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a b s t r a c t

Protein evolutionary rates have been presumed to be mostly determined by the density of function-
ally important amino acids in a given protein. They have been shown to correlate with variables
intuitively related to functional importance of proteins, such as protein dispensability and pro-
tein–protein interactions. Surprisingly, the best correlate of the evolutionary rates has turned out
to be not the functional importance of a protein, but the expression level of the protein. Drummond
and Wilke suggest that the dominant role of expression levels in slowing the rate of protein evolu-
tion stems from a selection pressure against mistranslation-induced protein misfolding. We will
review current evidence for and against different hypotheses on determining evolutionary rates.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The first grand generalization of molecular evolution is that
proteins evolve at widely different rates but each particular protein
has a characteristic rate that remains relatively constant over long
evolutionary spans [1]. In other words, there seems to be a molec-
ular clock that ticks at widely different paces for different protein-
coding genes. What determines this characteristic rate is one of the
central questions of evolutionary biology. Thirty years ago, Zuc-
kerkandl [2] proposed that a protein’s sequence will evolve at a
rate primarily determined by the proportion of its sites involved
in specific functions (or ‘‘functional density”): functional con-
straints dictate protein evolutionary rates (‘‘functional hypothe-
sis”) (Table 1). It was an intuitively plausible explanation
although testing this proposal at the time was hardly feasible, gi-
ven that the functions and structures of proteins are indeed widely
different and so are the rates of sequence evolution. Despite wide
acceptance of the idea that functional constraints dictate protein
evolutionary rates, the measurement of functional density remains
problematic because residues may contribute to protein function
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in unpredictable ways, and arduous sequence-wide saturation
mutagenesis and mutant characterization studies are required to
ascertain these effects.

In the era of systems biology, various types of genome-scale
datasets allow us to elucidate determinants of protein evolutionary
rate, which has been actively debated over the past several decades
with little empirical data. Comparative analysis of sequence data
contributes to demonstrate some general idea for the similarities
or differences in determining the protein evolutionary rates among
different species. Moreover, a different kind of genome-wide infor-
mation is becoming increasingly available, which includes gene
expression level, protein–protein interactions, regulatory network
structure and the effect of gene knockout on the organism’s fitness.
A large increase in the amount of available genome-scale data in
the past few years prompted a basic level of analysis in evolution-
ary systems biology that involves identification of correlations be-
tween diverse genome-wide variables, and many such correlations
have been described (Table 2). More often than not, however, the
interpretation of these observations remains problematic for at
least two reasons. First, although statistically significant thanks
to the huge number of data points, the correlations are usually rel-
atively weak. Second, the existence of multiple weak correlations
makes it hard to identify the primary or causative variables. Re-
cently, multivariate analyses have been performed to uncover pri-
mary correlations [3–6]. One of the interesting conclusions is that
lsevier B.V. All rights reserved.
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Table 1
Comparison of two hypotheses.

Functional hypothesis MIM hypothesis

Fitness cost Abnormal protein
function

Cytotoxicity due to
misfolded protein

Selection on synonymous
mutations

Invisible Visible

Correlates Depend on functional
importance

Depend on mRNA level

Abundant proteins Evolve slowly Evolve slowly
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protein abundance has a far greater effect than other more intui-
tively appealing factors such as protein dispensability or the num-
ber of interaction partners.

In this minireview, we will re-examine the functional hypothe-
sis in conjunction with studies on the correlations of protein evo-
lutionary rates with genome variables, while discussing some
pitfalls with the hypothesis. We will then cover new hypotheses
which better explain why highly expressed genes evolve slowly
and glimpses of biological meaning that are starting to emerge
from the new perspective.

2. Correlations of variables with protein evolutionary rates
from the perspective of the functional hypothesis

The strength and extent of natural selection on individual ami-
no acids in a protein greatly influences the evolutionary rate of
that protein. Strong purifying selection leads to a reduced overall
protein evolutionary rate while relaxed selection or strong posi-
tive selection leads to a rapid rate of evolution. This has been
our paradigm for 30 years: functional constraints dictate protein
evolutionary rates (‘‘functional hypothesis”). The functional
hypothesis predicts a negative correlation between the severity
of a gene knockout effect and its protein evolution rate such that
essential genes evolve slowly (Fig. 1). Hurst and Smith were the
first to test the hypothesis on a set of mammalian proteins [7].
After excluding fast-evolving immune system genes thought to
be subject to positive selection, they concluded that there was
no reliable correlation between protein evolutionary rates and
the severity of the knockout phenotypes. However, subsequent
analyses in yeast and in bacteria reversed this conclusion by dem-
onstrating statistically significant, albeit relatively weak, negative
correlations between the strength of a gene’s knockout fitness ef-
fect and its evolutionary rate [8,9]. The negative results of Hurst
and Smith have been attributed primarily to the smaller dataset
used in their study. Wall et al. found significant independent cor-
relations between evolutionary rate and protein dispensability
(inversely related to the overall importance of a protein approxi-
mated by the fitness of the corresponding gene knockout strain
under various laboratory conditions) [10]. In addition to yeast,
the correlation has been also shown in bacterial species [9] and
in Caenorhabditis elegans [11].

Protein–protein interaction is another measurement that may
approximate functional density of proteins assuming that it con-
strains interfacial residues [12]. This seemingly provocative link
has been reported: the hubs of the network are significantly en-
riched for essential genes [13]. Fraser and his colleagues have
shown that protein evolutionary rate inversely correlates with
the number of protein–protein interactions in yeast, i.e., the
greater the number of interactions a protein has with other pro-
teins, the slower is its likely evolution [12,14]. The negative cor-
relation of the evolutionary rates with protein–protein
interactions was also reported in C. elegans and Drosophila mela-
nogaster [13,15]. Using curated sets of interacting protein crystal
structures, Mintseris and Weng concluded that residues in the
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interfaces of obligate complexes tend to evolve at a relatively
slower rate [16].

Protein evolutionary rates have been also reported to correlate
with other genome variables (Table 2) including expression level
(or breadth) [10,15,17–23] and a gene’s propensity to be lost (com-
puted based on the pattern of presence and absence of genes across
multiple genomes) [24]. The functional hypothesis posits that each
protein molecule by performing its function contributes a small
amount to organism fitness, so mutations that reduce two proteins’
functional output (e.g., catalytic rate) equally will have fitness ef-
fects weighted by the number of molecules of each protein in the
cell, or their abundances, causing the more abundant protein to
evolve slower. A gene’s propensity to be lost is another intuitive
correlate of the dispensability of a gene; if a gene is never lost dur-
ing evolution that is probably because it is essential for viability.
Thus the observed correlation seems to support the idea that func-
tional constraint is a selection pressure causing the variation in the
protein evolutionary rates. However, there are some difficulties
with the functional hypothesis in explaining whole correlations
among different genome variables.

D

3. What the functional hypothesis cannot explain

First of all, the evolutionary rates show surprisingly weak cor-
relations with several measures of functional importance such as
essentiality (functional importance of a protein) and the number
of protein–protein interactions. Conflicting results have been pub-
lished on the validity and the significance of the correlation
depending on the datasets and analysis methods [25–30]. Table
2 summarizes references on the correlations that have been re-
ported to exist between protein evolutionary rates and variables.
The controversies around the correlations show that it is usually
difficult to establish cause–effect associations among many inter-
correlated variables, particularly when variables are imprecisely
measured and/or can only be measured indirectly through other
variables. Specifics of the controversies are not a main focus of
this review, but the lesson here is that the complexities and inter-
dependencies of the genome variables must be properly ac-
counted for [30]. An association with the evolutionary rates
should only be considered seriously if it holds a significant corre-
lation in different biological systems after controlling confound-
ing effects. To resolve this issue, multivariate analyses have
been performed to uncover primary connections [3–6,31,32],
demonstrating that the influence of protein–protein interactions
and dispensability is decreased when expression level is con-
trolled for [29,33]. A surprising conclusion from these studies is
that protein abundance has a far greater effect than other more
intuitively appealing variables such as protein dispensability or
the number of interaction partners in determining the evolution-
ary rates [34,35].

Genes with high mRNA expression levels encode slow-evolving
proteins, from bacteria [6,36], yeast [17,22], and algae [37] to nem-
atodes [24], plants [20,38], fruit flies [15], mice, and humans [18].
Whereas most variables have little, if any, explanatory power,
expression levels account for a significant proportion of the vari-
ance in the evolutionary rates of proteins. Expression, measured
indirectly using codon usage bias, accounts for �30% of all variance
in protein substitution rates in bacteria [36], �36% in yeast [17],
�32% in Chlamydomonas [37] and �25% in Drosophila [39] (for re-
view, see [35]). Other proxies of expression levels lead to qualita-
tively similar results. In yeast, the ratio of divergence among
paralogues after duplication also depends on expression levels be-
cause it correlates with the ratio of mRNA abundances, explaining
�30% of the variance. This is significant evidence for one single var-
iable to be a key element in determining the protein evolutionary
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rates. It is quite a striking conclusion that, from bacteria to mam-
mals, the best correlate of the evolutionary rates is not functional
importance of a protein, but the expression level of the protein.
What could justify such a surprising observation?
Table 2
Known correlates of protein evolutionary rates.

Genome variables Species # of total genes analyzed (NE/E) Datasets fo
variables

Propensity of gene loss Yeast, worm,
human

3140 KOGs

Protein length Yeast 5865
Fly 1258

Plant 558

Designability
(protein’s contact
density)

Yeast 5865 Protein
databank

Bacteria,
yeast, fly,
human

777 Escherichia coli, 363 S.
cerevisiae, 795 melanogaster, 860
(PDB, GTOP) Homo sapiens

D. protein
databank

Bacteria �4100 Bacillus subtilis
�4300 E. coli

Yeast 185 gene pairs (duplication
study)

Microarray

Yeast 5724 Microarray
CAI

Yeast 3038 Microarray
Yeast 290 Microarray

Expression level
(mRNA)

Fly 1258 Microarray

Human,
mouse, rat

7383 Human, 6724 mouse Microarray

Fly, mouse 60229 Drosophila ESTs, 50672
Mouse ESTs

EST/
microarray

Bacteria,
yeast, worm,
fly, mouse,
human

2229 Bacteria, 4292 yeast, 2386
worm, 6649 fly, 6167 mouse,
3180 human

Microarray

Plant 558 EST

Expression breath Human,
mouse

2400 Human/rodent, 834
mouse/rat

EST

Fly, mouse,
human

6649 Fly, 6167 mouse, 3180
human

Microarray

Plant 558 EST

Codon adaptation
index (CAI) or
frequency of
optimal codons
(Fop)

Bacteria B. subtilis-4100, E. coli-4300

Yeast 3038
Worm 548

Bacteria,
yeast, worm,
fly, mouse,
human

2786 Bacteria, 4616 yeast, 4173
worm, 7070 fly, 9061 mouse,
5939 human

Algae 67 EST
Plant 558 EST

Protein–protein
interaction

Yeast 164 Literatures
two-hybrid
interaction

Yeast 13925 Interactions Literatures
MIPS
database

Yeast �Total 3000 genes, 50000
interactions

MS data
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4. Translational accuracy hypothesis

If expression level has a far greater effect than dispensability
and/or essentiality, selection pressures for translational accuracy
r Correlation Species for divergence calculation (outgoup) Ref.

Positive Seven eukaryotic genomes (Arabidopsis thaliana) [24]

Positivea Saccharomyces cerevisiae–Saccharomyces bayanus [32]
Positivea Drosophila melanogaster–Drosophila pseudoobscura

(Anopheles gambiae)
[15]

Positivea Populus tremula-Populus trichocarpa [20]

Positivea S. cerevisiae–S. bayanus [32]

Positivea E. coli–Salmonella typhimurium, S. cerevisiae–S. bayanus,
D. melanogaster–Drosophila yakuba, H. sapiens–Mus
musculus

[59]

Negative Five species including E. coli & B. subtilis
[36]

Negative S. cerevisiae–Candida albicans [17]

, Negative S. cerevisiae–9 other yeast species [19]

Negative Four yeast species [10]
Negative S. cerevisiae–4 other yeast species (Kluyveromyces waltii) [22]

Negative D. pseudoobscura–D. melanogaster (A. gambiae) [15]

Negative H. sapiens–M. musculus [60]

Negative Eight species including bacteria, plants, and animals [18]

Negative E. coli–Salmonella typhimurium, S. cerevisiae–
Saccharomyces paradoxus, C. elegans–C. briggsae, D.
melanogaster–D. yakuba, M. musculus–Rattus norgegicus,
H. sapiens–it Canis familiaris

[21]

Negative Populus tremula–Populus trichocarpa [20]

Negative H. sapiens–M. musculus–Rattus norvegicus [23]

Negative E. coli–S. typhimurium, S. cerevisiae–S. paradoxus, C.
elegans–C. briggsae, D. melanogaster–D. yakuba, M.
musculus–R. norgegicus, H. sapiens–C. familiaris

[21]

Negativea P. tremula–P. trichocarpa [20]

Negative Five species including E. coli and B. subtilis [36]

Negative Four yeast species including S. cerevisiae [10]
Fop are
associated
with
conserved
sites

C. elegans–H. sapiens [39]

Negative E. coli–S. typhimurium, S. cerevisiae - S. paradoxus, C.
elegans–C. briggsae, D. melanogaster–D. yakuba, M.
musculus–R. norgegicus, H. sapiens–C. familiaris

[21]

Negative Chlamydomonas incerta–Chlamydomonas reinhardtii [37]
Negative P. tremula–P. trichocarpa [20]

,

s

Negative S. cerevisiae–C. elegans [12]

, Negative S. cerevisiae–C. albicans [14]

NSa S. cerevisiae–C. albicans [33]

(continued on next page)
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Table 2 (continued)

Genome variables Species # of total genes analyzed (NE/E) Datasets for
variables

Correlation Species for divergence calculation (outgoup) Ref.

Yeast,
bacteria

1004 Yeast, 500 Bacteria MIPS database,
PIMRider functional
proteomics software
platform

NS or weak
negative

S. cerevisiae, Schizosaccharomyces pombe, C. elgans, two
strains of Helicobacter pylori and Campylobacter jejuni

[61]

Yeast,
worm

4773 Yeast, 2386 nematode DIP database NS or weak
negative

Six yeast species, 2 worms [28]

Yeast,
worm,
fly

20252 Interactions GRID database Negative S. cerevisiae–S. paradoxus, C. elegans–Caenorhabditis
griggsae, D. melanogaster–D. pseudoobscura

[13]

Fly �5000 Interactions Two-hybrid
interactions

Negative D. melanogaster–D. pseudoobscura (A. gambiae) [15]

Essentially (effect
of gene knockout)

Mouse 175 (108/67) GKD database NS M. musculus–R. norvegicus [7]

Worm 19213 Genes RNAi phenotype/
microarray

Negative C. elegans–C. briggsae [11]

Yeast 5724 Yeast deletion fitness
data, C. elegansRNAi
phenotype data

Negative S. cerevisiae–9 yeast species [19]

Yeast 287 (119/168) Yeast deletion fitness
data

Negative S. cerevisiae–C. elegans, 15 bacterial, 4 archaeal [8]

Yeast 3783 Yeast deletion fitness
dataset

NSa S. cerevisiae–3 yeast species and worms [29]

Yeast 1864 Yeast deletion fitness
dataset

Negative S. cerevisiae–C. albicans [62]

Yeast 3038 Yeast deletion fitness
dataset

Negativea Four yeast species including S. cerevisiae [10]

Bacteria 1886 (1736/150) PEC database Negative E. coli–H. pylori–N. meningitidis (2 strains for each) [9]
Bacteria B. subtilis-4100 (?/277), E. coli

�4300 (?/203)
B. subtilis deletion
fitness dataset, PEC
database

NSa Five species including E. coli and B. subtilis [36]

NE: non-essential genes, E: essential genes, NS: not significant, MS: mass spectrometry, Ref: reference, #: number.
a Correlation after expression abundance is controlled as a confounding factor.

Fig. 1. Schematic drawings of the functional hypothesis (A) and the translational
robustness hypothesis (B). (A) The functional hypothesis articulates that functional
constraints dictate protein evolutionary rates. The hypothesis expects variables
reflecting functional importance of proteins to correlate with protein evolutionary
rates. Functional importance of a protein is supposed to determine the effect of
gene knockout on the organism’s fitness (named as ‘essentiality’ in this figure). In
addition, PPI, PGL and mRNA abundance may associate with functional importance
so that these variables would correlate with protein evolutionary rate. The size of
each variable implies how much it reflects functional importance of proteins. The
shadow indicates the contribution of each variable on determining protein
evolutionary rate. (B) The MIM hypothesis suggests that the selection for a
protein’s robustness to lower mistranslation-induced misfolding should be partic-
ularly important for highly expressed proteins. Note that the expression abundance
is the dominant correlate of the protein evolutionary rates. Other variables may
associate with mRNA abundance resulting in their correlations with protein
evolutionary rates. PGL: propensity of gene loss, PPI: protein–protein interaction.

1056 D. Park, S.S. Choi / FEBS Letters 583 (2009) 1053–1059

RETRACTED
or efficiency rather than for proper function of proteins may be
critical determinant of the rates. One of the consequences of selec-
tion on efficient protein synthesis is co-adaptation of synonymous
codon usage with tRNA pools. Among codons recognized by
different aminoacyl tRNAs, translationally preferred codons tend
to be recognized by more abundant isoacceptors. Protein abun-
dance has been shown to correlate strongly with synonymous co-
don usage in some organisms [40]. Akashi has reported
significantly higher frequency of preferred codons at conserved
amino acids than at non-conserved ones in fruit flies [41]. Akashi
[42] has also shown that in yeast there is a correlation between
tRNA concentration and corresponding amino acid content that is
stronger in highly expressed genes than in genes with low expres-
sion levels. Based on those findings, the translation accuracy
hypothesis states that variations in the translation accuracy of dif-
ferent codons lead to selection of amino acids with better (or opti-
mal) codons [42] and to counter-selecting non-synonymous
changes leading to sub-optimal codons [43]; this in turn reduces
the rate of protein evolution. Kimchi-Sarfaty et al. recently showed
that synonymous mutations can contribute to a slow translation,
thereby affecting the efficiency of cotranslational protein folding
[44]. However, selection on codon usage is too weak to explain
the slow pace of protein evolution since synonymous substitutions
accumulate much faster than non-synonymous ones. In fact, when
the better codons are removed from the analysis, the correlation
between synonymous substitution rates and mRNA abundance dis-
appears, but the association of mRNA abundance with non-synon-
ymous substitution rates remains nearly unchanged [22]. How
could the association between mRNA abundance (not protein
abundance) and protein conservation be explained if not by trans-
lational accuracy?
5. Translational robustness hypothesis

The more frequently a protein is mistranslated and non-func-
tional, the more the translational process costs. If the mistranslated
proteins are toxic, it will have a greater fitness cost if it involves
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several proteins. Could typical frequencies of mistranslation (or
ribosomal infidelity) be problematic for an organism? At an error
rate of 5 � 10�4, a 400-residue protein (an average length protein)
can be expected to contain at least one mistranslation-derived mis-
sense mutation 18% of the time [21]. The incorporation of incorrect
amino acids into proteins tends to destabilize them relative to the
wild-type sequence, thus increasing their propensity to misfold. To
reduce the number of proteins that misfold due to translation er-
rors, selection can act on the amino acid sequence to increase the
number of proteins that fold properly despite mistranslation.
Hence, Drummond et al. [22] suggested that highly expressed pro-
teins should be more tolerant to mistranslation. The authors called
the increased tolerance for translational missense errors ‘‘transla-
tional robustness”.
A

6. Mistranslation-induced protein misfolding hypothesis

Recently, Drummond and Wilke proposed the mistranslation-
induced protein misfolding (MIM) hypothesis; adaption to reduce
the cellular burden imposed by protein misfolding creates the
prominent correlation between protein abundance and evolution-
ary rates (Table 1 and Fig. 1). The MIM hypothesis could explain
the pervasive association of synonymous and non-synonymous
substitution rates, since the cost of misfolded proteins can be re-
duced both at the translational level, by biasing codon usage to in-
crease translational accuracy, and at the folding level, by favoring
amino acid sequences with increased translational robustness.
Using a molecular-level evolutionary simulation, Drummond and
Wilke demonstrated that selection against toxicity of misfolded
proteins generated by ribosome errors suffices to create all of the
observed co-variation among genome variables [21]. The hypothe-
sis is an attractive concept not only because it introduces a single,
dominant determinant of protein evolutionary rate but also be-
cause the key role of translational robustness is compatible with
fundamental biological features of all cells. Indeed, all cells encode
numerous chaperones that prevent misfolding and enormously
elaborate molecular machines such as proteasomes which to a
large extent are dedicated to the selective degradation of misfolded
proteins. Roughly 10–50% of random substitutions disrupt protein
function [45,46]. Greater amounts of mistranslated protein may
lead to elevated levels of toxic aggregates, especially if these mis-
translated–misfolded proteins could seed the aggregation of the
wild-type proteins by capturing folding intermediates [47,48].
More importantly, mistranslated proteins would definitely pose a
burden on the proteostasis machinery in cells, leaving organisms
more vulnerable to metabolic and environmental stresses [48]
and less able to handle other inherited aggregation-prone proteins.
Morimoto and colleagues have recently shown that the introduc-
tion of one protein prone to misfolding into a cell compromises
that cell’s ability to maintain proteostasis because other proteins
begin to misfold and aggregate leading to proteotoxicity [49].

The burden of mistranslation-induced protein misfolding can be
inferred by the association of misfolded proteins with several path-
ological conditions including neuronal degeneration, such as Alz-
heimer’s disease, Huntington’s disease, Parkinson’s disease and
amyotrophic lateral sclerosis [50]. Postmitotic neurons appear to
be particularly sensitive to protein misfolding because aggregated
toxic proteins cannot be diluted by cell division [51]. Malfunction-
ing of broadly expressed proteins involved in translation and pro-
tein folding manifests specifically neurotoxic effects in mouse
[51,52] On the contrary, overexpression of chaperones has been re-
ported to suppress neurodegeneration in fruit fly and mouse mod-
els [53,54]. Indeed, neurons were highlighted by Drummond and
Wilke as being highly susceptible to translational infidelity and
the fitness cost of misfolding [21]. Drummond and Wilke examined
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correlations between genome variables and tissue-specific mRNA
levels in fly, mouse, and human, revealing that neural tissues have
a stronger correlation of tissue expression with dN than do non-
neural tissues [21].

Noticeably, the MIM hypothesis leads us to revisit the recent
unusual finding made by Wyckoff et al., a positive correlation be-
tween dS and the dN/dS ratio [55]. Currently, no theory covers this
observation, although Wyckoff et al. offer a possible explanation
based on differences in mutation rates in different genes. The
MIM hypothesis argues that a similar pressure against mistransla-
tion would influence the evolution of both synonymous and non-
synonymous substitution. If the selection generates greater varia-
tion in non-synonymous substitutions than in synonymous
changes, dS would positively correlate with the dN/dS ratio.

The MIM hypothesis seems to make biological sense and ex-
plains data that the functional hypothesis hardly offers reasons
for (see above). Although there is no experimental proof or confir-
mation of the hypothesis, Koonin and his colleagues recently re-
ported insightful results. The dominant determinant of the
sequence evolution rates is postulated to be the rate of transla-
tional events rather than mRNA or protein abundance. Given that
the quantity that is actually measured in most experiments is the
transcript level rather than the number of translation events per
se, the interpretation of experimental data on gene expression is
ambiguous. Avoiding the ambiguity, Koonin and his colleagues re-
cently tested the hypothesis based on a simple yet elegant idea;
different domains of the same protein are translated at the exact
same rate [56]. They compared the evolutionary rates of ‘individual
domains fused into single proteins’ against those of ‘the same do-
mains fused into different proteins’, and concluded that the trans-
lation rates are significant determinants of evolutionary rates.
Nonetheless, definitive and conclusive experimental confirmation
of the hypothesis is daunting since experimental measurement of
translational robustness is challenging even in a handful of pro-
teins, not to mention a genome-scale analysis.
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7. Reconciliation of the MIM hypothesis with the pre-existed
framework

Protein evolution requires two steps: the mutation of nucleo-
tides that code for amino acids and the fixation of new variants
in the population. The probability of fixation depends on the fitness
effect of mutations; the new variant can be neutral or nearly neu-
tral (and so governed purely or largely by genetic drift, respec-
tively), deleterious (and consequently opposed by purifying
selection), or advantageous (and therefore supported by positive
selection) [57,58]. The MIM hypothesis suggests that there is a
purifying selection against misfolded proteins, which results in a
strong negative correlation between expression levels and protein
evolutionary rates. Although the functional hypothesis may not be
adequate to explain co-variation between the two variables, func-
tional constraints may be a critical purifying selection pressure
that lowers protein evolutionary rates in general. In other words,
the premise of the MIM hypothesis is that two coding sequences
under similar functional selective pressure might have differences
in their evolutionary rates mostly due to other factors such as
translational accuracy and translational robustness. In addition to
the correlation of protein evolutionary rates with expression levels,
it might be desirable to take into account other variables with
small contributions to protein evolutionary rate for a more com-
plete explanation [32,56].

There is now an increasing need to form a new integrated the-
ory of protein evolution. We have both progressively sophisticated
methods and genome-scale datasets to test individual evolutionary
hypotheses that explain how genomic, cellular and physiological
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properties affect evolutionary process. An integrated view would
combine these individual ideas and consider the global properties
of proteins under a single conceptual framework. We anticipate
that such a coherent theory will have far-reaching consequences
on crucial problems in evolutionary biology. We believe that such
a theory will require the integration of many individual elements
including translational robustness.
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