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A B S T R A C T

Increasing energy demands require new materials, e.g., thermoelectrics, for efficient energy conversion of fossil
fuels. However, their low figure of merit (ZT) limits widespread applications. Nanostructuring has been an
effective way of lowering the thermal conductivity. However, grain growth at elevated temperature is still a big
concern, for otherwise expected to be long-lasting thermoelectric generators. Here, we report a porous
architecture containing nano- to micrometer size irregularly shaped and randomly oriented pores, scattering a
wide spectrum of phonons without employing the conventional rattling phenomenon. Lattice thermal
conductivity reaches the phonon glass limit. This design yields & $2gt;100% enhancement in ZT, as compared
to the pristine sample. An unprecedented and very promising ZT of 1.6 is obtained for Co23.4Sb69.1Si1.5Te6.0
alloy, by far the highest ZT ever reported for un-filled skutterudites, with further benefits, i.e. rare-earth-free
and improved oxidation resistance enabling simple processing.

1. Introduction

Thermoelectric materials have many potential applications, e.g. for
electricity production in deep space, in military equipment and mainly
for waste heat recovery from different sources, e.g. power plants,
automobiles etc. [1,2]. However, their relatively low conversion
efficiency, which is a function of the dimensionless figure of merit
(ZT) =α2σT/κ (α is the Seebeck coefficient, σ electrical conductivity, T
absolute temperature, and κ the total thermal conductivity [3]) hinders
their widespread applications. The highest ZT reported in bulk thermo-
electric materials (PbTe) is 2.2 [4], while recently, in a single crystal
(SnSe), a ZT as high as 2.6 in one dimension was reported [5].
However, extreme toxicity of Pb along with large amount of expensive
Te in the case of PbTe, and anisotropy of SnSe may question their
feasibility for applications on large scale.

Band structure engineering has helped researchers in optimizing
the power factor (σα2) [6]. For high efficiency, high power factor with
low thermal conductivity is essential. Phonon Glass Electron Crystal

approach (PGEC) [7] was extensively studied in the recent past, to
obtain high ZT thermoelectrics. According to Wiedemann-Franz rela-
tionship, thermal conductivity consists of two components, (1) electro-
nic contribution due to electrons flow, which is proportional to the
electrical conductivity, and (2) lattice thermal conductivity caused by
lattice vibrations called phonons. Based on electron crystal concept, the
electronic part (can only be decreased by a deterioration in electrical
conductivity) should be preserved. So it is merely the phononic part
that can potentially be reduced. Traditionally, four major ways are
employed to diminish the lattice thermal conductivity, the first two
being, (a) nanostructuring to increase the phonon scattering from the
grain boundaries; (b) insertion of point defects through alloying; and
(c) precipitation of secondary phases in the matrix to scatter phonons
from the fine grains of secondary phases. Nanostructuring is generally
only feasible for low temperatures, owing to tendency of grain growth
at high temperatures. On the other hand, precipitation of secondary
phases affects primarily high-frequency phonons but low-frequency
phonons in heat transport remain unaffected [8]. Point defect scatter-

http://dx.doi.org/10.1016/j.nanoen.2016.11.016
Received 5 July 2016; Received in revised form 7 November 2016; Accepted 9 November 2016

⁎ Corresponding author at: National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitechtonics (MANA), Namiki 1-1, Tsukuba 305-0044, Japan.
E-mail address: MORI.Takao@nims.go.jp (T. Mori).

Abbreviations: ZT, Figure of Merit; PGEC, Phonon Glass Electron Crystal; CIP, Cold Isostatic Press; XRD, X-ray Diffraction; SPS, Spark Plasma Sintering; DSC, Differential Scanning
Calorimetry; Cp, Heat Capacity; SEM, Scanning Electron Microscope; LDA, Local Density Approximation; BH, von Barth-Hedin; DOS, Density Of States; EDX, Energy Dispersive X-ray;
RE, Rare Earth

Nano Energy 31 (2017) 152–159

2211-2855/ © 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the  CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).
Available online 12 November 2016

crossmark

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82032644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/22112855
http://www.elsevier.com/locate/nanoen
http://dx.doi.org/10.1016/j.nanoen.2016.11.016
http://dx.doi.org/10.1016/j.nanoen.2016.11.016
http://dx.doi.org/10.1016/j.nanoen.2016.11.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nanoen.2016.11.016&domain=pdf


ing is generally more effective if an element with considerable atomic
size difference is inserted, leading to limited options. The third
approach, which is limited to cage compounds, (d) filling-rattling
phenomenon is frequently manipulated to reduce thermal conductivity
but filling atoms often comprise rare-earth elements which are
expensive (although mischmetal has been pointed out as a cost saving
alternative [9]), or being extremely air-sensitive, such as barium [9–
14]. Although, the exact role of filler atoms has been controversial [15],
there have been many reports on multi-filled skutterudites [9–
13,13,14,14–19]. Despite the fact that high ZT is reported in rare
earths-filled skutterudites [9–19], the presence of rare earths elements
in only certain areas of the world, hamper their widespread use and
demand finding a better way of lowering their thermal conductivity.
Porosity has been widely used to lower the thermal conductivity of
materials, where electrical conductivity is not a concern. However, in
thermoelectrics, degradation of electrical conductivity with increasing
porosity is a major drawback. Meanwhile, it has been proved that the
porous nano-structures, having controlled porosity [20–23] possess a
very low thermal conductivity, along with good power factor. However,
initial attempts in past to utilize porosity, to lower the thermal
conductivity and to enhance the ZT of skutterudites, failed [24].
Although, porosity effectively lowered the thermal conductivity, it
was counterbalanced by the degradation in electrical conductivity,
resulting in no net improvement of ZT. Moreover, porosity is reported
to greatly enhance the Seebeck coefficient [25,26] but no such thing
was observed in the current study.

We report here, Si and Te co-doped bulk porous un-filled skutter-
udites producing a very attractive ZT of 1.6. This porous bulk
architecture contains nano- to micrometer size pores. Pore size of this
range seems to effectively interact with relatively long mean path
phonons, reported to be responsible for heat conduction in CoSb3 [27].
These all-scale, irregular, randomly oriented pores effectively scatter a
wide spectrum of phonon. In previous attempts, sintering under low
pressure was applied, to obtain porous skutterudites [24]. This
methodology resulted in poor densification in all areas of samples. In
the present study, due to different approach to obtain porosity, we have
random distribution of pores, along with very dense areas distributed
in the whole sample. Combination of these two, allows the electrons
having short mean free path, to move freely, while interrupting the
phonons travel, having rather long mean free paths, converting the
material into a porous “phonon glass electron crystal (PGEC)” [7] bulk
structure. It resulted in a drastic decline of lattice thermal conductivity
with moderate degradation of power factor, giving rise to a &
$2gt;100% increase in ZT (Fig. 1(a-d)), comparable to the multi-filled
skutterudites [9–19] and far higher than the highest values reported
for unfilled skutterudites [28–30].

2. Materials and methods

Samples were prepared by sealing stoichiometric amounts of high
purity elemental powders (1–2% additional Sb was added). Details
about the composition of the prepared samples are given in
Supplementary material Table S1. These powders were sealed in quartz
under vacuum and were heated to 1050 °C for 5 h, furnace cooled to
800 °C, kept for 2 h, further cooled down to 600 °C and kept there for
15 h, followed by cooling to room temperature. Samples were then
ground in a SiC mortar in air, pressed in a Cold Isostatic Press (CIP),
sealed again in quartz under vacuum and the heating cycle mentioned
above was repeated. Resulting samples were ground again without
inert environment, and Powder X-ray Diffraction (XRD) was conducted
by utilizing Cu Kα radiations, then the samples were sintered using
Spark Plasma Sintering (SPS) at 600 °C for 5 min. Thermal diffusivity
of these pellets was measured with a Laser Flash ULVAC-TC7000
instrument. Pellets were cut into rectangular shapes to run on an
ULVAC-ZEM-5 apparatus for electrical resistivity and Seebeck coeffi-
cient measurements simultaneously. Differential Scanning Calorimetry

(DSC-8231, Thermo Plus Evo2, Rigaku) was employed to measure the
specific heat capacity (Cp). Thermal conductivity was calculated as a
product of thermal diffusivity*density*Cp. A Scanning Electron
Microscope (SEM, S-4800, Hitachi) was utilized for microstructure
characterization.

All the samples had a density of ≥94% of the theoretical density
after sintering but before annealing. Two different pellets from the
same sample powder were sintered; one of these was used to measure
all the properties, while the 2nd pellet was sealed in a quartz tube
under vacuum and annealed at 600 °C for 15 h, followed by cooling to
room temperature. These pellets, however, had a lower density (around
88% of the theoretical density). After grinding all the surfaces of the
pellets, these were employed for thermoelectric properties measure-
ments in the same way as for other pellets.

The pore size distribution of CoSb2.75Si0.075Te0.175 was obtained by
mercury intrusion porosimetry (Micromeritics AutoPore IV 9520).
Vickers microhardness measurement was carried out with an applied
load of 0.98 N for 15 s (AMT-X7FS, Matsuzawa).

2.1. Calculations

The present total energy pseudopotential calculations [31–33] were
based on local density approximation (LDA) in the density functional
theory [34,35] (DFT) with the von-Barth and Hedin (BH) interpolation
formula [36] for the exchange-correlation. Cubic structures were kept
in the structural relaxation for most cases. Their lattice constants and
internal atom positions were structurally relaxed. Although, there are
many possible combinations of replaced atom positions for Si and Te in
all calculated compounds, we chose only a few combinations for each
compound.

3. Results and discussion

Si and Te doped samples were synthesized by reacting high purity
elements followed by a solid state reaction. Obtained ingots were
pulverized and sintered by utilizing spark plasma sintering (SPS) which
yielded dense pellets (for density, please see Supplementary material
Table S1). The temperature-dependent thermal and electrical transport
properties are summarized in Supplementary material Fig. S2. The
general trend was similar to that reported for Te doping [28–30],
showing an increasing trend of ZT with rising Te content, mainly due to
the enhancement in electrical conductivity and Seebeck coefficient,
with Si addition having a less pronounced but positive effect on ZT (for
details, please see Supplementary material text and Fig. S2).

Careful annealing of the samples yielded striking results with
respect to the thermal properties. Newly sintered pellets, sealed in
quartz tubes under vacuum were annealed for 15 h at 600 °C. As shown
in Fig. 2c for CoSb2.75Si0.075Te0.175 for example, an enormous drop in
thermal conductivity was obtained when comparing the pristine
sample with the annealed sample (the other samples will be discussed
later), with only a petty degradation of electrical conductivity, which
indicates that the decrease in thermal conductivity is predominated by
lattice thermal conductivity (based on the Wiedemann-Franz relation-
ship, with Lorentz number (Fig. S3, supplementary material) calculated
from the observed Seebeck coefficient). To analyze the reason behind
this drop in lattice thermal conductivity, we employed a scanning
electron microscope (SEM) (Fig. 3a–d). A detailed study conducted on
various samples, denoted the formation of irregular, randomly or-
iented, and altering sized pores after annealing. Micrographs of
CoSb2.75Si0.075Te0.175 sample clearly display the tiny pores of varying
shapes and sizes (tens of nm to few micrometers), formed in the
material after annealing (Fig. 3b and c), while almost no pores are
present in the pristine sample (Fig. 3a). The formation of pores is also
obvious from the decay in density after annealing (Supplementary
material Table S1). Moreover, no porosity increase was observed in Te
free samples after annealing (Fig. 3d), pointing towards the role of Te
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Fig. 1. Schematic illustration of porosity and its effect on ZT. (a) A compact block representative of the pristine sample, with grains of the secondary phase in light color and (b) block
with pores, formed due to evaporation of secondary phase, having random, irregular and varying sized pores (black areas). (c) ZT around 0.7 is obtained for the pristine samples, without
pores. (d) Porosity effect gives rise to a high ZT showing more than 100% increase as compared to the pristine sample.

Fig. 2. Temperature-dependent thermoelectric properties of selected samples are presented, indicating the role of porosity in decreasing lattice thermal conductivity and thereby,
enhancing ZT. “Pristine (CoSb2.75Si0.075Te0.175)” represents the sample prior to annealing. First sample synthesized during the phase diagram study, is represented by FS (Co23Sb67Te10,
at%) and SS (Co23.4Sb69.1Si1.5Te6, at%) is the sample with high ZT. Symbol notation remains the same in all panels. (a) Electrical conductivity (σ), (b) Seebeck coefficient (α), (c) total
thermal conductivity (κ), (d) lattice thermal conductivity (κlat), (e) power factor (σα

2) and (f) ZT.
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containing phase in porosity enhancement. These micrographs also
indicate moderate grain growth during annealing. Interestingly, the
particles after annealing seem to be more regular and round as
compared to the irregular ones before annealing, pointing towards
improved crystallization after annealing, as expected. SEM micro-
graphs gave a hint that the route cause behind this remarkable drop
of thermal conductivity is the appearance of these tiny pores.

To have a proper insight into the size distribution of pores in the
sample, we used mercury intrusion porosimetry. Average size of pores
measured by this technique indicated that the majority of pores present
are 500 nm in size (Supplementary material Fig. S4a), although there is
a continuous peak starting from ∼150 to 500 nm. This variation in size
is in agreement with the size variation observed under SEM observa-
tions and proves the assumption of size variation. In contrast, the
pristine sample shows no significant peak in the pore size distribution
curve (Supplementary material Fig. S4(b)), showing no evidence of
significant pores. The absence of the pores is also confirmed by SEM
images (Fig. 3a).

Initial rough estimation of the effective thermal conductivity of
porous structures by utilizing Eucken [37] model (although, this model
is applicable to round and same size pores only), could not justify the
enormous decline of thermal conductivity observed in the current
study, as follows from a formula:

ϕ ϕκ ≈ κ [2(1 − )/(2 + )]eff m (1)

where ϕ is the porosity, κm is the bulk thermal conductivity. If we
consider 8% increase in porosity after annealing in our samples (based
on the density difference before and after annealing, Table S1,
Supplementary material), by using this equation, the estimated plunge
in thermal conductivity should be around 12%, but it is much higher
than that.

It is already reported that the average group velocities and density
of states (DOS) of phonons are suppressed in case of holey structures at
low temperatures and this suppression is expected to intensify as the
temperature increases [20,21]. It is also proclaimed that imperfections
in pores packing could potentially introduce additional phonon scatter-
ing [22]. A sizeable fraction of heat transfer is carried out by relatively

long mean free path phonons at room temperature [8]. Acoustic
phonons generally possess longer mean free paths, as compared to
optical phonons in CoSb3 [27] and they reach ∼500 nm for low
frequency phonons at room temperature. Additionally, it has been
shown that alloying significantly raises the fraction of heat carried by
long-wavelength phonons due to mass-difference scattering, efficiently
blocking high-frequency phonons [38]. We can expect a similar effect
in the material under investigation, as CoSb3 was alloyed by Te and Si.
So even bigger size pores may play a significant role in reducing the
lattice thermal conductivity by targeting long-wavelength phonon
scattering. Combination of micro- and nanometer sized pores can
scatter wide range of diverse frequency phonons. Furthermore, pores of
different shapes will scatter phonons in different directions, giving rise
to diffusive scattering, which is also considered helpful in reducing the
lattice thermal conductivity.

Moreover, it is expected that the improved crystallization due to
annealing, should generate smoother grain surfaces, as can be observed
in Fig. 3b. These smooth surfaces can reflect the phonons in a purely
specular way (at least some surfaces). Reflected waves have the
possibility to cause wave interference resulting in reduced group
velocities and thus, low thermal conductivity [23,39]. Although, this
contribution is likely minor, combination of all above-mentioned
phenomena will strongly affect the phonon mean free path and will
shorten it to a great extent. Subsequently, lattice thermal conductivity
would face a massive drop and our results agree well with such an
assumption.

Consequently, CoSb2.75Si0.075Te0.175 shows high porosity and a big
drop in thermal conductivity. Actually the thermal conductivity of
CoSb2.75Si0.075Te0.175 (~1.4 W/m K) is even lower than that for the
rare-earth triple-filled skutterudites [10], with lattice thermal conduc-
tivity being less than ~0.9 W/m K at 50 °C. It is even lower than
vitreous silica and slightly higher than the theoretically calculated
minimum lattice thermal conductivity of filled skutterudites (~0.7 W/
m K) [40], reaching phonon glass limit for CoSb3. According to our best
knowledge, this is one of the lowest lattice and total thermal con-
ductivity ever reported for all skutterudites having a power factor
higher than 3 mW/m K2.

Fig. 3. SEM micrographs of different samples before and after annealing. Cracked surface of CoSb2.75Si0.075Te0.175 sample (a) prior to annealing, also named as “pristine”, and (b) after
annealing, white circles mark the pores in the materials. (c) Nanometer-scale pores along grain boundaries are observed in addition to micrometer-sized pores, while (d) indicates the
absence of free Si and/or pores in CoSb2.875Si0.125 after annealing.
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We were able to elucidate the origin of creation of these remarkably
effective pores. X-ray diffraction (XRD) of the sintered pellets, prior to
and after annealing, served the purpose. We observed a small peak
before annealing, which vanished after annealing. The intensity of this
peak was very low. Therefore, XRD was carried out for a selected small
range 26≤2θ≤30 (deg.) (Fig. 4a) in order to solely focus on that peak. It
can unambiguously be seen that the peak at 2θ=28.4 (deg.), present
prior to annealing, completely disappears after annealing. This is the
highest intensity peak of Sb2Te. Moreover, Energy Dispersive X-ray
(EDX) mapping, indicated the presence of Sb2Te phase
(Supplementary material Fig. S5a–d) on the grain boundaries. No
such phase after annealing was observed, providing additional evidence
that Sb2Te is the sole responsible phase for pores formation.

Inspired by the general considerable enhancement in ZT after
annealing (Fig. 2 and Supplementary material Fig. S2), we decided to
get further insights from a phase diagram study (Fig. 4b). Such kind of
approach has already been proved useful in optimizing the ZT of Ce-
filled skutterudites [41]. Primary purpose of phase diagram-aided
study in our case was to optimize a composition which could make
the results repeatable without precipitating too much of the secondary
phases and to confirm the role of Sb2Te phase for the formation of
pores. A phase diagram targeted a new sample with nominal composi-
tion Co23.0Sb67.0Te10.0. This was first synthesized (labelled as “first
synthesis” FS) and showed an enhancement in ZT, although, it had no
Si in it. Absence of Si helped us to reliably conclude that Si had no role
in pores emergence. During sintering, some melt appeared outside the
die, which was collected and characterized; it was confirmed to be
Sb2Te phase. This phase starts to melt at around 500 °C and due to
high pressure, most of the phase is squeezed out. However, sintered
pellets always have a small amount of fine pores, and it can be expected
that a part of the Sb2Te remained and solidified on cooling, since we
detected that the pristine sample actually had a small amount of this
phase (Fig. 4a). During annealing under vacuum at high temperature
(higher than the melting point of this phase), Sb2Te evaporated and
during its escape, it likely paved small pores in the sample, mainly at
grain boundaries, as typically observed by SEM (Fig. 3b,c). In the case
of Co23.0Sb67.0Te10.0, although, this sample had a good electrical
conductivity over the entire temperature range (Fig. 2a), it showed a
low Seebeck coefficient (Fig. 2b). This can be explained by the relatively
large amounts of metallic Co(Sb,Te)2 secondary phase. Thermal
conductivity of Co23.0Sb67.0Te10.0 was low but not as low as for the
high ZT samples (Fig. 2c) and showed an increase at elevated
temperatures, most probably due to the bipolar effect, arising from
thermal excitation of minority charge carriers [42]. In order to enhance

the Seebeck coefficients and to suppress the bipolar effect, by studying
the phase diagram, we shifted the composition towards the Sb-rich area
(Fig. 4b). Furthermore, we added a small amount of Si which already
had been part of the high ZT samples. A sample with nominal
composition Co23.4Sb69.1Si1.5Te6.0 was thus synthesized. Although its
power factor remained the same (Fig. 2e), its Seebeck coefficient
enhanced, as compared to Co23.0Sb67.0Te10.0, and the bipolar effect
suppressed, giving rise to a similar and repeatable very high ZT~1.6
(Fig. 4f), as was achieved already.

Thanks to the porous structures formed by annealing and their
effect on the thermal conductivity, there has been an improvement of
more than 100% in Co23.4Sb69.1Si1.5Te6.0, reaching a striking ZT of 1.6
at around 500 °C, despite the absence of rattling rare-earth atoms. It
makes it a very promising approach for thermoelectric applications,
especially in cases where heavy dependence on the rare earth (RE)
elements should be avoided. We were also able to process the material
in air and stored it in ambient environment, without relying on a
glovebox which is another major advantage compared to rare earth or
alkaline metals containing skutterudites.

4. Calculations

To theoretically understand the effect of Si and Te doping, we
calculated the band structures with different Si and Te contents. As a
result of structural relaxation for the Co4Sb10Si1Te1, Co8Sb23Te1,
Co8Sb23Si1, Co8Sb22Si2, Co8Sb22Si1Te1, Co8Sb21Si1Te2, and
Co8Sb21Si2Te1 structures, their volumes decrease in comparison to
that of Co4Sb12 (skutterudite) with the exception of Co8Sb23Te1. The
volume of Co8Sb21Si2Te1 is slightly smaller than that of Co4Sb12 but its
difference is negligible. We qualitatively obtained results where a
smaller Si-Te distance is energetically more favorable than a longer
case in Co4Sb10Si1Te1 and Co8Sb22Si1Te1. This implies that the
replaced Si and Te atoms create co-doped pairs. All electronic band
structures were calculated by LDA(BH) for Co4Sb12, Co4Sb10Si1Te1,
and Co8Sb22Si1Te1, and these showed semiconducting natures in
accordance with the experimental results. The density of states
(DOS) of Co8Sb22Si1Te1, Co8Sb21Si1Te2, and Co8Sb21Si2Te1 are de-
noted in Fig. 5a, b, and c, respectively, with their band gaps indicated
by “0” on the vertical line. From Fig. 5a, it is obvious that
Co8Sb22Si1Te1 is semiconducting. In contrast, Co8Sb21Si1Te2 and
Co8Sb21Si2Te1 are metallic, as exhibited in Fig. 5b and c, these findings
also agree well with the experimental data (Supplementary material
Fig. S2). The electronic states of Co8Sb23Te1 (not shown) and
Co8Sb23Si1 (see inset in Fig. 5c) are also metallic (see Supplementary

Fig. 4. XRD and phase diagram. (a) XRD of Co23.4Sb69.1Si1.5Te6 (at%, named as SS) as sintered and annealed pellets. Dotted circle highlights the main peak of Sb2Te phase, which
completely disappeared after annealing. (b) Tentative partial phase diagram of Co-Sb-Te system at 600 °C. Diamond symbol denotes the sample FS (Co23Sb67Te10, at%) and red circle
represents SS sample (Co23.4Sb70.6Te6, at%. Although, 1.5 at% Sb was replaced by Si in this sample, but for the sack of simplicity, we show only 3 elements here). Green and red dotted
lines serve as an eye guide to estimate the amount of secondary phase/s in the sample. It is obvious that SS involves less amount of Co(Sb,Te)2 phase as compared to FS. Co(Sb,Te)2
phase is metallic and its large amounts should be avoided to achieve high ZT.
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material Table S2). The total numbers of valence electrons for
Co8Sb23Te1 and Co8Sb21Si1Te2 are one electron larger than those of
Co8Sb22Si1Te1 and Co8Sb24. This leads to the one electron doping (like
an n-type) for a semiconducting system and the system becomes
metallic. On the other hand, the total numbers of valence electrons
for Co8Sb23Si1 and Co8Sb21Si2Te1 are one electron fewer than those of
Co8Sb22Si1Te1 and Co8Sb24. Although, this leads to the one hole doping
(like a p-type) for a semiconducting system, and the system becomes
metallic, the electronic states of Co8Sb21Si2Te1 demonstrate an n-type
status, as displayed in Fig. 5c. This trend is consistent with Seebeck
coefficient behavior of CoSb2.875Si0.125 (p-type) and
CoSb2.75Si0.175Te0.075 (n-type) in Fig. S2d. We calculated Co8Sb22Si2
(see Fig. 5a inset) in order to compare with Co8Sb21Si2Te1. The
electronic state of Co8Sb22Si2 is semiconducting. Although n-type
behavior of Co8Sb21Si2Te1 seems to be unusual, the substitution of
Te for Sb transfers the electronic states from semiconducting to
metallic (one electron doping as n-type) in Co8Sb22Si2. For
Co8Sb21Si1Te2, total and partial DOS are shown in Fig. 5d. The largest
contribution comes from Co in the range of −3.0 to 0.0 eV. In contrast,
the partial DOS of Sb is distributed in the whole range. There is a finite
DOS of Te at the Fermi level, although contributions of Te and Si are
small as compared to Co and Sb.

In general, the values and behavior of the electrical conductivity
and Seebeck coefficient (Fig. S2b and d) are consistent with the
calculated DOS results as shown Fig. 5a–c because their curves around
the valence band top, conduction band bottom, and Fermi level are
similar to each other. From Fig. 5a to c and the inset of Fig. 5(d), each
Fermi level is close to the sharp peak and the DOS curves at the Fermi
level are quite sharp and distorted by Te (Fig. 5d) [43]. Sharp DOS
curves and peaks are obtained by flat bands. There is a relatively large
contribution of Te (blue line) similarly to Co (red) and Sb (yellow) as
shown in the inset of Fig. 5d. These sharp and distorted DOS may
enhance thermoelectric properties [44], which leads to large experi-
mental ZT values as shown in Fig. 2f and Supplementary material Fig.
S2j.

5. Conclusions

This report will open up new gates for other researchers to improve
their materials by utilizing this technique. The key factor of this report
is the absence of expensive rare earth (RE) or any air sensitive
elements, like alkali or alkaline earth metals. This keeps the material
cost low, makes the processing easy, allows the material to be stored in
ambient conditions while still delivers a high ZT, and makes it feasible
for bulk production.
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