizon by the cosmological
constant. Thus, we can choose the normalization constant in Eq. (5)
to satisfy ξμξμ = −1 at that reference point rg , which yields

γt = 1√
f (rg)

, (6)

where the reference point can be found from f ′(rg) = 0 and is
explicitly given by rg = (3M/Λ)1/3. Now, the surface gravities κb
and κc on the black hole horizon and the cosmological horizon are
written as

κb,c = lim
r→rb,c

√
ξμ∇μξνξρ∇ρξν

−ξ2
, (7)
respectively. Then, the temperatures along with the normaliza-
tion (6) are calculated as

T b,c
BH = κb,c

2π
= f ′(rb,c)

4π
√

f (rg)
, (8)

which are called the Bousso–Hawking temperatures [39]. This tem-
perature can be also obtained from ξ̃ = ∂/∂ t̃ when the time is
rescaled as t̃ = t

√
f (rg), where ξμξμ = −1 is satisfied at r = rg .

On the other hand, in the Euclidean geometry, the Hawking
temperature agrees with the inverse of the period of the Euclidean
time to avoid a conical singularity at the horizon. Setting the Eu-
clidean time τ to τ = it , the Euclidean line element of Eq. (3) is
written as

ds2
E = f (r)dτ 2 + dr2

f (r)
+ r2 dΩ2

2 . (9)

From Eq. (9), the Hawking temperatures for the black hole horizon
and the cosmological horizon become

T b,c
H = β−1

H = f ′(rb,c)

4π
, (10)

respectively, which agree with the temperatures obtained from the
Killing vector (5) with the normalization constant γt = 1. Note
that the Hawking temperature (10) is definitely different from the
Bousso–Hawking temperature (8). For the scaled Euclidean time
given by τ̃ = it̃ , the Bousso–Hawking temperatures are obtained.

Similar argument can be done for the Nariai black hole by tak-
ing the limit of M = 1/(3

√
Λ) in Eq. (4) so that the two horizons

are coincident in the Schwarzschild coordinate. In this degener-
ate case with rb = rc , the metric (3) should be transformed to an
appropriate coordinate system because it has the coordinate sin-
gularity and becomes inappropriate. Near the degenerate case, the
mass can be written as [38–40]

9M2Λ = 1 − 3ε2, 0 � ε � 1, (11)

where the degenerate case can be obtained by taking ε = 0. One
can define the new time and the radial coordinate ψ and χ by

t = 1

ε
√

Λ
ψ, r = 1√

Λ

(
1 − ε cosχ − 1

6
ε2

)
. (12)

In terms of the new coordinates (12), the line element (3) is writ-
ten in the form of

ds2 = 1

Λ

[
−

(
1 + 2

3
ε cosχ

)
sin2 χ dψ2 +

(
1 − 2

3
ε cosχ

)
dχ2

+ (1 − 2ε cosχ)dΩ2
2

]
, (13)

up to the first order in ε . For the case of ε = 0, Eq. (13) is called
the Nariai metric, which is given by

ds2 = 1

Λ

(− sin2 χ dψ2 + dχ2 + dΩ2
2

)
. (14)

In this coordinate system, the back hole horizon and the cosmolog-
ical horizon correspond to χ = 0 and χ = π , respectively, where
the proper distance between the two horizons is given by π/

√
Λ

which is not zero. From now on, we will study this Nariai black
hole which is actually real geometry to describe thermal equilib-
rium since the horizon temperature is the same with the cosmo-
logical temperature. However, there are two kinds of temperatures
depending on the definitions of the normalization of the Killing
vector.
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With Eqs. (11) and (12), the Killing vector (5) becomes

ξ = √
Λ

∂

∂ψ
, (15)

to the leading order in ε . Using Eq. (7), the Bousso–Hawking tem-
perature is calculated as

T b,c
BH =

√
Λ

2π
. (16)

This can be also obtained from the Killing vector ξ̃ = ∂/∂ψ̃ at the
coordinate system with the rescaled time ψ̃ = ψ/

√
Λ. As expected,

the temperature of the black hole horizon is the same with that of
the cosmological horizon. On the other hand, one can also get the
Hawking temperature from the Euclidean metric (14) by setting
the Euclidean time as ψE = iψ . Then, the Euclidean Nariai metric
can be written as

ds2
E = 1

Λ

(
sin2 χ dψ2

E + dχ2 + dΩ2
2

)
. (17)

In order to avoid a conical singularity at the two horizons, the pe-
riod of the Euclidean time for the black hole horizon or the cosmo-
logical horizon are chosen as 2π , respectively. Then the Hawking
temperatures are given by

T b,c
H = β−1

H = 1

2π
, (18)

which corresponds to the surface gravity obtained from the Killing
vector ∂/∂ψ using Eq. (7). It is interesting to note that the Hawk-
ing temperature is constant as long as the Nariai condition M =
1/(3

√
Λ) is met. Moreover, it can be easily checked that the

Bousso–Hawking temperature (16) is obtained from the condition
to avoid a conical singularity at the horizons for the scaled Eu-
clidean time ψ̃E = ψE/

√
Λ.

Before we get down to the brick-wall calculations for statistical
entropy, we will identify the form of the entropy in terms of the
Wald formula which comes from the Noether current associated
with the above mentioned Killing vectors. At first sight, it depends
on the Killing vectors since it is related to the symmetry. In our
case, there are two kinds of Killing vectors which give two distinct
temperatures so that it is necessary to justify whether the entropy
depends on normalizations of the Killing vector or not. Since both
of the surface gravity and the Noether potential are proportional to
the normalization constant of the Killing vector, they are canceled
out and the Wald entropy eventually turns out to be independent
of the normalization of the Killing vector. It means that the en-
tropy by the brick-wall method may be also independent of the
normalization of the Killing vectors and it will be explicitly shown
later how the statistical entropy is also independent of the Killing
vector.

In order to find the Wald entropy of the Nariai spacetime, one
should consider a diffeomorphism invariance with the Killing vec-
tor ξμ which is associated with the conservation law of ∇μ Jμ = 0
[27–32], for which the Noether potential Jμν can be defined
by Jμ = ∇ν Jμν . If a Lagrangian is written in the form of L =
L(gμν, Rμνρσ ), then the Noether potential is given by [31,32]

Jμν = −2Θμνρσ ∇ρξσ + 4∇ρΘμνρσ ξσ , (19)

where

Θμνρσ = ∂L
∂ Rμνρσ

. (20)

For a timelike Killing vector, the Wald entropy [27] is expressed by

S = 2π

κ

∫
d2x

√
h εμν Jμν, (21)
Σ

where κ and hμν are the surface gravity and the induced metric on
the hypersurface Σ of a horizon, respectively. And εμν is defined
by

εμν = 1

2
(nμuν − nνuμ), (22)

where nμ is the outward unit normal vector of Σ . The proper
velocity uμ of a fiducial observer moving along the orbit of ξμ

is given by uμ = α−1ξμ with α ≡ √−ξμξμ . Note that the Wald
entropy is independent to the normalization of the Killing vector
since both of the Noether potential Jμν in Eq. (19) and the surface
gravity in Eq. (7) are proportional to the normalization constant of
the Killing vector and so the constant canceled out in the formula
of the Wald entropy (21).

For the Nariai metric (14), the Killing vector is given by

ξ = γ
∂

∂ψ
, (23)

where γ is a normalization constant, which will be not specified
in this section. From the norm of the Killing vector, we obtain
α = γ sinχ/

√
Λ and uμ = ξμ/α = −δ

ψ
μ sinχ/

√
Λ. The outward

unit normal vectors of the black hole horizon and the cosmological
horizon are calculated as nμ = (1/

√
Λ)δ

χ
μ and nμ = −(1/

√
Λ)δ

χ
μ ,

respectively. Then, the nonzero components of Eq. (22) are εψχ =
−εχψ = ± sinχ/(2Λ), where the upper sign and the lower sign
correspond to the black hole horizon and the cosmological hori-
zon, respectively. Now, for the action (1), we obtain

Θμνρσ = 1

32πG

(
gμρ gνσ − gμσ gνρ

)
, (24)

which leads to

εμν Jμν = ± γ

8πG
cosχ. (25)

Inserting Eq. (23) into Eq. (7), we can obtain κb,c = γ . Then, from
Eq. (21), the Wald entropy is given by

S = 1

4G

( ∫
Σχ=0

d2x
√

h cosχ −
∫

Σχ=π

d2x
√

h cosχ

)

= Ab + Ac

4G
, (26)

where Ab and Ac are the areas of the black hole horizon and the
cosmological horizon, respectively. The total area given by the two
horizons becomes A = 8π/Λ since Ab = Ac = 4π/Λ. Eventually,
the entropy (26) can be rewritten as

S = A

4G
, (27)

which also agrees with the Bekenstein–Hawking entropy. After all,
we obtained the Wald entropy expressed by the expected area law,
which is independent of the normalization of the Killing vector.

3. Entropy from brick-wall method

In the original work of the brick-wall model [3], a scalar field
outside of the horizon was considered and the number of states
was counted by using the WKB approximation for the wave equa-
tion. The cutoff parameter was introduced to handle the UV di-
vergence near the horizon. Then, the free energy and the entropy
were calculated at a given temperature. This method has been
used to find the statistical entropy of various black holes. It has
been shown that the cutoff occurs independently of the strength
of the source for any D dimensions with D > 3, in agreement
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with the four-dimensional case, and it has been discussed why
the cutoff depends on the strength of the source in the D = 2 [4].
When the brick-wall method is applied to an extremal Reissner–
Nordstrom black hole, the entropy does not vanish and in fact a
stronger divergence than usual [6]. In connection with quantum
corrections, the entropy is written as the term proportional to the
area of horizon and the logarithmic term by the area [18] and
the finite entropy is obtained for the Schwarzschild–anti-de Sit-
ter and Reissner–Nordstrom–anti-de Sitter black holes through a
renormalization of the coupling constants in the one-loop effective
gravitational Lagrangian [10]. In spite of the limited application to
the time-dependent case, the brick-wall method was also applied
to Vaidya black hole as the simplest nonstatic case assuming local
equilibrium [9]. On the other hand, especially in two dimensions,
it has been demonstrated that the quantum thermodynamical en-
tropy of a black hole coincides with its statistical–mechanical en-
tropy calculated by the brick-wall method and regularized by the
Pauli–Villars scheme [7]. There are also studies for the entropies
of black holes based on the generalized uncertainty principle or
the modified dispersion relation using the brick-wall method [11,
13–17,22,25,26]. Furthermore, the understanding of black hole en-
tropy by the brick-wall method has been contrasted with the un-
derstanding based on AdS/CFT correspondence [23]. So we will
apply this convenient method to the Nariai black hole in what fol-
lows.

In the Nariai black hole governed by the line element (14), the
black hole temperature is the same with the cosmological tem-
perature as seen from Eqs. (16) and (18), which imply that the
net flux is in fact zero. Thus, the thermal equilibrium can be re-
alized in this special configuration, which is different from the
non-equilibrium SdS black hole. In order to calculate the statis-
tical entropy in this thermal background [3], we will consider a
quantum scalar field in a box surrounded by the two horizons. The
Klein–Gordon equation for the scalar field is written as(� − m2)Φ = 0, (28)

where m is the mass of the scalar field. By using the WKB ap-
proximation with Φ ∼ exp[−iωψ + i S(χ, θ,φ)] under the Nariai
metric (14), the square module of the momentum is obtained as

k2 = gμνkμkν

= Λ

(
− ω2

sin2 χ
+ k2

χ + k2
θ + k2

φ

sin2 θ

)
= −m2, (29)

where kχ = ∂ S/∂χ , kθ = ∂ S/∂θ , and kφ = ∂ S/∂φ. Then, the num-
ber of quantum states with the energy less than ω is given by the
volume of a phase space per its unit volume:

n(ω) = V p

(2π h̄)3

= 1

(2π)3

∫
V p

dχ dθ dφ dkχ dkθ dkφ, (30)

where V p denotes the volume of the phase space satisfying k2 +
m2 � 0 and h̄ was set to one in second line of Eq. (30). In Eq. (30),
the integral

∫
dkχ dkθ dkφ is the volume of an ellipsoid satisfying

k2
χ/a2 + k2

θ /b2 + k2
φ/c2 � 1, which is obtained from Eq. (29), where

a2 = b2 = ω2/ sin2 χ − m2/Λ and c2 = a2 sin2 θ . Since the volume
of the ellipsoid is calculated as∫

dkχ dkθ dkφ = 4π

3
abc

= 4π
sin θ

(
ω2 − m2

sin2 χ

)3/2

, (31)

3 Λ
Eq. (30) becomes

n(ω) = 2

3π

∫
dχ

sin3 χ

(
ω2 − m2

Λ
sin2 χ

)3/2

, (32)

by integrating out with respect to θ and φ. For simplicity, we take
the massless limit of m2 = 0. As seen from (32), the number of
states diverges at the horizons of χ = 0,π , so that we need the
UV cutoff at χ = hb and χ = π − hc . The UV cutoff parameters
hb and hc are assumed to be very small. Then, the free energy is
given by

F = −
∫

dω
n(ω)

eβω − 1

= − 2

3π

π−hc∫
hb

dχ

sin3 χ

∞∫
0

dω
ω3

eβω − 1

= − π3

45β4

[
− cosχ

sin2 χ
+ ln

(
tan

χ

2

)]π−hc

hb

= − π3

45β4

[
1

h2
b

− ln hb + 1

h2
c

− ln hc + O
(
h0

b,h0
c

)]
. (33)

Then, the entropy becomes

S = β2 ∂ F

∂β

= 4π3

45β3

[
1

h2
b

− ln hb + 1

h2
c

− ln hc + O
(
h0

b,h0
c

)]
. (34)

The proper lengths for the UV parameters are given by

h̄b =
hb∫

0

dχ
√

gχχ = hb√
Λ

, (35)

h̄c =
π−hc∫
0

dχ
√

gχχ = hc√
Λ

, (36)

which leads to hb,c = √
Λ h̄b,c . Then, Eq. (34) is written as

S = 4π3

45β3

(
1

Λh̄2
b

+ 1

Λh̄2
c

)
, (37)

within the leading order of h̄b,c .
When we perform the WKB approximation with the line ele-

ment (14), the coordinate ψ plays a role of the time. The corre-
sponding Killing vector is given by ξ = ∂/∂ψ and β in Eq. (37)
should be taken as the inverse of the Hawking temperature (18).
Then, the entropy is obtained as

S = �2
P

90π h̄2
b

c3 Ab

4Gh̄
+ �2

P

90π h̄2
c

c3 Ac

4Gh̄
, (38)

where �P ≡ √
Gh̄/c3 is the Plank length. If the cutoff is chosen as

h̄b,c = �P/
√

90π like the case of the Schwarzschild black hole [3],
the entropy (38) is remarkably written as

S = c3 A

4Gh̄
, (39)

where the total area is defined by A = Ab + Ac for convenience.
Then, it agrees with one quarter of the horizon area of the
Bekenstein–Hawking entropy.

From the viewpoint of the renormalization [42], the total en-
tropy can be written as the sum of the Wald entropy (27) and the
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quantum correction of Eq. (38). If we consider the bare gravita-
tional coupling constant in the classical entropy, the divergent part
can be easily absorbed in the gravitational constant.

4. Discussion

By using the brick-wall method for the Nariai spacetime, we
obtained the Bekenstein–Hawking entropy which is proportional
to the area of the horizon. In the brick-wall method, β was not
the inverse of the Bousso–Hawking temperature but the inverse of
the Hawking temperature. The reason why is that the time is cho-
sen as ψ and the standard form of the corresponding Killing vector
is given by ∂/∂ψ . If we consider the scaled time ψ̃ = ψ/

√
Λ, the

Killing vector is given by ξ = ∂/∂ψ̃ = √
Λ∂/∂ψ , which yields the

Bousso–Hawking temperature (16). Then, the WKB approximation
in the brick-wall method should be performed for the scalar field
in the form of Φ ∼ exp[−iω̃ψ̃ + i S(χ, θ,φ)] = exp[−iω̃ψ/

√
Λ +

i S(χ, θ,φ)]. This indicates that the energy in Eq. (29) becomes
ω̃ = ω

√
Λ and we can easily show that βHω = βBHω̃. In the cal-

culation of the free energy (33), ω in the integrand should be
replaced by ω̃/

√
Λ and the integration should be performed for ω̃.

Then, we can obtain the same entropy with Eq. (38) based on
the Bousso–Hawking temperature. Therefore, the entropy is always
written as the area law of the Wald entropy, whereas the temper-
ature and the energy depend on the choice of the time, that is, the
normalization of the timelike Killing vector.

The final comment is in order. As for the Bousso–Hawking tem-
perature, it can be regarded as a Tolman temperature [43]. It was
defined at the vanishing surface gravity where it is the counterpart
of the asymptotically Minkowski space in the asymptotically flat
black holes. The Bousso–Hawking temperature can be derived from
the definition of the Tolman temperature of T loc = T H/

√
gψψ =√

Λ/(2π sinχ) where T H = 1/(2π). If we move the observer, for
instance, to the black hole horizon of χ = 0 or to the cosmological
horizon of χ = π , the temperature goes to infinity. In particular, at
the middle point of χ = π

2 , it produces the Bousso–Hawking tem-
perature. So the Bousso–Hawking normalization of Killing vector is
compatible with the Tolman temperature. So, we can identify the
Bousso–Hawking temperature with the Tolman temperature at the
reference point.
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