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Abstract-A numerical comparison is made between the quadratic isoparametric transformation method 
and a second order example of a high order transformation method for the model problem of Laplace’s 
equation on curved domains. Three curved domains are considered and numerical results for several trial 
solutions are given. Significantly improved accuracy is attained by the high order transformation method. A 
finer element discretisation is chosen for one of the domains resulting ,in more than twice the number of 
variables. The errors using the high order transformation method on the original mesh remain significantly 
smaller than those given by the isoparametric method used on the finer mesh. 

INTRODUCTION 

The isoparametric transformation method gives an ingenious, simple and very useful way of 
dealing with curved elements in the ‘finite element method. The method has been studied 
extensively and asymptotic error estimates are well known[l]. It is equally well known, 
however, that for finite, as opposed to infinitesimal, elements the method reduces to first 
order[2]. The difference in order between the transformed plane and the plane of problem 
definition is a function of the distortion of the particular element from its corresponding 
straight-sided counterpart. New bases have been introduced in an attempt to obtain better 
geometrical approximations to problem domains. Some of these bases have resulted in 
significent improvement in accuracy even though being nonconforming[3,41. Recently high 
order bases for curved finite elements have been proposed[5,61. These bases are high order in 
the plane of problem definition and for finite element size. The philosophy behind the 
development of such bases is the desire to produce more accurate results for a given element 
size and hence remove the need for element subdivision and the corresponding growth in 
discretised problem size. In the main, these bases are rational functions and the apparent s 
difficulties in using such functions have deterred their implementation in finite element pro- 
grams. Techniques, given in [7], facilitate the implementation of these methods and it is hoped 
that some much needed numerical studies of these methods will soon be forthcoming. Recently 
an alternative to rational bases has been proposed[8]. This method, called a “High Order 
Transformation” method, obviates the need for rational bases while retaining the required 
order. The form of the basis functions can be the same as in the isoparametric case, i.e. 
polynomial in the transformed coordinates. Thus the numerical integration problem is the same 
as that in the isoparametric method. The purpose of this note is to report the results of the first, 
albeit elementary, numerical comparison between a second order example of this basis and the 
corresponding isoparametric one. 

THE BASES 

Two-dimensional curved regions were considered. These regions were divided into elements 
in such a way that only straight-sided triangles and triangles with a single curved side were 
used. Isoparametric quadratics were used and hence the transformation is quadratic and the 
curved side a parabola. Illustrating the case where the element has vertices (O,O), (1,0) and (0,l) 
with the curved side between (1,0) and (0,l) (Fig. I), the isoparametric transformation is given 
by 

x = p( 1+ 2(2X - 1)q) 
(11 

y = Cj(l + 2(2Y - 1)p). 
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Fig. 1. The positions of the nodes in the X, Y and P, Q planes. Point 5 has coordinates (X, Y) in the X, Y 
plane and is the image of the point (i, 2 under the transformation given by eqn (1). Points 7 and 8 are the 

images of the points (i, i) and (5. $ respectively, under the same transformation. 

The isoparametric basis is given by 

Wl(P, 4) = (1 -P - 4)(1-2P - 2q) 

WP, 4) = PQP - 1) 

w,(P, 4) = 4(2q - 1) 

W,(P, 4) = 4P(l -P - Q) 

Ws(P, 4) = 4Pq 

w6k.4 4) = %(I - p - 4). 

(2) 

Though the high order transformation method is not restricted to any particular trans- 
formation, for the sake of a controlled comparison the same transformation was used. This 
ensures us that each method is being used on exactly the same geometry. 

Let Ci(X, y), i = 1.2,. . . ,6, denote the quadratic polynomial which is zero at the points (Xi, 
yr), j# i, and has unit value at (Xi, yi), i.e. 

Ci(Xj9 Yj) = &j, i,j=l,2 ,..., 6. (3) 

Let (i, jh denote the linear polynomial which is zero at (Xi, yi), (Xi, yj) and has unit value at 
(xk, yk). Then the high order transformation method bases is given by 

W(X9 Y, PI 4) = Ci(% Y) - Ci(X7, Y7) WA-5 Y9 P9 4) - Ci(X8, YE) wSCxv Y, P9 9) 

WAX, Y, P, d = ~pn@: 517 

Wsk Y, PI 4) = Tpq(7; 9% 

(4) 

Since (1) gives x and y as polynomials in p and q the basis given by (4) is polynomial in the 
p; q coordinates. It is in fact a cubic polynomial in the p, q plane. The conformity, order and 
more detailed discussion of this type of basis is given in [8]. 

RESULTS 

Following tradition we consider Laplace’s equation with Dirichlet boundary conditions and 
a Galerkin formulation. We thus must minimize the functional 
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over the problem domain, subject to the boundary conditions 
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4-F Y) = g(x, Y) (6) 

on the domain boundary. 
The transformation given by eqn (1) implies that any curved boundaries are approximated 

by parabolae. This piecewise parabolic boundary was considered to be the problem domain and 
hence one source of discretization error was removed. The test solutions chosen for the trial 
were 

u*(x, y) = I- x - y 

U2(X,y)=1-X-y+x*-y2 

UJ(X, y) = 3X2(X + 3) - 3y2(x + 1) +3x + 1 

u4(x, y) = (x + 1)(5y4 - 10x2y2 - 20xy2 - 10y2 + x4+4x3 +6x2+4x + 1) (7) 

u5(x, y) = 5 In (x2 + y2) +x2 - y2 

u$x,y)=exp(f)sin(:) 

~76, Y) = exp (4 sin (Y). 

Exact boundary conditions were used at the boundary nodes. The linear and quadratic trial 
solutions were chosen so as to provide a reference point in significant figures of accuracy of the 
numerical solution. The isoparametric method should be exact for the linear trial solution and 
the high order transformation method exact for both linear and quadratic trial solutions. Since 
both methods result in integrals of the same form to be calculated, the same method of 
integration was used in each case. The method involved the use of recurrence relations which 
have been described elsewhere[8]. The required integrals are of the form 

where 

I 

II 
1-q 

Mij = 
(1 +;;;aq)dp dq, a=2(2X-l), /3=2(2Y-1). 

0 0 

The Mii’S satisfy the recurrence relation 

Mij + BMi+lj + aMi,j+l= Cij, (9) 

where C’ii = [T(i + l)r(i + l)l/[r(i + i + 3)], r represents the gamma function. This relation leads 
to others which are outlined in [8] and provide a method of calculating the integrals when the 
element has marked distortion, i.e. Ia], I/3) > 0.4 say. For ]a], 1~1 s 0.4, (9) alone provides a 
technique for calculating the Mij since the procedure defined by 

Mij = Cij - aMij+l- pMi+lj (10) 

converges quite rapidly. The technique is to assume the Mij are zero at some “layer” given by 
i + j = N > m and then to use (10) to work towards the required M+ i + j < N. The Mij+O as 
i + j- N and in practice it is usually su!I’icient to start at N = 12.t The two ways of using (9) 
yield accurate results and in an attempt to further eliminate a source of error, the integrals were 
calculated to much higher accuracy than would normally be required. The same effort was 
applied in the linear equation solver so that any difference in solution could be attributed 

tThe authors would like to thank Dr. Carl Anderson for his suggestion of applying (9) in this simple and effective way. 
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entirely to the different bases and not to different geometries, errors in numerical integration or 
linear equation solution. The computations were carried out on a PRIME 300 minicomputer, 
which does 32 bit floating point operations. All computations leading to the stiffness matrices 
were done in double precision, which is done in 48 bit arithmetic. A double precision linear 
equation solver was used. The application of boundary conditions was done in single precision. 

An approximate L2 norm of the error was calculated in the following way. 

(11) 

where N is the number of elements, the point (Xi, yi) is the centroid of the element if it is 
straight-sided or the image of the centroid under the transformation if it is a curved element, 
SAi is the area of element i, U(Xi, yi) is the exact solution at (xi, yi) and Ci is the approximate 
solution at the same point. 

The numerical results are given in Table 1. 

Table 1. The approximate L* norm calculated from eqn (8) for each of the seven trial 
solutions and each of the five trial domains 

Figs. Basis UI u2 U3 4 US U6 U7 

Isoparametric 0.0000 0.0003 0.0004 0.0032 
H.O.T. 0.0000 0.0000 0.0000 0.0005 

Isoparametric 0.0000 0.0006 0.0016 0.0015 
H.O.T. 0.0000 0.0000 0.0004 0.0010 

Isoparametric 0.0000 0.0029 0.0036 0.0057 
H.O.T. o.OoOO 0.0000 0.0001 0.0007 

Isoparametric 0.0000 0.0004 0.0005 0.0013 
H.O.T. o.OMO o.OOoO 0.0000 0.0003 

Isoparametric 0.0000 0.ooo1 o.Ow2 0.0005 
H.O.T. o.oooo 0.0000 o.GuOo 0.0002 

0.0006 
0.0000 
0.0013 
0.0001 
0.0031 
0.0000 
0.0004 
0.0000 
0.0002 
0.0000 

0.0036 0.0200 
0.0008 0.0053 
0.0034 0.0084 
0.0023 0.0059 
0.0077 0.0249 
0.0015 0.0086 
0.0028 0.0188 
0.0008 0.0051 
0.0011 0.0069 
0.0005 0.0036 

DISCUSSION 

The accuracy of either method is dependent on the geometry and the particular trial 
solution. The isoparametric method will be second order when the curvature tends to zero, 
hence for small and mildly curved elements one would expect the isoparametric method to be 
close to second order. Figure 2(b) illustrates this effect. There are relatively few seriously 
curved elements. Even in this case, the high order transformation method yields a distinct 
improvement for several of the trial solutions though only a marginal improvement-as 
expected-in “difficult” trial solutions &,(x, y) and u_Xx, y). In the situation of Fig. 2(c), we have 
a marked improvement even for the most testing of the trial solutions. This region has 12 of the 
20 elements having non-trivial curvature and the loss of accuracy of the isoparametric method 
is quite distinct. Subdivision of the same domain into smaller elements yields further interesting 
results. With the situation of Fig. 2(d) we have increased the number of unknowns in the linear 
system from 29 to 60. Both methods yield smaller L2 errors but the error in the isoparametric 
case for the 60x60 problem is still significantly larger than the error in the high order 
transformation case for the 29x 29 problem. Subdivision of the same region to give 72 
unknowns still resulted in an isoparametric solution with L2 errors twice those obtained by the 
high order transformation method with 29 unknowns. Finally subdivision to yield Fig. 2(e), 
which resulted in 97 unknowns, gave isoparametric L2 norms slightly better than the high order 
transformation method norms for the unsubdivided region. 

The results in Table 1 give a clear indication of the superiority in accuracy of the high order 
transformation method. However these tests reported here are far from extensive. Studies 
should be done on more realistic problems and also on the relative complications of using the 
two methods. One of the central issues is undoubtedly resulting matrix size. Current indications 
suggest that a given accuracy could be achieved with a much smaller matrix size if the high 
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order transformation method is used. This benefit however could be offset if the element 
stiffness matrices took much longer to calculate or if the program size were much larger than in 
the isoparametric case. These questions are difficult to answer without much more careful 
investigation. The basis functions themselves are more complicated in the high order trans- 
formation method for not only are they higher degree (cubic as opposed to quadratic) polynomi- 
als, but the coefficients are functions of the curvature (see eqn 4). These functions are however 
known and could be coded into the program at, say, the level of the derivative of the basis 
functions. That is, the coefficients can easily be calculated algebraically for each basis. This 
would result in a less flexible program for if one desired to use a different order of basis then a 
new set of coefficients would have to be calculated and a new block of code incorporated into 
the program. Such a procedure may result in a larger program size but may also result in a fast 
execution time. Such ideas of course can also be applied to the calculation of stiffness matrices 

Fig. 2(a). This region comprises 29 elements, IS of which have one curved side. The resulting linear system 
is of order 44. The region lies in the square x, y E (2.7). 

Fig. 2(b). This region comprises 29 elements, 17 of which have one curved side. The resulting linear system 
is of order 42. The region lies in the square x, y E (1,8). 
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Fig. 2(c). This region comprises 20 elements, 12 of which have one curved side. The resulting linear system 
is of order 29. The region lies in the square x, y E (2.8). 

Fig. 2(d). This region comprises 41 elements, 23 of which have one curved side. The resulting linear system 
is of order 60. The region is a different subdivision of the same shape as that of Fig. 2(c). 

Fig. 2(e) This region comprises 62 elements, 28 of which have one curved side. The resulting linear system 
‘is of order 97. The region is a different subdivision of the same shape as that of Fig. 2(c). 
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Fig. 3. A schematic representing the average L* error norms in trial solution ul to u, for the isoparametric 
and high order transformation methods based on Figs. 2(b), 2(c) and 2(d). 

for isoparametric bases[9]. It is also possible that further economies could be made by 
judicious use of the fact that a high order basis satisfies more properties than the isoparametric 
one. These extra conditions could be used to deduce the number of integrals once a few have 
been calculated[7]. Also warranting further investigation is the stability of high order bases. 
Most high order conforming bases for curved elements are singular as the curved sides 
degenerate to straight sides. This can cause numerical sensitivity in the calculation of the 
required integrals for elements which are only very slightly curved. In the current tests a check 
on the element distortion was imposed and the isoparametric bases was used in cases where the 
use of the high order. transformation method would have led to numerical instabilities. This was 
not a serious problem and occurred in only a few of the curved elements. This is discussed in 
some depth in the next paper. 
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