
Biochimica et Biophysica Acta 1832 (2013) 660–673

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbad is
Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a
novel function in liver homeostasis☆,☆☆
Erawan Borkham-Kamphorst a,⁎, Eddy van de Leur a, Henning W. Zimmermann b, Karlin Raja Karlmark b,
Lidia Tihaa a, Ute Haas a, Frank Tacke b, Thorsten Berger c, Tak W. Mak c, Ralf Weiskirchen a,⁎
a Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Hospital, Germany
b Department of Medicine III, RWTH Aachen University Hospital, Germany
c The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer, Institute, University Health Network, Toronto, ON, Canada
Abbreviations: HRS, hepatorenal syndrome; NGAL/
lipopolysaccharide; ConA, Concanavalin A; BDL, bile duc
cyte chemoattractant protein-1/C–C chemokine ligand-
☆ Conflict of interest: None of the authors have som

☆☆ Financial support: This work was supported b
Forschungsgemeinschaft (SFB/TRR57, P13) and the IZKF
University.

⁎ Corresponding authors at: Institute of Clinical Che
RWTH-University Hospital, D-52074 Aachen, Germany. Te
241 8082512.

E-mail addresses: ekamphorst@ukaachen.de (E. Bo
rweiskirchen@ukaachen.de (R. Weiskirchen).

0925-4439/$ – see front matter © 2013 Elsevier B.V. Al
http://dx.doi.org/10.1016/j.bbadis.2013.01.014
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 16 November 2012
Received in revised form 10 January 2013
Accepted 16 January 2013
Available online 31 January 2013

Keywords:
Lipocalin
LCN2
NGAL
BDL
CCl4
Acute phase response
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other
forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepa-
tocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2−/− mice
were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile
duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine
expression, liver tissueWestern blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from
liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2−/−

mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and
chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and
JNK pathways. Hepatocytes of LCN2−/− mice showed lipid droplet accumulation and increased apoptosis.
Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic
models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2−/− mice showed slightly increased
fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly
higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic pa-
tients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective ef-
fect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show
significant positive correlation to inflammation instead.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Lipocalins are a distinct family of over thirty small soluble secreted
proteins involved in the transport of small hydrophobic proteins [1]. Al-
thoughmost of these proteins share three conservedmotifs, they have a
large degree of diversity with limited regions of sequence homology.
However, they contain a single characteristic eight-stranded, continu-
ously hydrogen-bonded anti-parallel β-barrel [1]. Lipocalin-2 (LCN2)
also known as 24p3 protein was first identified in urine taken from
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mice with SV40-infected kidneys [2]. Neutrophil gelatinase-associated
lipocalin (NGAL), the human homologue of LCN2,was subsequently pu-
rified from neutrophils and shown to be associated with gelatinase that
does not directly affect its enzymatic activity [3]. Rodent forms of this
lipocalin are not associatedwith gelatinase, andmostNGAL is exocytosed
fromneutrophils in a form that is not complexedwith gelatinase [3]. Sev-
eral functions of LCN2 have been identified, but the precise cellular and
extracellular roles are not yet defined. Functions related to cancer have
been suggested [4–6], but overall, the role of LCN2 in cell signaling, pro-
liferation, and apoptosis is still unclear. Some data suggest a role in in-
flammation [7], while other studies point at an important LCN2 role in
iron metabolism [8]. A number of inducers of this gene have been
found, including serum, lipopolysaccharide (LPS), various growth
factors, retinoic acid, glucocorticoids, and phorbol esters [4,9]. Also
MK-886, nordihydroguaiaretic acid (NDGA), and several compounds
acting as cyclooxygenase-2 inhibitors that induce apoptosis stimu-
late LCN2 expression [10,11]. LCN2 may serve as an acute kidney in-
jury biomarker [12] and exhibits important beneficial functions in
renal damage in experimental ischemia–reperfusion injury [13,14].
It induces iron-dependent responses, possibly via renal epithelial
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delivery of catechol–iron complexes [15]. Hence, LCN2may comprise an
endogenous nephron-protective mechanism limiting repeated bouts of
tubular insult [16]. In contrast, LCN2 is on the other hand reported to be
essential for chronic kidney disease progression in mice and humans
[17].

Inmurine liver, LCN2 is markedly induced during experimental sep-
sis and supposed to participate in antimicrobial host defenses by bind-
ing and scavenging bacterial iron-containing siderophores [18–21].
We recently identified that LCN2 is induced during experimental liver
injury [22]. Moreover, immunohistochemistry and cell-based experi-
ments revealed that injured hepatocytes are the main source of hepatic
LCN2 [22]. Previous findings further suggest that LCN2 is induced in
heart, kidney and liver after X-ray exposure most likely by the activity
of reactive oxygen species [23].

To further elucidate the causes of LCN2 induction and its function-
ing, we here performed a set of experiments in different models of ex-
perimental liver injury. LCN2−/− mice were subjected to acute and
chronic liver injury by application of CCl4, Concanavalin A (ConA), LPS
and ligation of the common bile duct (BDL). Acute single dose CCl4 in-
toxication showed more liver damage in LCN2−/− mice indicated by
significant higher levels of aminotransferases and increased expression
of inflammatory cytokines and chemokines including IL-1β, TNF-α
and the monocyte chemoattractant protein-1/C–C chemokine ligand-2
(MCP-1/CCL2). Additionally, hepatocytes of LCN2−/− mice showed en-
hanced hepatic lipid droplet accumulation and apoptosis. Increased ap-
optosis in LCN2 deficient mice was also found after application of ConA
or LPS and in livers of animals that were subjected to BDL for five days.
During chronic insult, LCN2−/−mice showedmore severe fibrosis com-
pared to wild type controls. In humans, patients with chronic liver dis-
ease displayed overall higher serum LCN2 levels that were associated
with impaired renal function.

2. Material and methods

2.1. Primary liver cell isolation and culturing

Hepatocytes were isolated using the collagenase method of Seglen
as described previously [24] and cultured on collagen-coated dishes
in Hepatozyme-SFM medium (Gibco, Invitrogen, St. Louis, MO).

2.2. RNA isolation, RT-PCR, and qRT-PCR

Total RNA from hepatocytes and liver tissue were isolated through
QIAzol Lysis Reagent containing a monophasic solution of phenol and
guanidine thiocyanate, followed by chloroform and isopropanol precip-
itation, DNAse digestion and RNeasy clean up with Mini Kits (Qiagen,
Hilden, Germany). Amplification primers were selected from se-
quences deposited in the GenBank database (Table 1) using the Primer
Express software (Applied Biosystems Invitrogen,Darmstadt, Germany).
Table 1
Primers used in this study.

Gene1 Acc. no. Forward primer Reverse primer

Col αI NM_007742 catgttcagctttgtggacct gcagctgacttcagggatgt
α-SMA NM_009606 aatgagcgtttccgttgc atccccgcagactccatac
IL-1α NM_010554 ttggttaaatgacctgcaaca gagcgctcacgaacagttg
IL-1β NM_008361 gagctgaaagctctccacctc ctttcctttgaggcccaaggc
IL-6 NM_031168 gctaccaaactggatataatcagga ccaggtagctatggtactccagaa
TNF-α NM_013693 accacgctcttctgtctactga tccacttggtggtttgctacg
CCL2 NM_011333 gtgttggctcagccagatgc gacacctgctgctggtgatcc
CCR2 NM_009915 tcgctgtaggaatgagaagaagagg caaggattcctggaaggtggtcaa
IFN-γ NM_008337 ggaggaactggcaaaaggatgg tgttgctgatggcctgattgtc
IL-2 NM_008366 gctgttgatggacctacagga ttcaattctgtggcctgctt
IL-4 NM_021283 cgtcctcacagcaacgaagaagcac aagagtctctgcagctccatga
IL-10 NM_010548 ggctgaggcgctgtcatcg tcattcatggccttgtagacacc
β-Actin NM_007393 ctctagacttcgagcaggagatgg atgccacaggattccatacccaaga
rS6 BC092050 cccatgaagcaaggtgttct acaatgcatccacgaacaga
First-strand cDNA was synthesized from 1 μg RNA in 20 μl volume
using SuperScriptTM II RNAse H reverse transcriptase and random
hexamer primers (Invitrogen). First-strand cDNA derived from 25 ng
RNA was subjected to real-time quantitative PCR, using qPCR Core Kits
(Eurogentec, Cologne, Germany). PCR conditions were 50 °C for 2 min,
95 °C for 10 min and 40 cycles of 95 °C for 15 s and 60 °C for 1 min.
All Taqman primers used in this study are given in Table 1. RNA normal-
ization was obtained through Taqman Ribosomal RNA Control Reagents
(Applied Biosystems) designed for 18S ribosomal RNA (rRNA) detection.

2.3. Patient samples

We included patients with chronic liver diseases of any etiology,
who were treated at our hospital as in- or outpatients [25]. Informed
consent was obtained prior to recruitment. A total of n=192 serum
specimens was analyzed encompassing patients without fibrosis, pa-
tients with histologically proven fibrosis and individuals that were di-
agnosed for cirrhosis based on the conjunction of imaging studies,
liver histology, laboratory parameters and the presence of typical
cirrhosis-related sequela [25]. Cirrhotic patients were further strati-
fied according to the Child–Turcotte–Pugh-Score [26]. Healthy blood
donors (n=91) from the local blood bank served as controls.

2.4. Animal experiments and specimen collection

All animal protocols were in full compliance with the guidelines
for animal care approved by the German Animal Care Committee.

a) acute injurymodels: To investigate the effect of LCN2 in acute liver in-
jury in mice, we used 6–8 week-old C57BL/6 wild type and LCN2−/−

mice subjected to either (i) a single intraperitoneal injection of
0.8 ml/kg body weight CCl4 (in mineral oil) for 48 h or (ii) a sin-
gle intravenous injection of 20 mg/kg body weight ConA (Sigma,
Taufkirchen, Germany) for 8 or 24 h or the respective tracer controls,
as previously described [27], (iii) single dose i.p. of LPS (2.5 mg/kg)
for 2 and 6 h respectively and (iv) 5 day-BDL [28,29].

b) chronic injurymodels: For chronic liver injury,we used long term ap-
plication of CCl4 for 8 weeks or BDL for 4 weeks.Micewere sacrificed,
serum samples analyzed by standard techniques and liver specimens
snap frozen in liquid nitrogen for protein and RNA isolation. Frozen
tissue section were preserved with Tissue-Tek (Sakura Finetek, The
Netherlands) in ice-cold 2-methylbutane (Roth, Karlsruhe, Germany)
andkept at−80 °C, orfixed in 4%buffered paraformaldehyde for his-
tological examination.

2.5. Immunohistochemistry

Paraffin-embedded liver tissue sections were treated as described
[30]. Non-specific staining was blocked with 50% FCS and 0.3% Triton
X-100 in PBS for 30 min at 37 °C followed by incubationwith peroxidase,
avidin and biotin. Blots were incubated with primary antibodies at 4 °C
overnight followed by incubationwith biotinylated secondary antibodies
(BA-9200, Vector Laboratories, Eching, Germany), avidin-conjugated
peroxidase (Vectastain ABC-Elite reagent, Vector Laboratories) and de-
veloped using the 3,3′-diaminobenzidine substrate (DAKO, Hamburg,
Germany).

2.6. SDS-PAGE and Western blot analysis

Cell and tissue lysates were prepared using RIPA buffer containing
20 mM Tris–HCl (pH 7.2), 150 mM NaCl, 2% (w/v) NP-40, 0.1% (w/v)
SDS, 0.5% (w/v) sodium deoxycholate and the Complete™-mixture of
proteinase inhibitors (Roche Diagnostics, Mannheim, Germany). Equal
amounts of cellular or liver protein extracts were diluted with Nu-PAGE
™ LDS electrophoresis sample buffer and DTT as reducing agent, then
heated at 95 °C for 10 min. and separated in 4–12% Bis–Tris gradient

ncbi-n:NM_007742
ncbi-n:NM_009606
ncbi-n:NM_010554
ncbi-n:NM_008361
ncbi-n:NM_031168
ncbi-n:NM_013693
ncbi-n:NM_011333
ncbi-n:NM_009915
ncbi-n:NM_008337
ncbi-n:NM_008366
ncbi-n:NM_021283
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ncbi-n:BC092050


Table 2
Antibodies used in this study.

Antibody Cat no. Supplier Species1 Dilution

LCN2 AF3508 R&D Systems, Wiesbaden, Germany m, r 1:1000
Phospho JNK 9251 Cell Signaling, NEB, Frankfurt, Germany h, m, r 1:1000
Total JNK 9252 Cell Signaling h, m, r 1:1000
Phospho p65 3033 Cell Signaling h, m, r 1:1000
Total p65 sc-8008 Santa Cruz Biotech, Santa Cruz, CA, USA h, m, r 1:1000
Phospho STAT1 5806 Cell Signaling h, m, r 1:1000
Total STAT1 Sc-346 Santa Cruz h, m, r 1:1000
Phospho STAT3 9134 Cell Signaling h, m, r 1:1000
Total STAT3 4904 Cell Signaling h, m, r 1:1000
Phospho-IKKα/β 2697 Cell Signaling h, m. r 1:1000
IKKα 2682 Cell Signaling h, m. r 1:1000
IκBα sc-371 Santa Cruz h, m. r 1:1000
Cleaved caspase-3 9664 Cell Signaling h, m, r 1:1000
Collagen type I PS065 Monosan, Uden, The Netherlands m, r 1:1000
Fibronectin AB1954 Millipore, Merck, Billerica, MA, USA m, r 1:1000
β-Actin A5441 Sigma, Taufkirchen, Germany h, m, r 1:10,000
α-SMA CBL1 Cymbus Biotech, Hampshire, UK h, m, r 1:2000
Ribosomal rS6 2317 Cell Signaling h, m, r 1:1000
GAPDH sc-32233 Santa Cruz h, m, r 1:1000
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gels using MOPS or MES running buffer (Invitrogen). Proteins were
electroblotted onto nitrocellulose membranes and equal loading and
protein transfer verified by Ponceau S stain. Non-specific binding sites
were blocked in TBS containing 5% (w/v) non-fat milk powder. All anti-
bodies (see Table 2) were diluted in 2.5% (w/v) non-fat milk powder in
Tris-buffered saline. Primary antibodies were visualized using horserad-
ish peroxidase conjugated anti-mouse-, anti-rabbit- or anti-goat IgG
(Santa Cruz Biotech, Santa Cruz, CA) and the SuperSignal chemilumines-
cent substrate (Pierce, Bonn, Germany).
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2.7. Terminal transferase dUTP nick end-labeling assay (TUNEL)

For DNA fragmentation detection resulting from apoptotic signaling
cascades, we used In Situ Cell Death Detection Kit Fluorescein (Roche)
according to the manufacturer's instructions. The presence of nicks in
the DNA was identified by terminal deoxynucleotidyl transferase (TdT),
an enzyme that catalyzes the addition of labeling dUTPs. Frozen liver tis-
sue sections were analyzed with fluorescence microscope for direct
fluorescein.
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Fig. 2. LCN2 deficient mice showmore liver damage after CCl4 administration. (A)Wild type (C57BL/6) and LCN2−/− mice (6 animals/group) were treated with a single dose of CCl4
(0.8 ml/kg) in mineral oil. Mice were sacrificed after 48 h and serum levels of AST and ALT determined. (B) Quantitative RT-PCR showed higher mRNA levels of inflammatory cy-
tokines (i.e. CCL2, IL-1β, TNF-α, and IFN-γ) in LCN2−/− mice compared to controls, while the expression of IL-10 was reduced. (C) Hematoxylin/eosin and oil red staining showed
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acute CCl4 liver injury showing increased hepatocyte apoptosis in LCN2−/− mice compared to controls.
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2.8. Serum LCN2 ELISA measurements

Serum was 1:30 diluted and analyzed using the human lipocalin-2/
NGAL ELISA kit (BioVendor, Brno, Czech Republic) according to the
manufacturer's instructions.

2.9. Measurement of serum parameters

Serum biochemical parameters (ALT and AST) were measured
using the Modular Pre-Analytics (MPA) system (Roche).

3. Results

3.1. LCN2 levels correlate with the degree of acute liver damage and
inflammation

Our previous work suggested that upregulation of LCN2 after acute
or chronic liver damage represents a distinct response of injured hepato-
cytes [22]. In mice, LCN2 is an acute-phase protein that appears rapidly
in the bloodstream in response to a systemic infection or toxin exposure.
Accordingly, LCN2 expression in mice is upregulated after injection of
CCl4- or ConA and correlates with hepatic injury indicated by elevated
levels of AST and ALT (Fig. 1A, B). In contrast to normal tissue structure
observed in control livers (injected with saline solution or mineral oil),
a perivascular zone of necrosis was seen in livers of CCl4-treated animals,
while ConA-treated mice showed a diffuse perivascular and parenchy-
mal zone of hepatic injury (Fig. 1C). Immunohistochemistry confirmed
that LCN2 expression is induced in injured hepatocytes and infiltrating
inflammatory cells (Fig. 1C). Interestingly, LCN2 induction was further
associated with elevated expression of the inflammatory chemokine
MCP-1/CCL2 (Fig. 1D).

The observed immunolocalization of LCN2 was in agreement
with that observed in different other liver injury models in both
rats and mice [22]. In the present mouse model, in which the expres-
sion of LCN2 was analyzed 6 h after LPS application, infiltrating in-
flammatory cells were the prominent cell type producing LCN2, while
injured hepatocytes and inflammatory cells were found in both acute
and chronic CCl4 chemical injuries. Interestingly, our long-termmineral
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oil i.p. injection control group showed diffused Kupffer cells and
hepatic macrophages as the main source of LCN2 production. Fur-
thermore, the BDL models showed a lesser degree of inflammation
compared to the LPS- and CCl4 models. Proliferative bile duct epi-
thelia, hepatocytes and infiltrating inflammatory cells stained pos-
itive for LCN2 (Suppl. Fig. 1).

3.2. LCN2−/− mice are more susceptible to acute CCl4-induced liver
injury

Eight week-old C57BL/6 wild type and LCN2−/− mice (6 animals/
group) were subjected to a single intraperitoneal injection of CCl4
(0.8 ml/kg body weight) for 48 h. The serum transaminases AST and
ALT were significantly higher in LCN2−/− mice (Fig. 2A). Moreover, in-
flammatory cytokines and chemokines were expressed at higher levels
in LCN2−/− livers (Fig. 2B). Likewise, α-SMA mRNA indicating activa-
tion of hepatic stellate cells was higher expressed in livers of respective
animals (data not shown). Liver histology showed more inflammatory
cell infiltration and fat content in LCN2−/− mice (Fig. 2C). Additionally,
TUNEL assay showed more apoptotic hepatocytes around central veins
(Fig. 2D).

3.3. LCN2−/− mice are more susceptible to T-cell mediated hepatitis

LCN2 is an acute phase protein in mice and as such part of the in-
nate immune response. Upon induction of immune-mediated acute
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hepatitis by ConA, LCN2−/− mice exhibited more severe liver dam-
age than their wild-type counterparts that was associated with in-
creased expression levels of pro-inflammatory cytokines including
IL-6, TNF-α, IL-1α, IL-1β, IFN-γ, IL-2, and IL-4 while the expression
of IL-10 was unaffected (Fig. 3A). In line with the activation of sever-
al inflammatory cytokines after ConA challenge, we found strong
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activation of the STAT1, STAT3, and JNK pathways in respective mice
(Fig. 3B).

Interestingly, we noticed that hepatocyte apoptosis was more pro-
nounced in ConA-challenged LCN2−/− mice (Fig. 3C). ConA activates
T cells and binds mannose residues of different glycoproteins thereby
activating lymphocytes. In this model, immune-mediated liver injury
strongly depends on activation of CD4+ T cells, NKT cells and Kupffer
cells [31]. In line, we found by FACS analysis that hepatic leukocyte
isolates significantly more hepatic macrophages and Kupffer cells in
mice lacking LCN2 as indicated by increased numbers of cells positive
for CD11b and F4/80 (Fig. 3D).
3.4. LCN2−/− mice show enhanced LPS-induced acute liver injury

Bacterial LPS represents a well known agent triggering hepatic in-
jury and subsequent fibrosis. LPS application in mice results in a rapid
and marked induction of IL-6, IL-1β and TNF-α promoting hepatocyte
damage and HSC activation resulting in inflammation and fibrosis.
After application of a single dose of 2.5 mg/kg LPS, serum AST and
ALT tended to be increased in LCN2-deficient compared to WT mice
(Fig. 4A). In line, the levels of IL-1β, IL-6, TNF-α and MCP-1/CCL2
after 6 h remained higher in LCN2−/− mice (Fig. 4B) resulting in
sustained phosphorylation of STAT1 and STAT3 (Fig. 4C).

3.5. More hepatocyte apoptosis in LCN2−/− mice in 5 day-BDL-induced
acute liver injury

In early periods of cholestasis induced by BDL, livers showed pro-
liferative bile ducts and periportal infiltration by inflammatory cells
(Fig. 5A). In this model, the serum AST and ALT were not significant
different between LCN2−/− and control animals (Fig. 5B). However,
in line with the observations that we made in the LPS model, TUNEL
assays revealed increased hepatocyte apoptosis in LCN2−/− animals
(Fig. 5C).

3.6. LCN2−/− mice showed more liver damage after long term CCl4
application

Mice were injected with CCl4 twice weekly for 8 weeks. Serum
aminotransferases (Fig. 6A), hepatic expression of collagen type I
(αI) (Fig. 6B, left) and α-SMA mRNA (Fig. 6B, right) were higher in
LCN2−/− animals (Fig. 6B), but Sirius Red and α-SMA immunohisto-
chemistry staining as well as Western blot analysis showed only
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slightly differences in both groups (Fig. 6C–F). However, the levels
of several inflammatory cytokines in LCN2−/− mice after treatment
with CCl4 were significantly higher than in WT controls (Fig. 6G). A
similar phenomenon was observed when animals were compared
after setting BDL for 4 weeks (Fig. 7). Surprisingly, long-term i.p. ap-
plication of mineral oil did induce sterile peritoneal inflammation
and granuloma without liver fibrosis, but also showed significant
upregulation of LCN2 in WT mice. Immunohistochemistry of LCN2
confirmed the production of LCN2 in residential (i.e. Kupffer cells)
and infiltrating inflammatory cells (i.e. macrophages) in livers of ani-
mals that were subjected to application of mineral oil for eight weeks
(Suppl. Fig. 1).

3.7. Sustained NFκB activation in LCN2−/− hepatocytes

Since hepatic LCN2 production is induced by IL-1β through NFκB ac-
tivation [22], we next examinedNFκB signaling in LCN2−/− hepatocytes.
Therefore, primary cultured hepatocytes were stimulated with IL-1β,
IL-6, TNF-α, as well as a combination of IL-1β and IL-6 in Hepatozyme
for 30 min and 24 h. Protein cell extracts were prepared and analyzed
by Western blot for NFκB signaling components (Fig. 8). Both TNF-α
and IL-1β did activate canonical NFκB signaling pathway, evidenced by
A
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phosphorylation of IKKα/β, subsequently induced IκBα degradation,
and p65 phosphorylation at 30 min. Although we noticed a slight lesser
degree of IKKα/β phosphorylation in hepatocytes isolated from LCN2−/−

mice, we found no differences in pp65. The 24 h incubation, however,
showed sustained p65 phosphorylation in LCN2−/− hepatocytes. Con-
trary to IL-1β, TNF-α did activate NFκB signaling but failed to induce
LCN2 production. Moreover, in LCN2−/− hepatocytes, the stimulation
with TNF-α resulted in hepatocyte apoptosis as evidenced by elevated
levels of cleaved caspase-3.

3.8. Serum levels of LCN2 in chronic human liver disease

In order to elucidate whether LCN2 is also regulated in human
liver disease, we assessed LCN2 serum levels in 192 patients with
chronic liver diseases of variable etiology and clinical severity in com-
parison to 91 healthy controls. LCN2 was readily detectable by ELISA
in all samples. Patients with chronic liver disease exhibited significantly
higher concentrations compared to the healthy control cohort (median
67.45 ng/mL [range 17.3–401.9] vs. 57.9 ng/mL [range 18.3–176.3];
p=0.0127) (Fig. 9A). Evaluating its usefulness to discriminate between
different stages of chronic liver disease, we failed to detect significantly
varying levels of LCN2 in non-cirrhotic vs. cirrhotic patients indicating
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that serum LCN2 does not reflect stage of chronic liver disease
(Fig. 9B). Accordingly, patients with underlying compensated cirrho-
sis (Child A) displayed comparable levels of circulating LCN2 to those
with end-stage liver disease (Child C) (Fig. 9C). In line, correlation
analysis did not reveal associations between LCN2 and serum markers
of liver synthesis capacity (albumin, PCHE, INR, and Factor V), cholesta-
sis (bilirubin), liver-related enzymes as indicators of hepatocellular cell
damage (AST, ALT, and GLDH) and non-invasive fibrosis markers
(hyaluronic acid and procollagen-III-peptide) as well as composite
scores for assessment of end-stage liver disease (Child–Pugh-Score
points, MELD score) (Table 3). Etiology of underlying disease neither
had a detectable influence on serum LCN2 concentrations even
when adjusted to liver function (Fig. 9D and data not shown). How-
ever, there is substantial evidence that LCN2 elevation occurs in the
context of inflammation which is frequently present in chronic liver
disease since various acute-phase proteins (CRP and ferritin), white
blood cell count, cytokines (TNF-α and IL-6) and inflammatory cyto-
kines (MIP-1α, MIP-1β, MCP-1, and IL-8) positively correlated with
serum LCN2 concentrations. Serum LCN2 levels showed no correla-
tion with serum ALT (Fig. 9E) and AST (Fig. 9F) but was additionally
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related to impaired renal function in patients with chronic liver dis-
ease given the close correlations to urea and glomerular filtration
rate (GFR) as calculated by cystatin Cmeasurements and the significant
LCN2 increase in patients with a GFR below 60 ml/min/1.73 m2

(Table 3 and Fig. 9G). Selecting patients with a creatinine value below
1.5 mg/dL LCN2 turned out to be a useful marker to detect patients
with a cystatin-C-based GFR under 50 ml/min/1.73 m2 in a ROC-curve
analysis (AUC 0.652, p=0.015).

4. Discussion

LCN2 is an acute phase protein in mice. We here examined LCN2 ex-
pression in different acute liver injury models within the first 24 h and
found that LCN2 increases after application of CCl4, ConA and LPS. Inter-
estingly, the levels of hepatic and serum LCN2 correlated well with
serum AST and ALT confirming a previous finding that human serum
LCN2 correlates significantly with AST, ALT, cholesterol, creatinine and
C-reactive protein [32]. Additionally, the LCN2 levels in our analysis also
corresponded to CCL2 mRNA representing a marker of inflammation.

Serum and urinary LCN2 are now accepted as a sensitivity marker
in early stage of acute kidney injury that is independent of serum
creatinine [33,16]. The specific function of LCN2 in kidney injury, as a
nephroprotective- or a profibrogenic factor is still under debate [14,15].

In liver, the precise function of LCN2 is still enigmatic. We here used
LCN2−/− mice to explore the functional roles of LCN2 in different
experimental liver injury models. Targeted disruption of the murine
LCN2 gene is compatible with normal organogenesis and develop-
ment to adulthood [20]. In line, we found no differences in liver
function tests in healthy animals compared to wild type controls. How-
ever, during the challengewith acute toxic chemicals or the generation of
mechanical induced cholestasis, LCN2−/− mice showed significantly
more liver damage as evidenced by increased AST and ALT after applica-
tion of CCl4, ConA and LPS, while the BDL surgery in short-term revealed
no differences in both groups. This suggests that rapid LCN2 induction
protects hepatocytes from direct toxic injury. In contrast, hepatocyte in-
jury resulting from the BDL surgery is more gradual during the progres-
sion of cholestasis and LCN2 is produced mainly from proliferative bile
duct epithelia.

Additionally, the chemically-induced injury exhibited more in-
flammatory responses compared to the mechanically induced BDL
as evidenced by more infiltrating inflammatory cells as evidenced
by immunohistochemistry (Suppl. Fig. 1) and upregulation of the
pro-inflammatory cytokines IL-1β, IL-6, TNF-α and IFN-γ. The LCN2−/−

mice expressed higher levels of the respective cytokines, including the
MCP-1/CCL2 chemokine, while the anti-inflammatory cytokine IL-10 ac-
tually decreased or remained unchanged.

In the ConA and LPS models, IFN-γ is the major cytokine responsi-
ble for STAT1 activation. STAT1 not only plays a key role in antiviral
defense during hepatitis virus infection but also contributes to liver
inflammation and injury and suppression of liver regeneration. We
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Table 3
LCN2 correlation analysis [patients only].

Parameter Correlation coefficient r p-value

MIP-1α .232 .006
MIG .212 .016
MCP-1 .221 .012
IP-10 .199 .030
IL-8 .225 .002
IL-6 .267 .001
Urea .388 b .001
Cystatin C .274 b .001
GFR [Cystatin C] − .274 b .001
Uric acid .207 .007
CRP .244 .001
PCT .266 .001
WBC .430 b .001
Lymphocytes [rel. count] − .390 b .001
IL-10 .212 .007
TNF-α .187 .019
Monocytes [rel. PBMC] .221 .003
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found STAT1 phosphorylation in both LCN2−/− and wild type mice,
but STAT1 showed sustained activation in LCN2−/−mice after LPS chal-
lenge, possibly being causative for more severe liver damage that we
noticed in our analysis.

STAT3 is activated by a wide variety of cytokines (e.g. IL-6) and
viral proteins and plays a key role in acute phase response, promotion
of regeneration, glucose homeostasis, and hepatic lipid metabolism
and protects against liver injury by suppression of IFN-γ signaling
[34,35]. Since IL-6 is also one of the cytokines inducing LCN2 expres-
sion in cultured hepatocytes [22], LCN2 might be involved in the me-
diation of hepatoprotective effects downstream of IL-6 and STAT3.

TNF-α and IL-1β are mainly released from activated Kupffer cells or
infiltratingneutrophils andmacrophages. Both elicit defensive responses
in parenchymal cells, including activation of apoptosis but when these
defensive responses are overwhelming, cells may die by necrosis and
thereby stimulate even more inflammatory responses. Following toxic
chemical injury, LCN2−/− mice expressed higher levels of these cyto-
kines, culminating in more severe liver damage. TNF-α induces specific
signaling pathways in hepatocytes that lead to activation of either pro-
survival mediators or effectors of cell death. Whereas activation of tran-
scription factor NFκB promotes cell survival, c-Jun N-terminal ki-
nases (JNK) and caspases are strategic effectors of cell death in the
TNF-α-mediated signaling pathway.

Notably, stimulation with TNF-α and IL-1β induced prolonged NFκB
activation in LCN2−/− hepatocytes (Fig. 8B). This phenomenon might
be due to the lack of NFκB negative feedback loops from LCN2 since our
previous work showed that NFκB is necessary for LCN2 production [22].
Additionally, the persistence of NFκB activation may explain the higher
degree of inflammation that we observed in LCN2−/− mice upon liver
injuries.

In order to confirm whether LCN2 levels are also modulated in pa-
tients with human liver disease, we assessed LCN2 serum concentrations
in a large,well-characterized patient cohort. To our knowledge, this is the
first systematic analysis of circulating LCN2 in chronic liver disease pa-
tients. Though therewas an increase of LCN2 levels in patients compared
to the non-diseased, LCN2 levels did not vary within the different stages
of liver disease, ranging fromnon-fibrosis to decompensated liver cirrho-
sis. These findingsmight reflect the results of a recent in vitro study from
our group indicating that the pro-inflammatory cytokine IL-1β but not
the pro-fibrotic mediators PDGF and TGF-β induce LCN2 production in
hepatocytes [22].

In support, LCN2 levels correlated with polymorphonuclear cell
count, a multitude of parameters indicating acute phase responses
and immune cell activation, which corroborates with findings from
previous works, that could demonstrate a close link of LCN2 serum
levels to sterile and non-sterile inflammatory disease patterns [36–38].
This phenomenon was further observed in our long-term i.p. mineral
oil-induced sterile peritoneal inflammation in WT mice showing high
levels of LCN2 expression in Western blot and immunohistochemistry.
Recent studies showed LCN2 as an important paracrine chemoattractant
that stimulates polymorphonuclear cell migration and adherence [39]
and actively preventing sepsis [40]. Newdata further indicate that differ-
ent leukocyte subset compositions result in alterations of circulating
LCN2 levels that may explain why we in contrast to other reports did
not find the correlation of serum LCN2 to the staging of chronic liver dis-
ease progression [41]. Noteworthy, sustained inflammation, even on a
subclinical level, is a hallmark feature of liver fibrosis and cirrhosis. Fur-
thermore, LCN2 concentrations denoted renal insufficiency in our study
cohort in congruence to growing evidence that LCN2 is valuable marker
of impaired kidney function in liver-related disease settings such as liver
transplantation and cirrhosis [42,43]. According to our data and findings
by Gerbes et al., LCN2may detect clinically relevant renal insufficiency in
clinical liver disease patients when serum creatinine levels would only
indicate a modest functional decline. Impairment of kidney function is
common in cirrhosis and current studies show that patientswith hepat-
ic cirrhosis and acute tubular necrosis show strongly increased urine
LCN2 levels compared to patients with cirrhosis and classical type 1
hepatorenal syndrome (HRS), but this does not apply to HRS patients
with active bacterial infections. Moreover, patients with classical type
1 HRS show higher urine LCN2 levels compared to type 2 HRS patients,
chronic kidney diseases, and pre-renal azotemia, due to volume deple-
tion. Urine LCN2 levels thereforemay be indicative in the differential di-
agnosis of kidney function impairment in liver cirrhosis [44,45]. Even
though systemic LCN2 levels were not directly associated to liver func-
tion and disease severity, it is conceivable that LCN2 is regulated locally
in response to acute or chronic damage in human livers. More studies
comprising evaluation of hepatic LCN2 expression in liver biopsies or
explants are therefore essential to further elucidate the precise role
and regulation of LCN2 in human liver disease. The study presented
here, however, already demonstrates that LCN2 is functionally linked
to the process of inflammatory liver disease and it is reasonable to spec-
ulate that this lipocalin is an important mediator that in conjunction
with other molecular mediators and pathways regulates and controls
liver homeostasis (Suppl. Fig. 2).

In conclusion, upregulation of LCN2 in liver has several aspects: (i) it
is a reliable indicator of liver damage, (ii) it has a significant hepato-
protective effect in acute liver injury, and (iii) LCN2 levels provide no
correlation to the degree of liver fibrosis but provide a significant posi-
tive correlation to inflammation.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbadis.2013.01.014.
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