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In metastatic colorectal cancer (mCRC), an improved understanding of the underlying pathology and
molecular biology has successfully merged with advances in diagnostic techniques and local/systemic
therapies as well as improvements in the functioning of multidisciplinary teams, to enable tailored
treatment regimens and optimized outcomes. Indeed, as a result of these advancements, median survival
for patients with mCRC is now in the range of 20–24 months, having approximately tripled in the last
20 years. The identification of KRAS as a negative predictive marker for activity of epidermal growth
factor receptor (EGFR)-targeted monoclonal antibodies (mAbs), such as panitumumab (Amgen, Thousand
Oaks, USA) and cetuximab (ImClone, Branchburg, USA), has perhaps had the greatest impact on patient
management. This meant that, for the first time, mCRC patients unlikely to respond to a targeted therapy
could be defined ahead of treatment. Ongoing controversies such as whether patients with KRAS G13D-
(or BRAF V600-) mutated tumours can still respond to EGFR-targeted mAbs and the potential impact of
inter- and intra-tumour heterogeneity on tumour sampling show that the usefulness of KRAS as a
biomarker has not yet been exhausted, and that other downstream biomarkers should be considered.
Conversely, a predictive biomarker for anti-angiogenic agents such as bevacizumab (Genentech, San
Francisco, USA) in the mCRC setting is still lacking. In this review we will discuss the discovery and
ongoing investigation into predictive biomarkers for mCRC as well as how recent advances have impacted
on clinical practice and ultimately the overall cost of treatment for these patients.

� 2013 Elsevier Ltd.Open access under CC BY-NC-ND license.
Introduction

Until relatively recently we believed that cancer could
essentially be treated using the same combinations and sequences
of locoregional (surgery and/or radiotherapy) and systemic
(chemotherapy) treatments in all patients. However, we are
now in a transitional period where we are embracing a more
personalised approach to cancer management. The heterogeneous
nature of cancer means that personalised medicine (i.e. tailoring
therapy to an individual patient) is a promising approach for
maximising efficacy and minimising the toxicity of treatment. It
also facilitates efficient healthcare delivery and generates cost
savings because treatment is only given to those likely to benefit
and so costs associated with drug wastage, hospital resource
utilisation and side-effect management are reduced. To successfully
deliver personalised medicine, it is necessary to have a clear
understanding of the pathology and molecular underpinnings of a
disease, as well as the associated clinical characteristics that define
different patient sub-populations with different outcomes in relation
to a given treatment. Identifying the optimum treatment strategy
also involves an understanding of a patient’s medical history,
disease status, and sometimes, their socio-economic situation, and
consideration of the wider healthcare framework, such as the
availability of hospital resources and reimbursement.

The ultimate goal of personalised medicine is to define a disease
sufficiently to enable identification and treatment of only those
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Fig. 1. Median overall survival for patients with metastatic colorectal cancer
treated at the M.D. Anderson Cancer Center and the Mayo Clinic by year of diagnosis
(error bars are 95% confidence intervals).12 Reprinted with permission � 2009
American Society of Clinical Oncology: Kopetz S, et al. J Clin Oncol 2009;
27(22):3677–3683. All rights reserved.
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patients most likely to respond. Although personalised medicine is
almost exclusively discussed in the context of targeted therapies,
chemotherapy also has the potential to be tailored to individual
patients. Advances in genomic and proteomic technologies and
the implementation of major collaborative studies such as the
human genome project and genome-wide association studies
(GWAS), have already generated much data and are leading to
the identification of many biomarkers – a characteristic that
can be objectively measured and evaluated as an indicator of
pathogenic processes or treatment responses. Biomarkers have
been identified for: early detection/risk stratification (diagnostic
markers); the likely course of a given disease (prognostic markers);
and prediction of treatment safety/efficacy outcome (predictive
markers).

The principle of targeted therapy was first proposed by Paul
Ehrlich more than 100 years ago, when he coined the term ‘magic
bullet’.1 Immunohistochemistry (IHC) provided one of the first
opportunities to personalise medicine and was effectively used in
breast cancer to identify patients with tumours expressing
oestrogen and/or progesterone receptors, who were candidates
for ‘targeted’ hormonal therapies like tamoxifen (AstraZeneca,
Delaware, USA). Furthermore, since its discovery more than
30 years ago,2hybridoma technology has enabled production of
large amounts of monoclonal antibodies (mAbs) targeted to
specific tumour antigens, and has led to a vast array of new
diagnostic and therapeutic options. These advances are already
revolutionising cancer screening, drug development and treatment
selection, and are major factors in personalising medicine in the
21st century. This concept has gained momentum in recent years
with the development of other successful therapies such as
imatinib mesylate (Novartis, New Jersey, USA)3 for chronic myeloid
leukaemia (CML) and gastrointestinal stromal tumours (GIST) and
trastuzumab (Genentech, San Francisco, USA)4 for breast and
gastric cancers. These agents target specific molecular alterations
(abnormal protein tyrosine kinase activity for imatinib,
overexpression of human epidermal growth factor receptor-2
[HER-2] for trastuzumab), which are now used as predictive
biomarkers of response, thereby allowing these drugs to be
targeted to individuals with the appropriate tumour characteristics.

Colorectal cancer (CRC) is perhaps one of the best examples of
how an increased understanding of disease molecular biology
has successfully merged with improved diagnostic techniques,
advances in local/systemic therapy, and improvements in the
functioning of multidisciplinary teams, to enable tailored
treatment regimens and optimized outcomes.
Evolution of personalised therapy in metastatic CRC (mCRC)

Globally, CRC is the third most commonly diagnosed cancer in
males and the second in females5 and is the second leading cause
of cancer mortality in the United States, accounting for 9% of all
cancer deaths.6 Approximately one-quarter of CRC patients have
metastases at diagnosis and a further 33–50% develop metastases
over their disease course.5,7 Surgical resection offers the possibility
of cure for a small minority of patients with mCRC and isolated
metastases.8 Management by a multidisciplinary team including,
for example, surgeons, oncologists, interventional radiologists,
radiotherapists, and nurses, increases the number of patients able
to undergo potentially curative treatment and has consequently
improved patient survival.7,9 Together, advances in local and
systemic therapy have led to improvements in survival10 with median
survival in mCRC increasing from approximately 8–24 months9,11

,

over the last 20 years. The improvements in survival times in
mCRC patients diagnosed between 1990 and 2006 at two large
specialised institutes are exemplified in Fig. 1.12 The availability
of new cytotoxic and targeted therapies and the implementation
of personalised medicine have been instrumental in this process.13
Evolution of systemic therapy for mCRC

Chemotherapy has been standard care for mCRC patients for
many years, and is based mainly on the use of three agents:
5-fluorouracil (5-FU; APP Pharmaceuticals, Schaumburg, USA),
irinotecan (Pfizer, New York, USA)14,15 and oxaliplatin
(Sanofi-Aventis, Bridgewater, USA).16,17 Infusional 5-FU regimens-
such as FOLFIRI18 or FOLFOX19 have better efficacy than earlier
bolus 5-FU regimens and currently provide the backbone of
therapy.20 Capecitabine (Genentech, San Francisco, USA),21 an oral
formulation of 5-FU, is also available.

Whilst the vast majority of biomarker research has focussed on
targeted therapies, efforts are continuing to identify predictive
markers of response or resistance to chemotherapy. Up to now,
however, there are only a few noteworthy examples. Although
results are somewhat conflicting, high thymidylate synthase (TS)
expression has generally been linked with poorer outcomes during
5-FU-based therapy,22,23 and 5-FU adjuvant treatment may also be
ineffective in tumours with microsatellite instability.13 Irinotecan
was one of the first chemotherapy agents to be dosed based on
the recipient’s pharmacogenomics; reduced irinotecan doses
should be considered in patients homozygous for the ⁄28 variant
form of UGT1A1 as they are unable to clear irinotecan as quickly
as normal and, therefore, suffer more severe haematological side
effects.24 Furthermore, homozygosity for the ⁄28 variant form of
UGT1A1 has been linked with improved efficacy of FOLFIRI.25

The most promising predictive marker of resistance to oxalipla-
tin is excision repair cross-complementing C1 (ERCC1) expres-
sion,26 and although there is currently no standard test available,
it is possible that ERCC1 testing may become routine in mCRC
patients in the future. Genetic differences in the glutathione
transferase pathway have also been suggested to lead to higher
rates of neurotoxicity during oxaliplatin therapy,27 however, this is
yet to be confirmed and has not yet impacted on clinical practice.
In addition, a FOLFOX response predictor has recently been
constructed based on gene expression profiles of responding and
non-responding patients.28 Initial results suggest that the overall
accuracy of this predictor is high (92.5%) and therefore it may offer
the possibility of selecting patients who would benefit from FOLFOX.



Fig. 2. An overview of the epidermal growth factor receptor (EGFR) pathway and its
main downstream effectors (top). Expected outcomes of anti-EGFR monoclonal
antibody (mAb) therapy (bottom): sensitivity (tumour response) when EGFR is
activated (increased copy number, ligand overexpression, other unknown
mechanisms) and downstream effectors are wild type (left); Resistance (tumour
growth and metastasis) when downstream effectors such as KRAS, BRAF or PI3K are
activated or PTEN is inactivated (right).106 Reprinted by permission from Macmillan
Publishers Ltd on behalf of Cancer Research UK: Di Fiore F, et al. Br J Cancer 2010;
103(12):1765–1772.
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The emergence of targeted therapies

Targeting angiogenesis – bevacizumab
The first biological targeted therapy to be used in mCRC was the

vascular endothelial growth factor-A (VEGF-A)-targeted agent,
bevacizumab (Genentech, San Francisco, USA). When used in com-
bination, bevacizumab improves progression-free survival (PFS)
compared with chemotherapy alone, while the effects on objective
response rate (ORR) and overall survival (OS) are less consistent
in the 1st-29–31 and 2nd-line32 mCRC settings. Generally the
overall magnitude of benefit appears to vary depending on the
choice of chemotherapy backbone, and is seemingly greater with
irinotecan-based regimens.33,34

As more effective therapies became available, the need for
predictive biomarkers to enable optimum treatment selection for
each patient increased. Such markers are particularly important
in mCRC because of the heterogeneity of response among colon
tumours and the toxicities and costs associated with the available
therapies.13 Despite much research35–40 and the broad application
of bevacizumab in many patients, it is still poorly understood
which patients/tumour characteristics are best treated with
anti-angiogenics, and no validated predictive markers of
response/resistance are currently available.41 Recently, VEGF-A,
TS, and tissue inhibitor of metalloproteinase 3 were identified as
factors that were differentially expressed in responding or
non-responding patients.39 A model utilising these three genes
appeared to accurately predict response to bevacizumab39 but
needs further evaluation in larger numbers of patients. In addition,
recent data from the AGITG MAX trial suggest that high
VEGF-Dexpression could be predictive of resistance to
bevacizumab.40 Results of a second study suggested that high
levels of an anti-angiogenic splice variant of VEGF-A (VEGF165b)
could have similar effects.42 Further investigation of the impact
of these potential markers of bevacizumab activity is warranted.
Some tumours show intrinsic resistance to bevacizumab and,
when they do occur, responses are often transitory with patients
showing restoration of tumour growth due to evasive resistance.43

Furthermore, in some preclinical studies, anti-angiogenic treatment
has been shown to elicit malignant progression of tumors and to
increase local invasion and distant metastasis.44 Various mechanisms
appear to be involved in different tumour contexts43 such as
upregulation of alternative proangiogenic signalling,45 recruitment
of vascular progenitor cells and pro-angiogenic monocytes46 and
increased tight pericyte coverage in the tumour vasculature.47

However, these have not yet been shown to occur in patients with
mCRC undergoing anti-angiogenic treatment. Nonetheless, these
preclinical observations should motivate additional studies and
should they be validated, could lead to combinatorial treatment
strategies integrating anti-angiogenics with drugs targeting the
appropriate resistance mechanisms. Based on results of a recent
preclinical study,44 it is of interest to clinically evaluate strategies
combining anti-invasive and anti-metastatic drugs with anti-angiogenics,
with the aim of producing a more enduring efficacy.

Targeting epidermal growth factor signalling – panitumumab and
cetuximab

Advances in the understanding of mCRC have also led to the
development of mAbs targeting the epidermal growth factor receptor
(EGFR), such as panitumumab (Amgen, Thousand Oaks, USA)
or cetuximab (ImClone, Branchburg, USA). Initial monotherapy
studies included patients whose tumours expressed EGFR, but
produced low ORRs,48 suggesting that other factors were important
for response to these agents.49 Nonetheless, combining chemother-
apy with EGFR-targeted mAbs improved efficacy in the 1st-50–52

and 2nd-line53,54 mCRC settings. Such regimens were generally
associated with higher ORRs compared with the equivalent
bevacizumab-containing regimens,55 which may impact on treat-
ment choice in patients with resectable/potentially resectable dis-
ease. Furthermore, unlike bevacizumab, EGFR-targeted mAbs are
active as monotherapy in later lines of treatment.48,56 Choice of
chemotherapy backbone may also impact on the effectiveness of
EGFR-targeted mAbs, although such observations have only been
noted with cetuximab to date. The COIN57 and NORDIC VII58 trials
reported no efficacy benefits on adding cetuximab to oxaliplatin-
based regimens (capecitabine/oxaliplatin and 5-FU/oxaliplatin/
folinic acid, respectively), raising concern about using these agents
in combination. The use of oral/bolus fluoropyrimidines in both
studies (rather than an infusional regimen) may explain these re-
sults. This hypothesis is substantiated by the FUTURE study, which
reported inferior results (not statistically significant) for cetux-
imab/UFT (oral) vs. cetuximab/FOLFOX4 (infusional).59 In line with
this, efficacy benefits were noted on addition of EGFR-targeted
mAbs to FOLFOX4 in the PRIME52 and OPUS60 trials. Interestingly,
in the AIO 010461 and CELIM62 trials, which used oral and infusion-
alfluoropyrimidines, respectively, cetuximab had similar activity
when combined with oxaliplatin- or irinotecan-based regimens.

The KRAS gene: a game changer for mCRC
Biomarker development for EGFR-targeted mAbs has focussed

on the impact of alterations in EGFR and its downstream effectors
(Fig. 2). The most important development in mCRC management in
recent years was the discovery that mutated tumour KRAS status
predicted for lack of response to EGFR-targeted mAbs.
Approximately 27-43% of tumours in mCRC patients harbour KRAS
gene mutations, leading to constitutive activation of downstream
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signalling and conferring lack of response to these agents.63 This
discovery meant that for the first time in mCRC, patients unlikely
to benefit from a targeted therapy could be identified ahead of
treatment. Indeed, tumour KRAS testing is now mandatory in
potential candidates for EGFR-targeted mAb therapy. The presence
of KRAS mutations in CRC tumours may also be an adverse
prognostic indicator,64 particularly if the glycine to valine
alteration at codon 12 (G12V) is present.65 Furthermore, there is
a negative interaction in patients with KRAS-mutant tumours
receiving an EGFR-targeted mAb combined with oxaliplatin-based
therapy; these patients have worse efficacy outcomes than
similar patients receiving oxaliplatin-based therapy alone.52,57

Interestingly, however, when treated with oxaliplatin-based
regimens such as FOLFOX6 alone, recent retrospective data suggest
that patients with KRAS-mutant disease respond better than
patients with KRAS-wild-type mCRC.66
Cost implications of KRAS testing
Although the implementation of KRAS testing is associated with

additional upfront costs, as might be expected, overall, it is associ-
ated with cost savings.67–71 For example, under most scenarios
tested, using KRAS testing to select mCRC patients for EGFR-
targeted mAb therapy saved $7500-$12,400 per patient in the
United States and €3900–9600 per patient in Germany (Table 1).69

Based on cost savings for monotherapy of $7456-$8040, using KRAS
testing should save �$377–402 million in the United States each
year. In another European cost-effectiveness analysis, using KRAS
testing to limit treatment to patients with KRAS-wild-type tumours
led to savings of €779.42 per patient per cycle.71 Whereas, in Japan,
implementation of KRAS testing before deciding whether to use
EGFR-targeted mAbs was reported to save £32 million per year.70
The G13D controversy
Within the KRAS gene, most mutations occur in codons 12 and

13 and seven common mutations in these regions account for
�98% of all observed KRAS mutations in CRC.72 The original
analyses of response by tumour KRAS status during EGFR-targeted
mAb therapy grouped KRAS codon 12 and 13 mutations together,
and did not look at the impact of individual mutations. Recently,
however, reports have suggested that different KRAS mutations
may have different biological characteristics with respect to
Table 1
Cost and effectiveness data associated with KRAS testing in the United States and German
Cancer 2012; 131(2):438-445,copyright 2012

Strategy Cost/pt
(US)

Cost
saving/
pt (US)

Cost/pt
(Germany)

C
sa
(G

Panitumumab monotherapy with KRAS testing $19,656 $7546 €13,787 €4
Panitumumab monotherapy without KRAS

testing
$27,202 – €18,399 –

Cetuximab monotherapy with KRAS testing $22,893 $8040 €13,588 €3
Cetuximab monotherapy without KRAS testing $30,933 – €17,444 –

Combination therapya with KRAS testing
(combination therapy for KRAS WT & no
chemotherapy for KRAS MT)

$35,075 $13,501 €26,292 €9

Combination therapya with KRAS testing
(combination therapya for KRAS WT &
irinotecan/FOLFIRI only for KRAS MT)

$36,148 $12,428 – –

Combination therapya without KRAS testing $48,576 – €35,852 –

ICER, incremental cost-effectiveness ratio; LYS, life-year saved; MT, mutant; pt, patient;
a Combination therapy is cetuximab + irinotecan in the United States and cetuximab +

leucovorin.
treatment sensitivity. Tumours harbouring mutations of the glycine
to aspartate at KRAS codon 13 (G13D) have been suggested to
retain cetuximab sensitivity and several small retrospective studies
reported improved outcomes in some patients harbouring these
mutations during cetuximab therapy.73–77 In contrast, in a pooled,
post-hoc analysis of data from patients receiving panitumumab
treatment in three phase III trials, no single KRAS mutation
consistently predicted PFS or OS outcome.78 Indeed, in one of these
studies, the G12V mutation was favourably associated with OS (but
not PFS) while G13D was unfavourably associated with both OS
and PFS in the panitumumab arm. Nonetheless, a trend towards
benefit was observed on adding panitumumab to FOLFIRI in
patients with G13D-mutated tumours, which taken together with
data for cetuximab73 suggests a potential benefit when EGFR-targeted
mAbs are used alongside irinotecan-based therapy in such
patients. However, until any association between specific KRAS
mutations and response are confirmed in prospective studies
including predefined patient populations (e.g. the AGITG ICE
CREAM trial79), it seems prudent to limit use of EGFR-targeted
mAbs to the licensed population (i.e. those with KRAS-wild-type
tumours). Interestingly, a recent retrospective study suggested that
KRAS codon 12 and 13-mutated mCRC may also have differential
impact on prognosis, with codon 13-mutated mCRC presenting as
a more aggressive disease frequently associated with local and
distant metastases at diagnosis.80

Ultimately, these data highlight the need to correctly validate a
biomarker in homogenous and, therefore, more clinically
meaningful populations before it is put into clinical practice.
However, the process of validating such markers can be complex,
especially for uncommon mutations where it can be difficult to
get sufficient patient numbers for an accurate picture to emerge
of their impact. There is also a need for consistent testing across
centres and for quality assurance measures to be in place to ensure
any potential associations between mutation status and outcome
are robust. The need for external quality assurance for KRAS testing
has recently been demonstrated;81 only 70% of laboratories
included in a recent study correctly identified the KRAS mutational
status of all test samples.81 Notably, of the mutations found, 30%
were false positives and false negatives, both of which would
likely negatively impact patient care through their influence on
treatment choice.
y.69 Reprinted with permission of John Wiley and Sons: Vijayaraghavan A, et al. Int J

ost
ving/pt
ermany)

Effectiveness
(weeks)

ICER ($ or € per LYS)

612 18.26 –
18.26 Higher cost, same effectiveness compared with KRAS

testing
856 19.78 –

19.78 Higher cost, same effectiveness compared with KRAS
testing

560 24.26 Less expensive, less effective than combination
therapy without KRAS testing

25.83 $35,539 per LYS compared with combination
therapy with KRAS testing assuming KRAS MT
patients will not receive chemotherapy

25.83 Higher cost and same effectiveness compared with
previous KRAS testing strategy

US, United States; WT, wild-type.
FOLFIRI in Germany. The FOLFIRI regimen consists of irinotecan, 5-fluorouoracil and
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Future of personalised medicine in mCRC

Although mutant KRAS is undoubtedly an excellent predictor
for lack of activity of EGFR-targeted mAbs, with its implementa-
tion response rates only rose from �15% in an unselected popula-
tion to �30% in those with KRAS-wild-type tumours,13 therefore, a
prognostic impact of mutant KRAS is likely and additional factors
influencing the course of disease must be important.82,83 The
ongoing need to identify and validate other biomarkers of
response and resistance has led to much research in this area,
with the aim of further improving our ability to specify likely
responders and subsequently improve treatment outcomes and
decrease costs.

Potential new predictive biomarkers for EGFR-targeted mAbs

Tumour KRAS testing for codon 12/13 mutations is now a
prerequisite ahead of undergoing EGFR-targeted mAb treat-
ment,84–86 but should we consider testing the status of a panel of
other biomarkers in mCRC patients at this point in time? Although
there has been much research into other potential biomarkers,
many results have been inconsistent and there is also a lack of
validated tests, and so at present most are not routinely used in
clinical practice. For example, there is some evidence suggesting
that mutations at KRAS codons 61 and 146 (present in �2% of
colorectal tumours) have similar impact to mutations in codons
12 and 1387 as do mutations in NRAS.88 However, additional
research in larger groups of patients is needed if we are to
incorporate these mutations into routine clinical practice.

Emerging biomarkers for activity of EGFR-targeted mAbs and
their stage of development are briefly reviewed below and the
relationships between such biomarkers and treatment response
are summarised in Fig. 3.

BRAF V600E mutations
After KRAS mutations, BRAF V600E mutations currently have the

strongest evidence to support their use as a predictive biomarker
for EGFR-targeted mAb activity. Overall, BRAF V600E activating
mutations occur in approximately 10–15% of CRC tumours and
are generally mutually exclusive to KRAS mutations.13 Most but
not all of the available evidence links BRAF V600E mutations with
resistance to EGFR-targeted mAb therapy,89–94however, the impact
Fig. 3. Relationship between biomarkers and response to epidermal growth factor
receptor (EGFR) inhibitors in chemorefractory colorectal cancer. Approximately 70%
of responders may have an increased EGFR copy number. WT, wild-type; MT,
mutant.83 Reprinted with permission� 2010 American Society of Oncology:
Hawkes E, et al. J Clin Oncol 2010; 28(28):e529-e531. All rights reserved.
of tumour BRAF status on efficacy of these treatments has not yet
definitively been addressed due to the relatively small number of
patients with BRAF mutations. Indeed, a retrospective analysis of
data from the CRYSTAL trial showed numeric improvements in
median PFS and OS (not statistically significant) on addition of
cetuximab to FOLFIRI in patients with KRAS-wild-type/BRAF-
mutant disease.51 Mutated BRAF was also shown to be a negative
prognostic marker for outcome irrespective of treatment received
and the authors speculated that this strong prognostic effect could
explain in part why previous single-arm analyses were interpreted
as indicating that EGFR-targeted mAbs were ineffective in patients
with BRAF-mutant mCRC. BRAF inhibitors also show limited
single-agent activity in tumours bearing these mutations.95 A
recent study suggested that resistance to BRAF inhibition in BRAF
V600E-mutant CRC may be caused by feedback activation of
EGFR,93 therefore, it could be of interest to evaluate treatment
strategies targeting both BRAF and EGFR inhibition in a controlled
clinical trial in patients with tumours of this genotype.

In addition to worse prognosis, mutated BRAF is associated with
a characteristic pattern of gene expression.96,97 Furthermore, in
one study, some BRAF-wild-type/KRAS-mutated tumours and
double wild-type tumours showed a BRAF-mutated-like gene
expression profile and similarly poor prognosis,97 suggesting a
common biology that would not be detected by BRAF testing alone.
Interestingly, the prevalence of BRAF V600E mutations appears
considerably higher in older females with KRAS-wild-type
right-sided colon cancers (50%) compared to unselected patients
(10%).96 This suggests that certain clinicopathological and molecu-
lar features may be useful to identify mCRC patients with a higher
prevalence of BRAF V600E mutation or worse prognosis. A
validated test has recently been launched for the BRAF V600E
mutation,98 but validated tests for other BRAF mutations are as
yet unavailable. Testing BRAFV600E status in patients with KRAS-
wild-type disease is associated with additional upfront costs.
Nonetheless, a recent European study using this approach to define
which patients should receive cetuximab treatment found it
to be the most cost-effective strategy compared with various
alternative scenarios including where only tumour KRAS status
was determined.99 BRAF V600E testing is now starting to be used
in clinical practice, but isn’t yet considered a fully validated marker
for EGFR-targeted mAb activity and isn’t routinely used in
treatment decision-making in most centres.
Alterations to PI3K signalling
Changes in PI3K signalling, such as PIK3CA mutations94,100,101

and loss of PTEN expression/activity94,101–103 have generally been
linked with lack of response to EGFR-targeted mAbs, although
these data have been somewhat inconsistent and come from
relatively small studies. The PI3K pathway is in part modulated
by KRAS activation during EGFR signalling and so it is plausible that
alterations could predict for activity of EGFR-targeted mAbs.
Furthermore, data suggests that combining KRAS and BRAF muta-
tional analysis with evaluation of PIK3CA mutations and PTEN
expression status may permit identification �70% of patients unli-
kely to respond to EGFR-targeted mAbs.104 However, there are no
standardized approaches for assessing these changes, particularly
for PTEN, with mutational status, IHC and gene copy number all
being used, making consolidation of the available data difficult.
This emphasizes the importance of standardization of approach
and the need for validated tests if PIK3CA and PTEN status are to
become routinely used in clinical practice.
Overexpression/amplification of EGFR and its ligands
EGFR overexpression/amplification has potential as a prognostic

marker in KRAS-wild-type patients105 but investigations into its
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use as a predictive marker of response have yielded inconsistent
results,105–108 likely due in part to differences in assay
methodology. Therefore, EGFR overexpression/amplification is
not currently used as a predictive marker for EGFR-targeted mAbs.
Initial studies have indicated that overexpression of EGFR ligands
such as amphiregulin and epiregulin may, however, predict response
to cetuximab.109–111 For example, in one study, amphiregulin and
epiregulin expression were each significantly associated with
ORR, PFS and OS outcomes in patients with KRAS-wild-type
tumours undergoing cetuximab plus irinotecan treatment.109

However, further studies are required to determine if these
molecules could become useful biomarkers in clinical practice
and to determine if reproducible assays can be defined.

Mutation testing – is one tumour sample sufficient?

It is debatable whether evaluating biomarker status of a single
biopsy from a single tumour is sufficient to direct choice of tar-
geted therapy in mCRC because deregulation of EGFR signalling
can differ between primary and metastatic sites,112 potentially
impacting response to EGFR-targeted mAbs. For example, a recent
study suggested that while KRAS, BRAF and PIK3CA status could be
considered adequate markers in metastatic disease (concordant in
91%, 100% and 94% of cases, respectively), a much higher degree of
discordance was found between tumour sites in expression of
EGFR (concordant in 61%), PTEN (66%) and pAKT (54%).113

Mutation analysis of a single tumour biopsy sample may also
underestimate the mutational burden of heterogeneous
tumours,114,115 making it difficult to accurately determine likely
resistance and also to validate new biomarkers of response. Phylo-
genetic reconstruction of tumour clonal architecture reveals
branched evolutionary growth, but reassuringly, common muta-
tions at the trunk of the phylogenetic tree are consistently
expressed and so may provide robust markers and therapeutic
targets.115 Intratumoural heterogeneity of KRAS and BRAF status
has been reported in multiple blocks taken from the same primary
tumour. In one study, the authors suggested that testing DNA from
only a single tumour block could lead to tumour KRAS status being
wrongly assigned in �10% of patients.114 However, preparing a
‘DNA cocktail’ from two or more blocks could improve detection
at minimal additional cost.

Mutation status may also change over the course of therapy as
resistance develops, begging the question whether serial mutation
testing could be useful. While repeated tumour biopsies at disease
progression may be a valuable approach to understand emerging
resistance, this strategy certainly imposes a burden on patients.
From an ethical standpoint, serial biopsies might find acceptance
if it is clear that these could benefit the patient by guiding an
effective course of action to overcome resistance. Two recent re-
ports have suggested that the emergence of KRAS mutations or
KRAS amplification during cetuximab or panitumumab treatment
may be frequent drivers of resistance.116,117Interestingly, these
mutations could be detected non-invasively in patient sera after
5–6 months of treatment, months before radiological progression.
Mathematical modelling suggested that resistant clones bearing
these mutations were highly likely to be present at very low levels
in the patient’s tumours before treatment commenced, and that
these expanded rapidly following initiation of treatment.116

Importantly, the KRAS-mutant tumours were found to be sensitive
to combined EGFR-targeted mAb/MEK inhibitor treatment.117

Monitoring for KRAS mutations in sera during EGFR-targeted ther-
apy could, therefore, permit early initiation of combination treat-
ment that could prevent or delay progression, without the need
for more invasive tumour sampling. In addition, the emergence
of EGFR mutations have been linked to the development of cetux-
imab resistance during treatment,118 which if detected, could
trigger a change of therapy to a more effective agent. Interestingly,
tumours with acquired EGFR ectodomain mutations (S492R) that
prevent cetuximab binding and, therefore, produce cetuximab
resistance can retain sensitivity to panitumumab,118,119 suggesting
that each of these agents may interact with the EGFR slightly
differently.

How can we sustain the progress?

The importance of sustaining development of specific targeted
therapies and their associated predictive biomarkers was
highlighted in a recent pooled analysis.120 Here, hazard ratios for
PFS and OS from published randomised controlled trials were
pooled and compared for three groups of agents: those directed
against a specific molecular target for which the target population
was selected by biomarker (e.g. panitumumab/cetuximab in
patients without KRAS mutations); less specific biologic targeted
agents (e.g. bevacizumab); and chemotherapeutic agents.120 The
clinical benefit from targeted therapies was greater than for
chemotherapies, with the highest relative benefit observed when
the target population was selected by biomarker. It is, therefore,
vital that we continue to identify druggable proteins driving cancer
progression alongside suitable biomarkers that enable accurate
selection of patients if more effective anticancer therapies are to
be developed. In the first instance we must ensure that future
clinical trials are designed according to established and validated
biomarkers (e.g. KRAS) and then optimised biobanks from these
studies can be used to explore the impact of potential next-generation
biomarkers (e.g. alterations in PI3K signalling and expression levels of
EGFR ligands, etc.).

Supporting basic and translational research is key to furthering
the ‘omics’ revolution and will ensure the continuing identification
of new drug targets and biomarkers. The integration of optimum
technologies such as high-throughput, next-generation sequencing
and protein and DNA microarrays is already revolutionising
biomarker discovery programmes, however, moving such discov-
eries from bench to clinic remains a costly and time-consuming
process involving many branches of science and medicine.121

Encouraging open communication and collaboration between aca-
demia (basic and clinical research), industry, patients and regula-
tors is, therefore, vital. It is also imperative that pharmaceutical
companies embrace personalised medicine in their clinical
development programmes, perhaps by implementing dedicated
biomarker discovery programmes. With this in mind, the National
Institute of Health Voluntary Genomic Data Submission Program
aims to encourage companies to integrate genomics into their
development programmes by permitting the discussion of genetic
information with the Food and Drug Administration (FDA) in a
forum separate from the product review process.121 Such discussions
may facilitate optimisation of trial designs, thereby helping to
ensure biomarker studies are pre-specified in large clinical trials
(most current data derive from retrospective analyses or small case
series)122,123 and that new targeted combination strategies are
evaluated effectively. A phase III trial schema that has been proposed
for use in evaluating potential new predictive markers is shown in
Fig. 4.123

Although prospective biomarker studies will undoubtedly
become more commonplace, tissue banks and blood samples from
completed trials will continue to provide a valuable opportunity to
retrospectively link tumour characteristics/blood-borne markers to
clinical outcomes. Genetic epidemiology studies such as GWAS,124

are also important in identifying potential new drug targets. As
such studies yield results, it is important to ensure that all relevant
genomic, transcriptomic and proteomic data are deposited into
freely accessible databases, so that data can be accessed and
processed globally.125



Fig. 4. Trial schema to evaluate a potential new predictive biomarker. Patients with metastatic colorectal cancer (mCRC) would be randomised (in a 2 to 1 ratio) to
stratification by the biomarker or to receive unselected/population-based treatment. All three groups of patients would receive the same treatment, giving the potential to
test three hypotheses and link the clinical outcome data to health and economic parameters (that treatment A equals treatment B equals standard therapy). On the basis of
this several hypotheses can be tested. The first is that the biomarker-positive group has a superior clinical outcome compared with the biomarker-negative group following
identical treatment. The second hypothesis is that the conventional population-based group has a superior clinical outcome compared with the biomarker-negative group
following identical treatment. The third hypothesis is that the biomarker-positive group has a superior clinical outcome compared with the conventional population-based
group following identical treatment. If sufficient evidence has been accumulated for a particular predictive marker, treatments A and B can differ to test the hypothesis that
distinct treatments result in the same outcomes depending on marker status.123 Reprinted by permission from Macmillan Publishers Ltd: Walter E, et al. Nat Rev Cancer 2009;
9(7):489–499.
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After its initial identification, developing any new biomarker for
clinical use is a time-consuming, multi-step process involving
extensive testing, optimisation and validation. There is also a need
to demonstrate that the new marker offers benefits over currently
available methods i.e. that it has clinical utility. For any new
biomarker, testing should be standardised and diagnostic tests
should be validated with external quality assurance protocols. In
some cases it may be deemed necessary for testing to be performed
in specialised central laboratories to ensure quality. The National
Comprehensive Cancer Network (NCCN) has published a timely
report discussing the importance of the validation and clinical
utility of tumour markers in oncology.126 This report highlights
the importance of both analytic validation (determining how
accurately/reliably a test measures the characteristic of interest)
and clinical validation (assessing the strength of association
between assay result and outcome of interest in biomarker
studies). Importantly, analytic validation also aims to standardise
preanalytic specimen handling, preparation and storage. This
report culminates in a series of recommendations that provide
useful guidance for anyone involved in the tumour biomarker
development process. While the NCCN report focusses on optimising
the conduct of biomarker studies, guidance is now also available in
the form of the REMARK guidelines127,128 as to how biomarker data
should be reported in the literature, but at the moment these focus
only on the reporting studies of potential prognostic markers.
Interestingly, a recent article by one of the authors of the REMARK
guidelines highlighted that the literature on biomarkers continues
to be plagued by issues of non-publication bias, selective reporting
and incomplete reporting and suggested that the development of a
tumour marker registry may help address some of these issues.129

Once a validated diagnostic test is available, it needs to be
brought into clinical use as quickly as possible. For this reason,
co-development programmes are becoming more commonplace,
where diagnostic tests are developed alongside new targeted
therapies. Such programmes have led to the development of
trastuzumab and the Herceptest�(Genentech, San Francisco, USA)
for HER-2-positive breast and gastric cancers and, more recently,
vemurafenib (Genentech, San Francisco, USA) and the Cobas�

4800 BRAF V600 mutation test (Roche, Pleasanton, USA) for BRAF
V600E-positive melanoma. Once validated, these ‘companion’
diagnostics can be licensed alongside the targeted agent, meaning
that the treatment can be rapidly implemented into clinical
practice as there is already a method available to identify the
patients most likely to benefit. In line with this, in 2011 the FDA
issued draft guidance clarifying that, in instances where the
companion diagnostic is essential for the safe and effective use of
a therapy, both products should be approved together.130 A recent
example of this is for crizotinib (Pfizer, New York, USA), a multi-
targeted tyrosine kinase inhibitor, which was approved by the
FDA for the treatment of anaplastic lymphoma kinase (ALK)
rearranged non-small cell lung cancer (NSCLC) alongside its
companion diagnostic – the Vysis� ALK Break Apart FISH Probe
Kit (Abbott, Illinois, USA).131 Notably, crizotinib was approved
under the agencies accelerated approval program; no OS data were
submitted and approval was based on ORRs achieved in two
single-arm trials.132 It is also an example of how co-development
programmes can accelerate movement of discoveries from bench
to bedside – it took an unprecedented 4 years from discovery of
the ALK rearrangement in NSCLC to the approval of crizotinib.132

The cost of incorporating any new test into clinical practice is an
important consideration. However, as was seen with KRAS67–71 and
also BRAF99 testing, these costs are likely to be offset by savings in
patient care, such as the cost-saving of avoiding unnecessary
treatment and hospital stays in patients unlikely to respond.
Conclusions

Before the era of personalised medicine, cancer diagnosis,
prognosis and treatment decisions were mainly based upon the
histopathologic characteristics of the tumour. Nowadays, a more
holistic approach is being taken where new molecular biomarkers
and bioinformatic patient data are integrated to improve the
accuracy of predicting prognosis and treatment efficacy. Huge
advances have already been made, which can be exemplified by
recent progress in the management of mCRC, particularly the
discovery and implementation of KRAS as a predictive biomarker.
Indeed, the implementation of new technologies is leading to the
accumulation of huge amounts of genomic and proteomic data
and the identification and validation of predictive biomarkers for
existing and new targeted therapies, and will likely improve
patient outcomes in the future. Taking discoveries from bench to
clinic is a costly and time-consuming process. Ensuring all
stakeholders across the healthcare spectrum are fully engaged
and understand the importance of personalised medicine will help
ensure that progress in science becomes progress in practice.
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Although initial investment may be high, it should ultimately lead
to huge long-term benefits and a cost-effective and rewarding
future for cancer management. Ultimately, the first step will
always be to incorporate biomarker discovery and validation into
clinical trial design.
Conflicts of interest statement

VH has received honoraria for speaking at symposia and
participating in advisory boards for Amgen, Roche, Merck Serono
and Sanofi. He has also received research funding from Amgen,
Roche, Merck Serono and Sanofi and travel support from Roche
and Merck Serono. JYD has participated in advisory boards and/
or spoken at symposia for Amgen, Merck Serono, Roche and Pfizer
and has received research funding from Merck Serono. MD has
acted as a consultant to Roche and Merck Serono and has
participated in advisory boards and/or symposia for Amgen, Merck
Serono, Roche, Novartis, Ipsen, Pfizer and Sanofi. MP has acted as a
consultant and participated in advisory boards for Amgen and has
also received honoraria and research funding from Amgen, Merck
Serono, Ipsen, Novartis, Roche, and Sanofi.
Acknowledgements

Medical writing support (funded by Amgen [Europe] GmbH)
was provided by Dawn Batty PhD from Bioscript Stirling Ltd.
Amgen also reviewed the accuracy of the data regarding
panitumumab and the overall context of the panitumumab data
in line with other studies.
References

1. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of
progress. Nat Rev Cancer 2008;8:473–80.

2. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of
predefined specificity. Nature 1975;256:495–7.

3. Novartis Pharmaceuticals Corporation. Gleevec� (imatinib mesylate)
prescribing information 2012. Available at: http://www.pharma.us.
novartis.com/product/pi/pdf/gleevec_tabs.pdf.

4. Genentech Inc. Herceptin� [trastuzumab] prescribing information 2010.
Available at: http://www.gene.com/gene/products/information/pdf/
herceptin- =prescribing.pdf.

5. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer
statistics. CA Cancer J Clin 2011;61:69–90.

6. American Cancer Society. Cancer Facts and Figures 2010. Available at: http://
www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/
document/acspc-026238.pdf.

7. Garden OJ, Rees M, Poston CJ, et al. Guidelines for resection of colorectal cancer
liver metastases. Gut 2006;55(Suppl. 4). iii1–8.

8. Chiappa A, Makuuchi M, Lygidakis NJ, et al. The management of colorectal liver
metastases: expanding the role of hepatic resection in the age of multimodal
therapy. Crit Rev Oncol Hematol 2009;72:65–75.

9. Gallagher DJ, Kemeny N. Metastatic colorectal cancer: from improved survival
to potential cure. Oncology 2010;78:237–48.

10. Van Cutsem E, Nordlinger B, Cervantes A. Advanced colorectal cancer: ESMO
clinical practice guidelines for treatment. Ann Oncol 2010;21(Suppl. 5):
v93–97.

11. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin
2012;62:10–29.

12. Kopetz S, Chang GJ, Overman MJ, et al. Improved survival in metastatic
colorectal cancer is associated with adoption of hepatic resection and
improved chemotherapy. J Clin Oncol 2009;27:3677–83.

13. Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into
clinical practice. Gut 2011;60:116–29.

14. Douillard JY, Cunningham D, Roth AD, et al. Irinotecan combined with
fluorouracil compared with fluorouracil alone as first-line treatment for
metastatic colorectal cancer: a multicentre randomised trial. Lancet
2000;355:1041–7.

15. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for
metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med
2000;343:905–14.

16. Capdevila J, Elez E, Peralta S, Macarulla T, Ramos FJ, Tabernero J. Oxaliplatin-
based chemotherapy in the management of colorectal cancer. Expert Rev
Anticancer Ther 2008;8:1223–36.
17. de Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or
without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin
Oncol 2000;18:2938–47.

18. Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of
irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line
treatment of metastatic colorectal cancer: results from the BICC-C Study. J
Clin Oncol 2007;25:4779–86.

19. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of
fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in
patients with previously untreated metastatic colorectal cancer. J Clin Oncol
2004;22:23–30.

20. Pinedo HM, Peters GF. Fluorouracil: biochemistry and pharmacology. J Clin
Oncol 1988;6:1653–64.

21. Hirsch BR, Zafar SY. Capecitabine in the management of colorectal cancer.
Cancer Manag Res 2011;3:79–89.

22. Lurje G, Manegold PC, Ning Y, Pohl A, Zhang W, Lenz HJ. Thymidylate synthase
gene variations: predictive and prognostic markers. Mol Cancer Ther
2009;8:1000–7.

23. Afzal S, Gusella M, Jensen SA, et al. The association of polymorphisms in
5-fluorouracil metabolism genes with outcome in adjuvant treatment of
colorectal cancer. Pharmacogenomics 2011;12:1257–67.

24. O’Dwyer PJ, Catalano RB. Uridine diphosphate glucuronosyltransferase (UGT)
1A1 and irinotecan: practical pharmacogenomics arrives in cancer therapy. J
Clin Oncol 2006;24:4534–8.

25. Cecchin E, Innocenti F, D’Andrea M, et al. Predictive role of the UGT1A1,
UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of
metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and
irinotecan. J Clin Oncol 2009;27:2457–65.

26. Ross JS, Torres-Mora J, Wagle N, Jennings TA, Jones DM. Biomarker-based
prediction of response to therapy for colorectal cancer: current perspective.
Am J Clin Pathol 2010;134:478–90.

27. Weickhardt A, Wells K, Messersmith W. Oxaliplatin-induced neuropathy in
colorectal cancer. J Oncol 2011;2011:201593.

28. Watanabe T, Kobunai T, Yamamoto Y, et al. Gene expression signature and
response to the use of leucovorin, fluorouracil and oxaliplatin in colorectal
cancer patients. Clin Transl Oncol 2011;13:419–25.

29. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan,
fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med
2004;350:2335–42.

30. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with
oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal
cancer: a randomized phase III study. J Clin Oncol 2008;26:2013–9.

31. Tebbutt NC, Wilson K, Gebski VJ, et al. Capecitabine, bevacizumab, and
mitomycin in first-line treatment of metastatic colorectal cancer: results of
the Australasian Gastrointestinal Trials Group Randomized Phase III MAX
Study. J Clin Oncol 2010;28:3191–8.

32. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with
oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated
metastatic colorectal cancer: results from the Eastern Cooperative Oncology
Group Study E3200. J Clin Oncol 2007;25:1539–44.

33. Bevacizumab: new drug. Metastatic colorectal cancer: good in theory, not in
practice. Prescrire Int 2006;15:94–7.

34. Welch S, Spithoff K, Rumble RB, Maroun J. Bevacizumab combined with
chemotherapy for patients with advanced colorectal cancer: a systematic
review. Ann Oncol 2010;21:1152–62.

35. Jubb AM, Hurwitz HI, Bai W, et al. Impact of vascular endothelial growth
factor-A expression, thrombospondin-2 expression, and microvessel density
on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin
Oncol 2006;24:217–27.

36. Price TJ, Hardingham JE, Lee CK, et al. Impact of KRAS and BRAF gene mutation
status on outcomes from the phase III AGITG MAX trial of capecitabine alone
or in combination with bevacizumab and mitomycin in advanced colorectal
cancer. J Clin Oncol 2011;29:2675–82.

37. Hurwitz HI, Yi J, Ince W, Novotny WF, Rosen O. The clinical benefit of
bevacizumab in metastatic colorectal cancer is independent of K-ras
mutation status: analysis of a phase III study of bevacizumab with
chemotherapy in previously untreated metastatic colorectal cancer.
Oncologist 2009;14:22–8.

38. Ince WL, Jubb AM, Holden SN, et al. Association of k-ras, b-raf, and p53 status
with the treatment effect of bevacizumab. J Natl Cancer Inst 2005;97:981–9.

39. Watanabe T, Kobunai T, Yamamoto Y, et al. Gene expression of vascular
endothelial growth factor A, thymidylate synthase, and tissue inhibitor of
metalloproteinase 3 in prediction of response to bevacizumab treatment in
colorectal cancer patients. Dis Colon Rectum 2011;54:1026–35.

40. Weickhardt AJ, Williams D, Lee C, et al. Challenges for patient selection with
VEGF inhibitors. J Clin Oncol 2011;29(Suppl.). abstract 3531.

41. Longo R, Gasparini G. Challenges for patient selection with VEGF inhibitors.
Cancer Chemother Pharmacol 2007;60:151–70.

42. Bates DO, Catalano PJ, Symonds KE, et al. Association between VEGF splice
isoforms and progression-free survival in metastatic colorectal cancer patients
treated with bevacizumab. Clin Cancer Res 2012;18:6384–91.

43. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev
Cancer 2008;8:592–603.

44. Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant
progression of tumors to increased local invasion and distant metastasis.
Cancer Cell 2009;15:220–31.

http://www.pharma.us.novartis.com/product/pi/pdf/gleevec_tabs.pdf
http://www.pharma.us.novartis.com/product/pi/pdf/gleevec_tabs.pdf
http://www.gene.com/gene/products/information/pdf/herceptin-prescribing.pdf
http://www.gene.com/gene/products/information/pdf/herceptin-prescribing.pdf
http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-026238.pdf
http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-026238.pdf
http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-026238.pdf


600 V. Heinemann et al. / Cancer Treatment Reviews 39 (2013) 592–601
45. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of
antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet
tumors. Cancer Cell 2005;8:299–309.

46. Shaked Y, Ciarrocchi A, Franco M, et al. Therapy-induced acute recruitment of
circulating endothelial progenitor cells to tumors. Science 2006;313:1785–7.

47. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of
targeting both pericytes and endothelial cells in the tumor vasculature with
kinase inhibitors. J Clin Invest 2003;111:1287–95.

48. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of
panitumumab plus best supportive care compared with best supportive care
alone in patients with chemotherapy-refractory metastatic colorectal cancer. J
Clin Oncol 2007;25:1658–64.

49. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers
predicting clinical outcome of epidermal growth factor receptor-targeted
therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009;101:1308–24.

50. Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial
treatment for metastatic colorectal cancer. N Engl J Med 2009;360:1408–17.

51. Van Cutsem E, Köhne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil,
and leucovorin as first-line treatment for metastatic colorectal cancer:
updated analysis of overall survival according to tumor KRAS and BRAF
mutation status. J Clin Oncol 2011;29:2011–9.

52. Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of
panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin
(FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with
previously untreated metastatic colorectal cancer: the PRIME study. J Clin
Oncol 2010;28:4697–705.

53. Sobrero AF, Maurel J, Fehrenbacher L, et al. EPIC: phase III trial of cetuximab
plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with
metastatic colorectal cancer. J Clin Oncol 2008;26:2311–9.

54. Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of
panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI)
compared with FOLFIRI alone as second-line treatment in patients with
metastatic colorectal cancer. J Clin Oncol 2010;28:4706–13.

55. Peeters M, Price T. Biologic therapies in the metastatic colorectal cancer
treatment continuum: applying current evidence to clinical practice. Cancer
Treat Rev 2012;38:397–406.

56. Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of
colorectal cancer. N Engl J Med 2007;357:2040–8.

57. Maughan TS, Adams RA, Smith CG, et al. Addition of cetuximab to oxaliplatin-
based first-line combination chemotherapy for treatment of advanced
colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet
2011;377:2103–14.

58. Tveit KM, Guren T, Glimelius B, et al. Phase III trial of cetuximab with
continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic
FLOX) versus FLOX alone in first-line treatment of metastatic colorectal
cancer: The NORDIC-VII study. J Clin Oncol 2012;30:1755–62.

59. Douillard JY, Zemelka T, Fountzilas G, et al. Randomized phase II study
evaluating UFOX plus cetuximab versus FOLFOX4 plus cetuximab as first-line
therapy in metastatic colorectal cancer: FUTURE. Ann Oncol 2012;23(Suppl. 4).
abstract O-0017.

60. Bokemeyer C, Bondarenko I, Hartmann JT, et al. Efficacy according to
biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for
metastatic colorectal cancer: the OPUS study. Ann Oncol 2011;22:1535–46.

61. Moosmann N, von Weikersthal LF, Vehling-Kaiser U, et al. Cetuximab plus
capecitabine and irinotecan compared with cetuximab plus capecitabine and
oxaliplatin as first-line treatment for patients with metastatic colorectal
cancer: AIO KRK-0104–a randomized trial of the German AIO CRC study group.
J Clin Oncol 2011;29:1050–8.

62. Folprecht G, Gruenberger T, Bechstein WO, et al. Tumour response and
secondary resectability of colorectal liver metastases following neoadjuvant
chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet
Oncol 2010;11:38–47.

63. Siddiqui AD, Piperdi B. KRAS mutation in colon cancer: a marker of resistance
to EGFR-I therapy. Ann Surg Oncol 2010;17:1168–76.

64. Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten ras
mutations in patients with colorectal cancer: the multicenter RASCAL study. J
Natl Cancer Inst 1998;90:675–84.

65. Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in
patients with colorectal cancer: the RASCAL II study. Br J Cancer
2001;85:692–6.

66. Basso M, Strippoli A, Orlandi A, et al. KRAS mutational status affects
oxaliplatin-based chemotherapy independently from basal mRNA ERCC-1
expression in metastatic colorectal cancer patients. Br J Cancer
2013;108:115–20.

67. Shankaran V, Bentrem DJ, Mulcahy MF, Bennett CL, Benson A, III. Economic
implications of KRAS testing in metastatic colorectal cancer (mCRC).
Gastrointestinal Cancers Symposium, San Francisco, CA, USA; 2009 [abstract
298].

68. Mancl EE, Kolesar JM, Vermeulen LC. Clinical and economic value of screening
for Kras mutations as predictors of response to epidermal growth factor
receptor inhibitors. Am J Health Syst Pharm 2009;66:2105–12.

69. Vijayaraghavan A, Efrusy MB, Goke B, Kirchner T, Santas CC, Goldberg RM.
Cost-effectiveness of KRAS testing in metastatic colorectal cancer patients in
the United States and Germany. Int J Cancer 2012;131:438–45.

70. Gallagher J, Cancer cost crisis warning from oncologists BBC News 26-9-2011.
Available at: http://www.bbc.co.uk/news/health-15032862.
71. Königsberg R, Hulla W, Klimpfinger M, et al. Clinical and economic aspects of
KRAS mutational status as predictor for epidermal growth factor receptor
inhibitor therapy in metastatic colorectal cancer patients. Oncology
2011;81:359–64.

72. Smith G, Bounds R, Wolf H, Steele RJ, Carey FA, Wolf CR. Activating K-Ras
mutations outwith ‘hotspot’ codons in sporadic colorectal tumours –
implications for personalised cancer medicine. Br J Cancer 2010;102:693–703.

73. Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E.
Association of KRAS G13D tumor mutations with outcome in patients with
metastatic colorectal cancer treated with first-line chemotherapy with or
without cetuximab. J Clin Oncol 2012;30:3570–7.

74. De Roock W, Jonker DJ, Di Nicolantonio F, et al. Association of KRAS p.G13D
mutation with outcome in patients with chemotherapy-refractory metastatic
colorectal cancer treated with cetuximab. JAMA 2010;304:1812–20.

75. Bando H, Yoshino T, Shinozaki E, et al. Clinical outcome in patients with
metastatic colorectal cancer harboring KRAS G13D mutation treated with
cetuximab. J Clin Oncol 2011;29(Suppl. 4). abstract 448.

76. Bardelli A, Lamba S, Di Nicolantonio F, et al. Individual KRAS mutations
modulate response to targeted agents in colorectal cancer. J Clin Oncol
2011;29(Suppl.). abstract e14123.

77. Modest DP, Reinacher-Schick A, Stintzing S, et al. Cetuximab-based or
bevacizumab-based first-line treatment in patients with KRAS p.G13D-
mutated metastatic colorectal cancer: a pooled analysis. Anticancer Drugs
2012;23:666–73.

78. Peeters M, Douillard JY, Van Cutsem E, et al. Evaluation of individual codon 12
and 13 mutant (MT) KRAS alleles as prognostic and predictive biomarkers of
response to panitumumab (pmab) in patients with metastatic colorectal
cancer (mCRC). European Multidisciplinary Cancer Congress, Stockholm,
Sweden; 2011, abstract 33LBA.

79. Australasian Gastro-Intestinal Trials Group (AGITG). Randomised phase II
study of cetuximab alone or in combination with irinotecan in patients
with metastatic CRC with either KRAS WT or G13D mutation. ICE CREAM:
The Irinotecan Cetuximab Evaluation and the Cetuximab Response
Evaluation Among patients with G13D Mutation. Available at: http://
agitg.org.au/clinical-trials/trials-open-to-recruitment/ice-cream/. Accessed
28 November 2012.

80. Modest DP, Stintzing S, Laubender RP, et al. Clinical characterization of
patients with metastatic colorectal cancer depending on the KRAS status.
Anticancer Drugs 2011;22:913–8.

81. Bellon E, Ligtenberg MJ, Tejpar S, et al. External quality assessment for KRAS
testing is needed: setup of a European program and report of the first joined
regional quality assessment rounds. Oncologist 2011;16:467–78.

82. Wong R, Cunningham D. Using predictive biomarkers to select patients with
advanced colorectal cancer for treatment with epidermal growth factor
receptor antibodies. J Clin Oncol 2008;26:5668–70.

83. Hawkes E, Cunningham D. Relationship between colorectal cancer biomarkers
and response to epidermal growth factor receptor monoclonal antibodies. J
Clin Oncol 2010;28:e529–531.

84. European Medicines Agency. Vectibix� (panitumumab) prescribing
information 2011. Available at: http://www.ema.europa.eu/docs/en_GB/
document_library/EPAR_-_Product_Information/human/000741/
WC500047710.pdf.

85. European Medicines Agency. Erbitux� (cetuximab) prescribing information
2011. Available at: http://www.ema.europa.eu/docs/en_GB/document_
library/EPAR_-_Product_Information/human/000558/WC500029119.pdf.

86. European Medicines Agency. Committee for Medicinal Products for Human
Use (CHMP). Summary of opinion (post authorisation) – Vectibix
(panitumumab) 2011. Available at: http://www.ema.europa.eu/docs/en_GB/
document_library/Summary_of_opinion/human/000741/WC500107994.pdf.

87. Loupakis F, Ruzzo A, Cremolini C, et al. KRAS codon 61, 146 and BRAF
mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12
and 13 wild-type metastatic colorectal cancer. Br J Cancer 2009;101:
715–21.

88. Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS,
BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer
2011;50:307–12.

89. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for
response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin
Oncol 2008;26:5705–12.

90. Fornaro L, Baldi GG, Masi G, et al. Cetuximab plus irinotecan after irinotecan
failure in elderly metastatic colorectal cancer patients: clinical outcome
according to KRAS and BRAF mutational status. Crit Rev Oncol Hematol
2011;78:243–51.

91. Seymour MT, Brown SR, Richman S, et al. BRAF V600E mutation and
resistance to anti-EGFR monoclonal antibodies in patients with metastatic
colorectal cancer: a meta-analysis. J Clin Oncol 2011;29(Suppl.). abstract
3523.

92. Mao C, Liao RY, Qiu LX, Wang XW, Ding H, Chen Q. BRAF V600E mutation and
resistance to anti-EGFR monoclonal antibodies in patients with metastatic
colorectal cancer: a meta-analysis. Mol Biol Rep 2011;38:2219–23.

93. Prahallad A, Sun C, Huang S, et al. Unresponsiveness of colon cancer to BRAF
(V600E) inhibition through feedback activation of EGFR. Nature 2012;483:
100–3.

94. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF,
PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic
colorectal cancer. Lancet Oncol 2011;12:594–603.

http://www.bbc.co.uk/news/health-15032862
http://agitg.org.au/clinical-trials/trials-open-to-recruitment/ice-cream/
http://agitg.org.au/clinical-trials/trials-open-to-recruitment/ice-cream/
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000741/WC500047710.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000741/WC500047710.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000741/WC500047710.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000558/WC500029119.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000558/WC500029119.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion/human/000741/WC500107994.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion/human/000741/WC500107994.pdf


V. Heinemann et al. / Cancer Treatment Reviews 39 (2013) 592–601 601
95. Yang H, Higgins B, Kolinsky K, et al. Antitumor activity of BRAF inhibitor
vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer
Res 2012;72:779–89.

96. Tie J, Gibbs P, Lipton L, et al. Optimizing targeted therapeutic development:
analysis of a colorectal cancer patient population with the BRAF(V600E)
mutation. Int J Cancer 2011;128:2075–84.

97. Popovici V, Budinska E, Tejpar S, et al. Identification of a poor-prognosis BRAF-
mutant-like population of patients with colon cancer. J Clin Oncol
2012;30:1288–95.

98. Reuters press release 2011. Molecular Response expands clinical offerings
with BRAF mutation testing. Available at: http://www.reuters.com/article/
2011/08/17/idUS220170+17-Aug-2011+BW20110817.

99. Blank PR, Moch H, Szucs TD, Schwenkglenks M. KRAS and BRAF mutation
analysis in metastatic colorectal cancer: a cost-effectiveness analysis from a
Swiss perspective. Clin Cancer Res 2011;17:6338–46.

100. Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal
cancer are associated with clinical resistance to EGFR-targeted monoclonal
antibodies. Cancer Res 2009;69:1851–7.

101. Sood A, McClain D, Maitra R, et al. PTEN gene expression and mutations in the
PIK3CA gene as predictors of clinical benefit to anti-epidermal growth factor
receptor antibody therapy in patients with KRAS wild-type metastatic
colorectal cancer. Clin Colorectal Cancer 2012;11:143–50.

102. Mao C, Liao RY, Chen Q. Loss of PTEN expression predicts resistance to EGFR-
targeted monoclonal antibodies in patients with metastatic colorectal cancer.
Br J Cancer 2010;102:940.

103. Razis E, Briasoulis E, Vrettou E, et al. Potential value of PTEN in predicting
cetuximab response in colorectal cancer: an exploratory study. BMC Cancer
2008;8:234.

104. Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M, et al. Multi-determinants
analysis of molecular alterations for predicting clinical benefit to EGFR-
targeted monoclonal antibodies in colorectal cancer. PLoS One 2009;4:e7287.

105. Adams RA, James MD, Smith CG, Sabourin JC. Epidermal growth factor
receptor (EGFR) as a predictive and prognostic marker in patients with
advanced colorectal cancer (aCRC): the MRC COIN trial experience. J Clin Oncol
2011;29(Suppl. 4). abstract 359.

106. Di Fiore F, Sesboue R, Michel P, Sabourin JC, Frebourg T. Molecular
determinants of anti-EGFR sensitivity and resistance in metastatic colorectal
cancer. Br J Cancer 2010;103:1765–72.

107. Heinemann V, Stintzing S, Kirchner T, Boeck S, Jung A. Clinical relevance of
EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal
antibodies directed against the EGFR. Cancer Treat Rev 2009;35:262–71.

108. Tol J, Dijkstra JR, Klomp M, et al. Markers for EGFR pathway activation as
predictor of outcome in metastatic colorectal cancer patients treated with or
without cetuximab. Eur J Cancer 2010;46:1997–2009.

109. Jacobs B, De Roock W, Piessevaux H, et al. Amphiregulin and epiregulin mRNA
expression in primary tumors predicts outcome in metastatic colorectal
cancer treated with cetuximab. J Clin Oncol 2009;27:5068–74.

110. Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and
amphiregulin and K-ras mutation status predict disease control in metastatic
colorectal cancer patients treated with cetuximab. J Clin Oncol
2007;25:3230–7.

111. Baker JB, Dutta D, Watson D, et al. Tumour gene expression predicts response
to cetuximab in patients with KRAS wild-type metastatic colorectal cancer. Br
J Cancer 2011;104:488–95.

112. Molinari F, Martin V, Saletti P, et al. Differing deregulation of EGFR and
downstream proteins in primary colorectal cancer and related metastatic sites
may be clinically relevant. Br J Cancer 2009;100:1087–94.
113. Cejas P, Lopez-Gomez M, Aguayo C, et al. Analysis of the concordance in the
EGFR pathway status between primary tumors and related metastases of
colorectal cancer patients: implications for cancer therapy. Curr Cancer Drug
Targets 2012;12:124–31.

114. Richman SD, Chambers P, Seymour MT, et al. Intra-tumoral heterogeneity of
KRAS and BRAF mutation status in patients with advanced colorectal cancer
(aCRC) and cost-effectiveness of multiple sample testing. Anal Cell Pathol
(Amst) 2011;34:61–6.

115. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and
branched evolution revealed by multiregion sequencing. N Engl J Med 2012;
366:883–92.

116. Diaz Jr LA, Williams RT, Wu J, et al. The molecular evolution of acquired
resistance to targeted EGFR blockade in colorectal cancers. Nature
2012;486:537–40.

117. Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired
resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486:532–6.

118. Montagut C, Dalmases A, Bellosillo B, et al. Identification of a mutation in the
extracellular domain of the epidermal growth factor receptor conferring
cetuximab resistance in colorectal cancer. Nat Med 2012;18:221–3.

119. Metges J, Raoul J, Achour N, et al. PANERB study: panitumumab after
cetuximab-based regimen failure. J Clin Oncol 2011;28(Suppl.). abstract
e14000.

120. Amir E, Seruga B, Martinez-Lopez J, et al. Oncogenic targets, magnitude of
benefit, and market pricing of antineoplastic drugs. J Clin Oncol 2011;
29:2543–9.

121. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med
2010;363:301–4.

122. Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker
validation: one size does not fit all. J Biopharm Stat 2009;19:530–42.

123. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic
prognostic and predictive markers in colorectal cancer. Nat Rev Cancer
2009;9:489–99.

124. US Department of Health & Human Services 2012. Genome-Wide Association
Studies (GWAS). Available at: http://gwas.nih.gov/.

125. Diamandis M, White NM, Yousef GM. Personalized medicine: marking a new
epoch in cancer patient management. Mol Cancer Res 2010;8:1175–87.

126. Febbo PG, Ladanyi M, Aldape KD, et al. NCCN Task Force Report: evaluating the
clinical utility of tumor markers in oncology. J Natl Compr Canc Netw
2011;9(Suppl. 5):S1–32.

127. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting
recommendations for tumor marker prognostic studies (REMARK). J Natl
Cancer Inst 2005;97:1180–4.

128. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting
Recommendations for Tumor Marker Prognostic Studies (REMARK):
explanation and elaboration. PLoS Med 2012;9:e1001216.

129. McShane LM, Hayes DF. Publication of Tumor Marker Research Results: The
Necessity for Complete and Transparent Reporting. J Clin Oncol 2012;
108:115–20.

130. US Food and Drug Administration 2012. Draft guidance for industry and Food
and Drug Administration staff – in vitro companion diagnostic devices.
Available at: http://www.fda.gov/MedicalDevices/DeviceRegulationand
Guidance/GuidanceDocuments/ucm262292.htm.

131. US Food and Drug Administration 2011. FDA approves Xalkori with
companion diagnostic for a type of late-stage lung cancer. Available at:
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/
ucm269856.htm.

132. Ou SH. Crizotinib: a drug that crystallizes a unique molecular subset of non-
small-cell lung cancer. Expert Rev Anticancer Ther 2012;12:151–62.

http://www.reuters.com/article/2011/08/17/idUS220170+17-Aug-2011+BW20110817
http://www.reuters.com/article/2011/08/17/idUS220170+17-Aug-2011+BW20110817
http://gwas.nih.gov/
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm262292.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm262292.htm
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm269856.htm
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm269856.htm

	Targeted therapy in metastatic colorectal cancer – An example of personalised medicine in action
	Introduction
	Evolution of personalised therapy in metastatic CRC (mCRC)
	Evolution of systemic therapy for mCRC
	The emergence of targeted therapies
	Targeting angiogenesis – bevacizumab
	Targeting epidermal growth factor signalling – panitumumab and cetuximab
	The KRAS gene: a game changer for mCRC
	Cost implications of KRAS testing
	The G13D controversy


	Future of personalised medicine in mCRC
	Potential new predictive biomarkers for EGFR-targeted mAbs
	BRAF V600E mutations
	Alterations to PI3K signalling
	Overexpression/amplification of EGFR and its ligands

	Mutation testing – is one tumour sample sufficient?
	How can we sustain the progress?

	Conclusions
	Conflicts of interest statement
	Acknowledgements
	References


