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Abstract

In this paper, several sufficient conditions are obtained to guarantee that the n-dimensional cellular neural network can
have even (62n) memory patterns. In addition, the estimations of attractive domain of such stable memory patterns are
obtained. These conditions, which can be directly derived from the parameters of the neural networks, are easily verified.
A new design procedure for cellular neural networks is developed based on stability theory (rather than the well-known
perceptron training algorithm), and the convergence in the new design procedure is guaranteed by the obtained local sta-
bility theorems. Finally, the validity and performance of the obtained results are illustrated by two examples.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Cellular neural networks, first introduced in 1988 [1], are of great interest due to the fact that they are among
the easiest to implement in hardware. Cellular neural networks include the class of feedback neural networks
with local interconnections and they are also suitable for very large-scale integration (VLSI) implementations
of associative memories. The goal of associative memories is to store a set of desired patterns as stable memories
such that a stored pattern can be retrieved when the initial pattern contains sufficient information about that
pattern. In practice the desired memory patterns are usually represented by bipolar vectors (or binary vectors).
Several salient studies of associative memories based on cellular neural networks can be found in [2–8].

In [5], the synthesis of cellular neural networks with space-invariant cloning-templates is considered;
a designed algorithm based on the eigenstructure method [7] is developed. The realization of associative
memories is considered in [2] via the class of (zero-input) cellular neural networks introduced in [1]. In
addition, a synthesis procedure (designed algorithm) for cellular neural networks with space-invariant
0307-904X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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cloning-templates is developed based on the well-known perceptron training algorithm in [2]. The global con-
vergence of some neural networks is considered in [9–15]. This paper provides a new design procedure for cel-
lular neural networks based on local stability theory (rather than the well-known perceptron training
algorithm, or the global convergence of equilibrium point). The convergence of the neural networks resulting
from the design procedure can be guaranteed by the obtained local stability theorems.

Consider a cellular neural network with multiple time-varying delays
dxiðtÞ
dt
¼ �xiðtÞ þ

Xn

j¼1

aijf ðxjðtÞÞ þ
Xn

j¼1

bijf ðxjðt � sijðtÞÞÞ þ ui; ð1Þ
where i ¼ 1; 2; . . . ; n, x ¼ ðx1; x2; . . . ; xnÞT 2 Rn, is a state vector, A ¼ ðaijÞ 2 Rn�n, B ¼ ðbijÞ 2 Rn�n are connec-
tion weight matrices, delay time sijðtÞ 6 s (constant), 8r 2 R,
f ðrÞ ¼ 1

2
ðjr þ 1j � jr � 1jÞ; ð2Þ
u ¼ ðu1; . . . ; unÞT 2 Rn is an external input vector.
Denote ð�1;�1Þ¼ ð�1;�1Þ1�½�1;1�0�ð1;þ1Þ0; ½�1;1� ¼ ð�1;�1Þ0�½�1;1�1�ð1;þ1Þ0; ð1;þ1Þ¼

ð�1;�1Þ0�½�1;1�0�ð1;þ1Þ1, R¼ð�1;þ1Þ = ð�1;�1Þ
S
½�1;1�

S
ð1;þ1Þ. Hence, ð�1;þ1Þn can be

disassembled into 3n subspaces:
X ¼
Yn

i¼1

ð�1;�1Þd
ðiÞ
1 � ½�1; 1�d

ðiÞ
2 � ð1;þ1Þd

ðiÞ
3 ; ðdðjÞ1 ; d

ðjÞ
2 ; d

ðjÞ
3 Þ ¼ ð1; 0; 0Þ or ð0; 1; 0Þ or ð0; 0; 1Þ; j ¼ 1; 2; . . . ; n

( )
:

ð3Þ

In the following, denote �ð�1;�1Þ ¼ ð1;1Þ;�ð1;1Þ ¼ ð�1;�1Þ,
ð�1;�1Þd
ðikÞ
¼
ð�1;�1Þ; i 6¼ k;

ð1;1Þ; i ¼ k;

�

ð�1;�1Þd
ðiklÞ
¼
ð�1;�1Þ; i 6¼ k or i 6¼ l;

ð1;1Þ; i ¼ k or i ¼ l:

�

Denote a saturation region as
XðsÞ ¼
Yn

i¼1

ð�1;�1Þd
ðiÞ
� ð1;þ1Þ1�dðiÞ

; dðjÞ ¼ 1 or 0; j ¼ 1; 2; . . . ; n

( )
:

Hence, X is made up of 3n elements, and X(s) is made up of 2n elements. For example, when n ¼ 2, all of the
elements of X are depicted in Fig. 1.

A vector a is called a (stable) memory vector (or simply, a memory) of the cellular neural network (1) if
a ¼ ðf ðb1Þ; f ðb2Þ; . . . ; f ðbnÞÞ

T, where b = (b1,b2, . . .,bn)T is an asymptotically stable equilibrium point of the
cellular neural network (1).

Denote Bn as the set of n-dimensional bipolar vectors, i.e.,
Bn ¼ x 2 Rn; x ¼ ðx1; . . . ; xnÞT; xi ¼ 1; or � 1; i ¼ 1; 2; . . . ; n
n o

:

Hence, Bn is made up of 2n elements. For any ðs1; s2; . . . ; snÞT 2 Bn, let
LðsiÞ ¼
ð1;1Þ; si ¼ 1;

ð�1;�1Þ; si ¼ �1:

�

Consequently, ðs1; s2; . . . ; snÞT and
Qn

i¼1LðsiÞ ¼Lðs1Þ �Lðs2Þ � � � � �LðsnÞ represent a one-to-one
correspondence.

The key problem to be addressed in this paper may be expressed as follows:
Design problem: Given mðm 6 2nÞ vectors a1; a2; . . . ; am 2 Bn, determine the connection weight matrices

A ¼ ðaijÞ, B ¼ ðbijÞ and the external input vector u such that a1; a2; . . . ; am are stable memory vectors of the
cellular neural networks (1).
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Fig. 1. Disassemble 2-dimensional space.
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Definition 1. The set D � Rn is said to be a globally exponentially attractive set of (1), if for solution xðt; t0;/Þ
of (1) with any initial condition /ð#Þ 2 Cð½t0 � s; t0�;RnÞ, there exist constants a > 0 and bð/Þ (depended on
/) such that
inf
x̂2D
kxðt; t0;/Þ � x̂k 6 bð/Þ expf�aðt � t0Þg:
Definition 2. The point x* is said to be an isolated equilibrium point of (1) if there exists d > 0 such that x* is
the only equilibrium point of (1) in fxjjjx� x�jj < d; x 2 Rng.

The remaining part of the paper consists of three sections. In Section 2, the main results are derived. In
Section 3, two illustrative examples are provided. And in Section 4, concluding remarks are given.

2. The main results

In the following, we always assume ui ¼ 0; i 2 f1; 2; . . . ; ng.

Theorem 1. If there exists ðs1; s2; . . . ; snÞT 2 Bn such that 8i 2 f1; 2; . . . ; ng,

Xn

j¼1

ðaij þ bijÞsj

 !
si > 1; ð4Þ
then (1) has neither more nor less than 2 isolated equilibrium points located in Xþ ¼
Qn

i¼1LðsiÞ and X� ¼Qn
i¼1ð�LðsiÞÞ, respectively.

Proof. Choose x� ¼ ðx�1; . . . ; x�nÞ
T, where x�i ¼

Pn
j¼1ðaij þ bijÞsj. From (4), x� 2 Xþ. In addition, �x�iþPn

j¼1aijf ðx�j Þ þ
Pn

j¼1bijf ðx�j Þ ¼ 0; i.e., x* is an equilibrium point located in X+. Similarly, �x� 2 X�, and

x�i þ
Pn

j¼1aijf ð�x�j Þ þ
Pn

j¼1bijf ð�x�j Þ ¼ 0. Thus, �x* is an equilibrium point located in X�. In the saturation

region X(s), if (1) has an equilibrium point, then this is always an isolated equilibrium point. Hence, (1) has
2 isolated equilibrium points located in Xþ 2 XðsÞ and X� 2 XðsÞ, respectively. h

Theorem 2. 8ðs1; s2; . . . ; snÞT 2 Bn, denote �X ¼
Qn

i¼1LðsiÞ. If x� 2 �X is an equilibrium point of (1), then it is a
locally exponentially stable equilibrium point, and �X is its locally exponentially attractive region.

Proof. If xðtÞ; xðt � sðtÞÞ 2 �X, then from (1) and (2),
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dxiðtÞ
dt
¼ �xiðtÞ þ

Xn

j¼1

aijsj þ
Xn

j¼1

bijsj: ð5Þ
Obviously, if (5) has an equilibrium point, then this equilibrium point must be globally exponentially stable.
Hence x* is locally exponentially stable, and �X is its locally exponentially attractive region. h
2.1. Numeration of equilibrium points

Without loss of generality, we assume aij; bij P 0; i; j 2 f1; 2; . . . ; ng in proving theorems in this section. The
proof for the other case can be reasoned in the same manner.

Theorem 3. If 8i 2 f1; 2; . . . ; ng,

Xn

j¼1

ðaij þ bijÞ > 1; ð6Þ
and 8k 2 f2; 3; . . . ; ng,
Xn

j¼1;j 6¼k

ða1j þ b1jÞ � a1k � b1k < 1; ð7Þ
then (1) has neither more nor less than 2 isolated and locally exponentially stable equilibrium points located in the

saturation region X(s).

Proof. Choose x� ¼ ðx�1; . . . ; x�nÞ
T or x� ¼ �ðx�1; . . . ; x�nÞ

T, where x�i ¼
Pn

j¼1ðaij þ bijÞ. From (6), x�i > 1. Hence,
�x�i þ

Pn
j¼1aijf ðx�j Þ þ

Pn
j¼1bijf ðx�j Þ ¼ 0; i.e., x* is an equilibrium point located in ð�1;�1Þn or ð1;1Þn.

According to Theorem 2, x* is locally exponentially stable.
Assume that there exists another equilibrium point �x� ¼ ð�x�1; . . . ;�x�nÞ

T located in the saturation region X(s), and

moreover, without loss of generality, assume ð1; s2; . . . ; snÞT 2 Bn, �x� 2 X1 ¼Lð1Þ �Lðs2Þ �LðsnÞ 2 XðsÞ.
Then, there exists k 2 f2; 3; . . . ; ng, such that sk ¼ �1, and ��x�i þ

Pn
j¼1aijf ð�x�j Þ þ

Pn
j¼1bijf ð�x�j Þ ¼ 0; i.e.,

��x�i þ
Pn

j¼1aijsj þ
Pn

j¼1bijsj ¼ 0. Thus, from (7),
�x�1 ¼
Xn

j¼1

a1jsj þ
Xn

j¼1

b1jsj 6

Xn

j¼1;j 6¼k

ða1j þ b1jÞ � a1k � b1k < 1:
This contradicts that �x� is an equilibrium point located in X1. Hence, Theorem 3 holds. h

Theorem 4. If there exists k 2 f2; 3; . . . ; ng such that 8i 2 f1; 2; . . . ; ng,
Xn

j¼1;j 6¼k

ðaij þ bijÞ � aik � bik > 1; i 6¼ k; ð8Þ

Xn

j¼1;j 6¼k

ðakj þ bkjÞ � akk � bkk < �1; ð9Þ
and 8m 2 f2; 3; . . . ; ng;m 6¼ k,
Xn

j¼1;j 6¼m

ða1j þ b1jÞ � a1m � b1m < 1; ð10Þ
then (1) has neither more nor less than 2þ 2� 1 isolated and locally exponentially stable equilibrium points

located in the saturation region X(s).

Proof. aij; bij P 0, (8) and (9) imply that (6) holds. It is similar to the proof of Theorem 3 that (1) has 2 iso-
lated and locally exponentially stable equilibrium points located in ð�1;�1Þn and ð1;1Þn, respectively.
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Choose x� ¼ ðx�1; . . . ; x�nÞ
T, where x�i ¼

Pn
j¼1;j6¼kðaij þ bijÞ � aik � bik . (8) and (9) imply that

x�i
> 1; i 6¼ k
< �1 i ¼ k:

�
. Hence, x� 2

Qn
i¼1ð�ð�1;�1Þd

ðikÞ
Þ 2 XðsÞ, and �x�i þ

Pn
j¼1aijf ðx�j Þ þ

Pn
j¼1bijf ðx�j Þ ¼ 0;

i.e., x* is an equilibrium point located in
Qn

i¼1ð�ð�1;�1Þd
ðikÞ
Þ. It is similar to prove that �x* is an

equilibrium point located in
Qn

i¼1ð�1;�1Þd
ðikÞ
2 XðsÞ.

Assume that there exists another equilibrium point �x� ¼ ð�x�1; . . . ;�x�nÞ
T located in the saturation region X(s),

and moreover, without loss of generality, assume that ð1; s2; . . . ; snÞT 2 Bn, �x� 2 X2 ¼Lð1Þ �Lðs2Þ�
LðsnÞ 2 XðsÞ. Then, there exists m 2 f2; 3; . . . ; ng;m 6¼ k such that sm ¼ �1, and ��x�i þ

Pn
j¼1aijf ð�x�j ÞþPn

j¼1bijf ð�x�j Þ ¼ 0; i.e., ��x�i þ
Pn

j¼1aijsj þ
Pn

j¼1bijsj ¼ 0. Thus, from (10),
�x�1 ¼
Xn

j¼1

a1jsj þ
Xn

j¼1

b1jsj 6

Xn

j¼1;j 6¼m

ða1j þ b1jÞ � a1m � b1m < 1:
This contradicts that �x� is an equilibrium point located in X2. Hence, Theorem 4 holds. h

Theorem 5. If 8i 2 f1; 2; . . . ; ng; k 2 N 1 ¼ fk1; k2; . . . ; kpg � f2; 3; . . . ; ng where p 6 n� 1,
Xn

j¼1;j 6¼k

ðaij þ bijÞ � aik � bik > 1; i 6¼ k; ð11Þ

Xn

j¼1;j 6¼k

ðakj þ bkjÞ � akk � bkk < �1; ð12Þ
8m 2 f2; 3; . . . ; ng � N 1,
Xn

j¼1;j 6¼m

ða1j þ b1jÞ � a1m � b1m < 1; ð13Þ
in addition 8l; q 2 N 1,
Xn

j¼1;j 6¼l;q

ða1j þ b1jÞ � a1l � a1q � b1l � b1q < 1; ð14Þ
then (1) has neither more nor less than 2þ 2� p isolated and locally exponentially stable equilibrium points

located in the saturation region X(s).

Proof. aij; bij P 0, (11) and (12) imply that (6) holds. It is similar to the proof of Theorem 3 that the cellular
neural network (1) has 2 isolated and locally stable equilibrium points located in ð�1;�1Þn and ð1;1Þn,
respectively.
8k 2 N1, it is similar to the proof of Theorem 4 that (1) has 2 isolated equilibrium points located inQn

i¼1ð�1;�1Þd
ðikÞ

and
Qn

i¼1ð�ð�1;�1Þd
ðikÞ
Þ, respectively, which are locally exponentially stable. Since N1 is

made up of p elements, (1) has 2� p isolated and locally exponentially stable equilibrium points located inS
k2N1
ð
Qn

i¼1ð�1;�1Þd
ðikÞ SQn

i¼1ð�ð�1;�1Þd
ðikÞ
ÞÞ.

Assume that there exists another equilibrium point �x� ¼ ð�x�1; . . . ;�x�nÞ
T located in the saturation region X(s),

and moreover, without loss of generality, assume that ð1; s2; . . . ; snÞT 2 Bn, �x� 2 X3 ¼Lð1Þ �Lðs2Þ�
LðsnÞ 2 XðsÞ. Then, there exists m 2 f2; 3; . . . ; ng;m 62 N 1 such that sm ¼ �1, or there exist l; q 2 N1 such that
sl ¼ �1; sq ¼ �1, and ��x�i þ

Pn
j¼1aijf ð�x�j Þ þ

Pn
j¼1bijf ð�x�j Þ ¼ 0; i.e., ��x�i þ

Pn
j¼1aijsj þ

Pn
j¼1bijsj ¼ 0. Thus,

from (13) or (14),
�x�1 ¼
Xn

j¼1

a1jsj þ
Xn

j¼1

b1jsj 6

Xn

j¼1;j 6¼m

ða1j þ b1jÞ � a1m � b1m < 1;
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or
�x�1 ¼
Xn

j¼1

a1jsj þ
Xn

j¼1

b1jsj 6

Xn

j¼1;j 6¼l;q

ða1j þ b1jÞ � a1l � b1l � a1q � b1q < 1:
This contradicts that �x� is an equilibrium point located in X3. Hence, Theorem 5 holds. h

Theorem 6. If 8i 2 f1; 2; . . . ; ng and 8k; l 2 f2; 3; . . . ; ng,
Xn

j¼1;j 6¼k;l

ðaij þ bijÞ � aik � ail � bik � bil > 1; i 6¼ k; and i 6¼ l; ð15Þ

Xn

j¼1;j 6¼k

ðaij þ bijÞ � akk � bkk < �1; ð16Þ

Xn

j¼1;j 6¼l

ðaij þ bijÞ � all � bll < �1; ð17Þ
and 8m; p; q 2 f2; 3; . . . ; ng,
Xn

j¼1;j 6¼m;p;q

ða1j þ b1jÞ �
X

j¼m;p;q

ða1j þ b1jÞ < 1; ð18Þ
then the cellular neural network (1) has neither more nor less than 2þ 2� ðn� 1Þ þ 2� C2
n�1 isolated equilibrium

points located in the saturation region X(s), which are locally exponentially stable, where C2
n�1 ¼

ðn�1Þ�ðn�2Þ
2

.

Proof. aij; bij P 0, (15), (16) and (17) imply that (11) and (12) hold. It is similar to the proof of Theorem 5 that
(1) has 2þ 2� ðn� 1Þ isolated and locally exponentially stable equilibrium points located in
ð�1;�1Þn
[
ð1;1Þn

[n
k¼2

Yn

i¼1

ð�1;�1Þd
ðikÞ[Yn

i¼1

ð�ð�1;�1Þd
ðikÞ
Þ

 !
:

8k; l 2 f2; 3; . . . ; ng, choose x� ¼ ðx�1; . . . ; x�nÞ
T, where x�i ¼

Pn
j¼1;j 6¼k;lðaij þ bijÞ �

P
j¼k;lðaij þ bijÞ. (15), (16) and

(17) imply that x�i
> 1; i 6¼ k; l
< �1 i ¼ k; l:

�
. Hence, x� 2

Qn
i¼1ð�ð�1;�1Þd

ðiklÞ
Þ 2 XðsÞ, and �x�i þ

Pn
j¼1aijf ðx�j ÞþPn

j¼1bijf ðx�j Þ ¼ 0; i.e., x* is an equilibrium point located in
Qn

i¼1ð�ð�1;�1Þd
ðiklÞ
Þ. It is similar to prove that

�x� is an equilibrium point located in
Qn

i¼1ð�1;�1Þd
ðiklÞ
2 XðsÞ, which is locally exponentially stable.

Since the set fðk; lÞ; k; l 2 f2; 3; . . . ; ng; k 6¼ lg is made up of ðn� 1Þ � ðn� 2Þ elements, (1) has 2� C2
n�1

isolated and locally exponentially stable equilibrium points located in
Sn

k¼2

Sn
l¼kþ1

Qn
i¼1ð�1;�1Þd

ðiklÞ S��
Qn

i¼1ð�ð�1;�1Þd
ðiklÞ
ÞÞÞ.

Assume that there exists another equilibrium point �x� ¼ ð�x�1; . . . ;�x�nÞ
T located in the saturation region X(s),

and moreover, without loss of generality, assume that ð1; s2; . . . ; snÞT 2 Bn, �x� 2 X4 ¼Lð1Þ �Lðs2Þ�
LðsnÞ 2 XðsÞ. Then, there exist m; p; q 2 f2; 3; . . . ; ng such that sm ¼ �1; sp ¼ �1; sq ¼ �1, and
��x�i þ

Pn
j¼1aijf ð�x�j Þ þ

Pn
j¼1bijf ð�x�j Þ ¼ 0; i.e., ��x�i þ

Pn
j¼1aijsj þ

Pn
j¼1bijsj ¼ 0. Thus, from (18),
�x�1 ¼
Xn

j¼1

a1jsj þ
Xn

j¼1

b1jsj 6

Xn

j¼1;j 6¼m;p;q

ða1j þ b1jÞ �
X

j¼m;p;q

ða1j þ b1jÞ < 1:
This contradicts that �x� is an equilibrium point located in X4. Hence, Theorem 6 holds. h

Theorem 7. If 8i 2 f1; 2; . . . ; ng,
aii þ bii �
Xn

j¼2

ðaij þ bijÞ > 1; ð19Þ
then the cellular neural network (1) has neither more nor less than 2þ 2� ðn� 1Þ þ 2�
Pn�1

j¼2C
j
n�1 isolated and

locally exponentially stable equilibrium points located in the saturation region X(s), where Cj
n�1 ¼

ðn�1Þ�ðn�2Þ�����ðn�jÞ
1�2�����j .
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Proof. 8ðs1; s2; . . . ; snÞT 2 Bn, choose x� ¼ ðx�1; . . . ; x�nÞ
T, where x�i ¼

Pn
j¼1ðaij þ bijÞsj. From (19),

x� 2
Qn

i¼1LðsiÞ 2 XðsÞ. In addition, �x�i þ
Pn

j¼1aijf ðx�j Þ þ
Pn

j¼1bijf ðx�j Þ ¼ 0; i.e., x* is an equilibrium point
located in

Qn
i¼1LðsiÞ.

Since the set Bn is made up of 2n elements, the cellular neural network (1) has 2n isolated equilibrium points
located in the saturation region X(s). According to Theorem 2, these equilibrium points are locally
exponentially stable. h
Remark. 2þ 2� ðn� 1Þ þ 2�
Pn�1

i¼2 C
i
n�1 ¼ 2n.
2.2. Design of the connection weights

For convenience, in this subsection, we let bij ¼ 0; 8i; j 2 f1; 2; . . . ; ng.

Corollary 1. If 8i; j 2 f1; 2; . . . ; ng,
aij ¼
2=n; i ¼ j;

1=n; i 6¼ j;

�

then (1) has neither more nor less than 2 isolated and locally exponentially stable equilibrium points located in the
saturation region X(s).

Proof. According to Theorem 3, Corollary 1 holds. h

Corollary 2. If there exists a constant k 2 f2; 3; . . . ; ng, such that 8i; j 2 f1; 2; . . . ; ng,
aij ¼

3=n; i ¼ j 6¼ k;

1=n; i 6¼ j; j 6¼ k;

2; i ¼ j ¼ k;

1=ð2nÞ; i 6¼ j; j ¼ k;

8>>><
>>>:
then (1) has neither more nor less than 2þ 2� 1 isolated and locally exponentially stable equilibrium points

located in the saturation region X(s).

Proof. According to Theorem 4, Corollary 2 holds. h

Corollary 3. If there exists a set N 1 ¼ fk1; k2; . . . ; kpg � f2; 3; . . . ; ng where p 6 n� 1, such that for all k 2 N 1,

8i; j 2 f1; 2; . . . ; ng,
aij ¼

ð3þ ðp � 1Þ=2Þ=n; i ¼ j 6¼ k;

1=n; i 6¼ j; j 6¼ k;

2; i ¼ j ¼ k;

1=ð2nÞ; i 6¼ j; j ¼ k;

8>>><
>>>:
then (1) has neither more nor less than 2þ 2� p isolated and locally exponentially stable equilibrium points

located in the saturation region X(s).

Proof. According to Theorem 5, Corollary 3 holds. h

Corollary 4. If n P 4 and 8i; j 2 f1; 2; . . . ; ng,
aij ¼
6=n; i ¼ j ¼ 1;

1=n; i 6¼ j;

2; i ¼ j 6¼ 1;

8><
>:
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then (1) has neither more nor less than 2þ 2� ðn� 1Þ þ 2� C2
n�1 isolated and locally exponentially stable equi-

librium points located in the saturation region X(s).

Proof. According to Theorem 6, Corollary 4 holds h

Corollary 5. If 8i; j 2 f1; 2; . . . ; ng,
aij ¼
2; i ¼ j;

1=n; i 6¼ j;

�

then (1) has neither more nor less than 2þ 2� ðn� 1Þ þ 2�
Pn�1

i¼2 C
i
n�1 isolated and locally exponentially stable

equilibrium points located in the saturation region X(s).

Proof. According to Theorem 7, Corollary 5 holds. h
2.3. A new design procedure

Step 1. Denote m desired patterns by m vectors in Bn; i.e., we obtained m n-dimensional vectors
bð1Þ; bð2Þ; . . . ; bðmÞ 2 Bn. n is number of neurons in the designed cellular neural networks.

Step 2. Design connection weight matrix A according to Theorems 3–7 and Corollarys 1–5 such that
bð1Þ; bð2Þ; . . . ; bðmÞ and their allelomorph vectors are stable memory vectors of the following cellular
neural network
dxðtÞ
dt
¼ �xðtÞ þ Af ðxðtÞÞ; ð20Þ

while the other vectors are not. The allelomorph vector of b is defined as �b.
3. Examples

In this section, we provide two examples to illustrate the results obtained in the preceding section.

Example 1. Design a cellular neural network with 4 neurons (n ¼ 4) to store three patterns shown in Fig. 2 as
stable memories (black ¼ �1 and white ¼ 1).

Step 1. bð1Þ ¼ ð1; 1; 1; 1ÞT; bð2Þ ¼ ð1;�1; 1; 1ÞT; and bð3Þ ¼ ð1; 1;�1; 1ÞT are three patterns which are desired to
be stable memory vectors of the potential cellular neural network.

Step 2. Choose
A1 ¼

7=8; 1=8; 1=8; 1=4

1=4; 2; 1=8; 1=4

1=4; 1=8; 2; 1=4

1=4; 1=8; 1=8; 7=8

0
BBB@

1
CCCA:
According to Corollary 3, the following cellular neural network
dxðtÞ
dt
¼ �xðtÞ þ A1f ðxðtÞÞ ð21Þ
Fig. 2. Three desired memory patterns for Example 1.



Fig. 3. Seven desired memory patterns for Example 2.
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has 6 stable memory patterns; i.e., bð1Þ; bð2Þ; bð3Þ and their allelomorph vectors. In addition, any other vector is
not a stable memory vector of the cellular neural network (21).

Example 2. Design a cellular neural network with 4 neurons (n ¼ 4). The objective is to store seven patterns
shown in Fig. 3 as stable memories (black ¼ �1 and white ¼ 1).

Step 1. bð1Þ ¼ ð1; 1; 1; 1ÞT; bð2Þ ¼ ð1;�1; 1; 1ÞT; bð3Þ ¼ ð1; 1;�1; 1ÞT; bð4Þ ¼ ð1; 1; 1;�1ÞT; bð5Þ ¼ ð1;�1;�1; 1ÞT;

bð6Þ ¼ ð1; 1;�1;�1ÞT and bð7Þ ¼ ð1;�1; 1, �1ÞT are seven patterns which are desired to be stable mem-
ory vectors of the potential cellular neural network.

Step 2. Choose
A2 ¼

6=4; 1=4; 1=4; 1=4

1=4; 2; 1=4; 1=4

1=4; 1=4; 2; 1=4

1=4; 1=4; 1=4; 2

0
BBB@

1
CCCA:
According to Corollary 4, the following cellular neural network
dxðtÞ
dt
¼ �xðtÞ þ A2f ðxðtÞÞ ð22Þ
has 14 stable memory patterns; i.e., bð1Þ; bð2Þ; . . .; bð7Þ and their allelomorph vectors. In addition, any other
vector is not a stable memory vector of (22).
4. Concluding remarks

In the paper, a new design procedure for cellular neural networks is developed based on the stability theory
instead of base on the well-known perceptron training algorithm. The convergence of the designed cellular
neural network can be guaranteed by some conditions derived from the local stability analysis of cellular neu-
ral networks. With these conditions, an n-dimensional cellular neural network can always have m (m 6 2n) sta-
ble memory patterns, where m is an even number. In addition, the attractive domains of such stable memory
patterns can be easily estimated. Moreover, the conditions depend only on the parameters of the neural net-
works, and consequently, are easy to check. So, the new design procedure provides a novel and convenient
method to design cellular neural networks for associative memories. Finally, two examples are discussed to
illustrate the validity and performance of the results.
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