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Abstract 

A conjecture concerning perfect graphs asserts that if for a Berge graph G the following three 
conditions hold: (1) neither G, nor G has an even pair; (2) neither G, nor G has a stable cutset; 
(3) neither G, nor G has a star-cutset, then G or G is diamond-free. We show that this conjecture 
is not valid and that, in a way, every weaker version is false too. To this end, we construct a 
class of perfect graphs satisfying the hypothesis above and indicate counterexamples within this 
class for the instances of the conjecture obtained by replacing the diamond with any graph /4 
which is the join of a clique and a stable set. 

1. Introduction 

For a graph G = (V,E), let us call a clique any set of  pairwise adjacent vertices in 

G. The clique number og(G) of  G represents the cardinality of  a largest clique in G, 

while the chromatic number z(G) of  G is the minimum number o f  colours necessary 

to colour the vertices of  G in such a way that any two adjacent vertices have different 

colours. Using these two parameters, Berge defined a graph G =- (V,E) to be perfect if 

for each of  its subgraphs the clique number equals the chromatic number. It was proved 

by Lov~tsz [5] that a graph G is perfect if and only if its complement graph G is perfect 

too. No characterization with minimal forbidden subgraphs is known for perfect graphs, 

although a conjecture of  Berge (called the strong perfect graph conjecture, abbreviated 

SPGC) has been formulated thirty years ago and it is neither proved, nor invalidated. 

Conjecture 1 (SPGC). A graph is perfect if and only if it contains no odd hole and 

no odd antihole. 

A hole is a chordless cycle with at least five vertices, while an antihole is the 
complement graph of  a hole. A hole is odd if it has odd number of  edges. Graphs 

without odd holes and odd antiholes are usually called Berge graphs. An equivalent 
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version of the SPGC can be formulated using the notion of minimal imperfect graph, 

which designates an imperfect graph such that every proper induced subgraph is perfect. 

Conjecture 2 (SPGCI).  Every minimal imperfect graph is an odd hole or an odd 
antihole. 

As a first step toward proving (SPGCI), some properties of minimal imperfect graphs 
have been investigated. 

A subset C of V is called a cutset of G if the subgraph of G induced by V - C 
is not connected. As it was shown by Tucker [8], a minimal imperfect Berge graph 
cannot contain a stable cutset, i.e., a cutset C such that the subgraph [C]c induced 
by C in G is edgeless. Moreover, in [1], Chv~ital proved that no minimal imperfect 
graph has a star-cutset, that is, a cutset C containing a vertex adjacent to all the other 
vertices in C. 

In a graph G two nonadjacent vertices x, y form an even pair if there is no odd 
chordless path joining x and y in G. It was proved by Meyniel [6] that no minimal 
imperfect graph has an even pair. 

Unfortunately, the exact importance of these three properties of minimal imperfect 
graphs is not known. The following conjecture, due to Bruce Reed [7] and involving 
a well-known class of perfect graphs, namely the line-graphs of bipartite graphs, has 
been disproved by Hougardy [4]: 

Conjecture 3 (Reed). Let G be a Berge graph satisfying the conditions below: 
1. neither G, nor G has an even pair; 
2. neither G, nor G has a star cutset. 
Then G or G is the line-graph of a bipartite graph. 

Several authors proposed a weaker conjecture by substituting the conclusion "G or 
is the line-graph of a bipartite graph" with "G or 0 is diamond-free", where a diamond 
is the graph obtained by deleting an edge of a clique on four vertices. Still weaker 
than the conjecture above is the one we shall examine along this paper. 

Conjecture 4. Let G be a Berge graph such that 
1. neither G, nor G has an even pair; 
2. neither G, nor G has a star cutset; 
3. neither G, nor G has a stable cutset. 
Then G or G is diamond-free. 

Obviously, since the diamond-free Berge graphs are perfect [9], a proof of this 
conjecture would also be a proof of the SPGC. Our purpose here is to give a coun- 
terexample not only for this conjecture, but also for every weaker version of it obtained 
by replacing the diamond with any graph H which is the join of a clique and a stable 
set (that is, all possible edges between the two sets are present in H).  The counter- 
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examples will be iteratively built using a composition of two graphs GI and G2 into 
another graph G with the same properties as the initial graphs. 

2. The 2-join 

Let G = (V ,E)  be a graph and consider a partition of its vertex set V in p subsets 

V1, V2 . . . .  , Vp. This is a natural way to indicate the classes of  vertices in G having 

the same behaviour relative to a certain property, whatever is this property. In our 
case, the vertices in a class will have the same neighbours in the graph joined to 

G by the operation defined below. Some reasons of simplicity decided us to limit the 

approach to the case p = 3. The partition sets will be denoted by R, W, B, each of them 
representing the set of  vertices in G coloured respectively in red, white and blue. We 

shall also use the term of Q-vertex for a vertex coloured in Q, where Q c {R, W,B}. 
A QP-edge xy is an edge whose extremities are coloured in Q, respectively in P, for 
any Q, P c {R, W,B}. 

Given two graphs G1 = (V1,E1) and G2 = (V2,E2) coloured in R, W and B, denote 
by G = Gl49G2 the graph G = (V ,E)  defined as follows: 

V = V l l , _ J V  2 

E = E1 to Ee U {xy I(x, y )  ~ R~ x Rz} to {zt l (z , t )  ~ W~ x W2}, 

where Ri (resp. IV,.) is the set of red (resp. white) vertices in Gi, for i=1, 2. The blue 
vertices in G have precisely the same neighbours as they had in the two initial graphs. 

Notice that the new graph G may be also obtained from the graphs 

G', = ( V( GI ) to {xl, yl } ,E(  G, ) to {x,v, v E R, } to { yl w, w E W, } tO {XlYl}) 

and 

G~ ~--- (V(G2)  [..I {x2 ,Y2} ,E(G2)  [.j {x2v, v E R2} to {y2w, w E W2} [.J {x2Y2} ) 

using the 2-join operation defined by Cornu6jols and Cunningham [3]. According to 

that definition, the 2-join of  G{ and G~ is the graph H resulted by eliminating xi, Yi 
(i = 1,2) and joining every neighbour of xl (resp. of Yl ) in GI to every neighbour of 

x2 (resp. of Y2 ) in G2. A brief verification shows that G and H are in fact the same 
graph. That is why, for convenience, we shall say along this paper that G = GI~aG2 
is the 2-join of Gl and G2. 

For every n ~> 2, consider now the graph F,  (already coloured) with the vertex set 

V(F,) = {Xl,X 2 . . . . .  Xn} to {Yl,Y2 . . . . .  y,} to {z,,z2 . . . . .  zn}, 

where R = {xl,x2 . . . . .  xn}, W = {Yl,Y2 . . . . .  y,}, B = {zl,z2 . . . . .  z,} are the sets of 
vertices coloured, respectively, in red, white and blue. 

The edge set E(F , )  is defined such that [R]F,, [W]F,,, [B]F, are n-cliques and for all 

i E {1,2 . . . . .  n}, [xi, Yi,Zi]F,, is a 3-clique (see Fig. 1). 
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Fig. 1. The graph Fn. 

It is easy to verify that, for n ~>3, Fn satisfies the hypothesis of  the conjecture (the 
case n =2 is particular). In order to define a class of  graphs using Fn (n~>2) and 

the 2-join operation, let us see which general conditions are sufficient to preserve the 
hypothesis. 

In the four lemmas below, we shall say that a graph is coloured in R, W, B (or 

simply coloured) if  its vertex set is partitioned in R, W, B such that the following 
condition holds (Q is an arbitrary colour of  the set {R, W,B}): 

(C1): For every Q-vertex x E v, the neighbourhood N6(x) intersects each of R, W, 
B, but contains none of them, except possibly for Q. 

As we can easily notice, the 2-join of  two coloured graphs is a coloured graph too. 

The proofs of  the lemmas are symmetrical for R, W and for the two graphs G1, G2, 
therefore we shall analyse only the nonsymmetrical cases. 

Lemma 1. Let Gi (i = 1,2) be two coloured Berge graphs satisfying the following 
conditions: 

(C2): I f  x c Bi, then NG,(x) = K1 U K2, where K1 C Bi and K2 C Ri U Wi are two 
disjoint cliques with no edge between them; 

(C3): For every odd chordless path Rul ...u2kR (resp. Wul . . .uzkW) in Gi, there 
is some p E {1,2 . . . . .  2k} such that Up E Ri (resp. Wi); 

(C4): There is no odd chordless path RWW.. .  WR (resp. WRR. . .RW) in Gi. 

Then G = GI(aG2 is a coloured Berge graph and satisfies (C2), (C3) and (C4). 

Proof. We firstly show that G has no odd holes and no odd antiholes. Suppose there 
is an odd hole C induced in G and let F(C) be its vertex set. Obviously, C is not 
entirely contained in a graph Gi since these graphs are Berge. To pass from a graph 
into the other one, an edge xy such that x and y have the same colour is needed. 

Without loss of generality we may suppose that x E R1 and y c R2. Let z be the 
other neighbour of  x along the cycle C. I f  z E R1 then yz E E(G) is a chord in C, a 
contradiction. Thus z C R2 or z is not a red vertex. 

Three positions of the cycle are then possible with respect to the initial graphs. 
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• C = xyP2zx, where x E R1, z, y E R2 and P2 is a chordless path in G2 - R2. In 
this case, yP2z is an odd chordless path in G2 in which only the extremities are red 

vertices. By (C3), such a path is not induced in Gz. 

• C = xyP2tuvUzzx, where x E R1, z , y  E R2, u E W1, t,v E W2 and P2, P~ are 
chordless paths in B2. Suppose that yP2t is even. Then V(P2) must contain an odd 

number of B-vertices. But this is not possible because of (C2). 

• C = xyPztvPlX, where x E R1, y E R2, v E Wl, t E W2 and Pi (i = 1, 2) is a 
chordless path in Bi. Again, one of the two paths must contain an odd number of  

B-vertices and that is not possible. 

We deduce that G contains no odd 

Suppose now that G contains some 
has more than five vertices, then in (~ 

holes. 

odd antihole (~ and that (~ has a B-vertex. I f  
the B-vertex is nonadjacent to at least one path 

on four vertices. Therefore, in G the B-vertex has such a path in its neighbourhood. 
But that contradicts (C2). Consequently, C induces a 5-cycle in G, thus its complement 

is a 5-cycle in G. But G has no odd holes, a contradiction. 

We may then suppose that the antihole C contains no B-vertices. By (C4), a rea- 
soning similar to the one we used to deduce that G has no odd holes proves that in 
fact there is no odd hole in G. Then G is a Berge graph. 

We subsequently prove that G satisfies the conditions (C2), (C3), (C4). 

(C2): By definition, the operation ~b does not change the neighbour set of  a B-vertex. 
(C3): Assume the contrary and let x , y  be two nonadjacent R-vertices in G joined 

by an odd chordless path P with no R-vertices. Then x and y are both in G1 or both 
in G2 (say they are in G1). By (C2), if there are any B-vertices on P, their num- 
ber is even. An even number of W-vertices is then required in order to have an odd 

chordless path (notice that if there are no W-vertices, P is entirely contained in G1, 

a contradiction). Whatever would be the repartition of the W-vertices in G1 and G2, 
there is a chord in P. 

(C4): Assume the contrary and let x , y  be two nonadjacent R-vertices in G joined 
by an odd chordless path P '  containing only W-vertices. Notice that in G, the red 
vertices in a graph are joined to the white and to the blue vertices in the other one. 

Consequently, if x, y are both in G1, then every W-vertex of P '  in G2 (and there exists 
at least one) would be adjacent to both x and y, a contradiction. The only possible 

case is x E Rl, y E R2 such that their neighbours along P '  (u and, respectively, v) are 
in W2, respectively in W1. The W-vertices u and v are nonadjacent in 0,  therefore at 
least another W-vertex occurs on p/. But then P '  would have chords. [] 

Remark 1. Notice that the condition (C2) could be relaxed, but such a modification 
would also be relaxing the conclusion of Lemma 1. Later reasonings will involve 
precisely the indicated form of (C2). 

Lemma 2. Let  Gi (i = 1,2) be two coloured graphs such that neither Gi, nor Gi has 

an even pair and 
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(C2): I f  x C Bi, then NG,(x )=  K1 U K2, where K1 C Bi and K2 C Ri U Wi are two 
disjoint cliques with no edge between them; 

(C5): For every R-vertex (resp. W-vertex) x in Gi, there is an even chordless path 

x R R . . . R W  (resp x W W . . .  WR)  in Gi. 

Then neither G = Gl(aG2, nor G has an even pair and G satisfies (C2) and (C5). 

Proof.  For every pair of  vertices u, v in the same graph Gi, if  u, v are nonadjacent 

(resp. adjacent) then there is an odd chordless path joining them in the same graph 

(resp. in its complement graph). This path is also an odd chordless path in G (resp. 

in G). 

Let now u,v be a pair o f  vertices in G such that u C V(G1) and v C V(G2). Four 

nonsymmetrical cases can occur: 

• u E RI,  v E R2; by (C1), there is a W-vertex t in G1 adjacent to u and, obviously, 

nonadjacent to v. Also, there is a B-vertex w in G2 adjacent to v and nonadjacent to 

u. Moreover, t and w are nonadjacent, so tuvw is a chordless path on four vertices 

in G. The complement of  this graph is the odd chordless path on four vertices uwtv 

joining u and v in G. We deduce that (u, v) is not an even pair in G. 

• u C Rl, v E W2; by (C5) there is an even chordless path uRR. . .RW in G1; then 

uRR... Wv is an odd chordless path in G. 

• u E R1, v E BE; by (C1) there exists a B-neighbour w of  v in G2 and by (C2) w 

has an R-neighbour t that is nonadjacent to v. Then utwv is an odd chordless path 

joining u and v in G. 

• u E B1, v c B2; if t is a W-vertex in G1 adjacent to u (according to (C1)) and w 

a W-vertex in G2 adjacent to v, then utwv is an odd chordless path joining u and v 

in G. 

Thus G and G have no even pair. Obviously, the conditions (C2) and (C5) are also 

valid for G. [] 

Remark  2. In fact, the R W-, RB- and WB-edges in Gi may be even pairs in Gi and 

the conclusion is still valid. While 2-joining G1 and G2, by (C1) we can find for a 

WR-edge xy in GI a W-vertex u and an R-vertex v in G2 such that uv ~ E(G), so 

xvuy is an odd chordless path joining x and y in G. For a WBoedge zt in G1, since 

(C2) is true the B-vertex t has a B-neighbour a in G1 nonadjacent to z. As before, z 

has a W-neighbour b in G2 and atzb is a P4 in G that induces an odd chordless path 

in G joining z and t. 

Lemma 3. Let Gi ( i  = 1 , 2 )  be two coloured 9raphs such that neither Gi, nor Gi has 

a stable cutset. Then the same property holds for  G = G1 c~G2. 

Proof. Assume the contrary and let S be a stable cutset in G. Since neither G1, nor  G2 

has a stable cutset, G~ = G1 - S and G~ = G2 - S are connected. Moreover, they can 

have at most one colour in common and that one is B (otherwise G -  S is connected). 
Consequently, S contains at least one o f  R~,R2, so by (C1) it is not a stable. 
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Let now S' be a stable cutset in G and let (~,  G; be the connected components 

of  G - S'. Neither 67~1, nor G; contains a B-vertex (otherwise the two subgraphs are 

connected), therefore all the B-vertices are in S'. Since none of  BI, B2 is empty, S ~ 

cannot be a stable set, a contradiction. [] 

Remark  3. We can notice that in the proof we do not really need to use the hypothesis 

that Gi (i = 1,2) has no stable cutset. Indeed, suppose that 0 i  may have stable cutsets, 

let S ~ be a stable cutset of  0 and consider AI,A2 . . . . .  As the connected components of  

- S ' .  The graph 0 -  S ~ contains at least one B-vertex v. Without loss o f  generality 

we may assume that v is a B-vertex in Gl contained in the connected component AI. 

Then V(G2)C_A1 tA S', so A2 . . . . .  A~. C_ V(G1). This implies that B2 and one of  R2, W2 
are included in S'. But since S'  is a stable set we get a contradiction to (C1). 

Lemma 4. Let Gi (i = 1,2) be two coloured 9raphs such that neither Gi,  n o r  Gi has 
a star-cutset. Then the same property holds for G = Gl (bG2. 

Proof.  We shall use a result of  Chv~ital [1] stating that a graph G has a star-cutset 
if and only if it has at least one of  the following properties: 

(i) G has a vertex w such that the set of  all the vertices distinct from w and not 

adjacent to w induces a disconnected subgraph of  G; 

(ii) G has at least two nonadjacent vertices, and it has adjacent vertices v,w such that 

w dominates v. 
Assume now that the lemma is not true and let S be a star-cutset o f  G. We denote 

by x the vertex of  S adjacent to all the other vertices in S. Two nonsymmetrical cases 

are possible: 

• x E B1; then S C V(G1) and G 1 - S  is connected. The two connected components are 

precisely G1 - S  and G2, therefore G1 - S  contains no R-vertices and no W-vertices. 

The condition (C1) is violated. 

• x E R1; denote N~(x) = No(x) tA {x} and Gtl -~ G1 - N~(x). Then V(G) - N~(x) = 
14/2 b B2 U V(G'I). By (C1), every B-vertex of  G2 has a neighbour in G2 coloured 

W. This one is adjacent to all the W-vertices in G' 1 (at least one such vertex exists, 

by (C1)). Moreover, Gtl is a connected graph (otherwise N~(x )~  V(G~l ) would be 

a star-cutset for G~, a contradiction). Conclusion: G -  N~(x) is connected. 

To prove that no star-cutset S exists, it is sufficient to show that every neighbour of  

x in G is adjacent to at least one nonneighbour of  x. For the neighbours of  x in G1, 

this property is insured by the fact that G1 has no star-cutset. The neighbours of  x in 

G2 are R-vertices, which are adjacent to some of  the W-vertices in G2. 

Let us now prove that G has no star-cutset. Suppose the contrary. 

• x E B, ; as before, denote N~(x) = {x} UN~(x) and let G:' 1 = ( 7 1 - N ~ ( x )  (connected) 

be the graph induced in (71 by the vertices nonadjacent to x. One has G~I = G-N~(x )  

(since all vertices in G2 are adjacent to x), so N~(x) is not a star-cutset of  G. By 

(CI) ,  there is at least one W-vertex and at least one R-vertex in GI adjacent to 
x. Therefore, in G~ there exist at least one R-vertex and at least one W-vertex. 



220 1. Rusu/Discrete Mathematics 171 (1997) 213-227 

Consequently, every neighbour y E G2 of x is adjacent to a nonneighbour of x (the 
R-vertex or the IV-vertex in G1 ). Since N~_(x)A V(G1) is not a star-cutset in G1, 

the same holds for the neighbours of x in G1. 
• x E R1; the graph G'I is connected and contains at least one W-vertex, by (C1). 

This vertex is adjacent to all the R-vertices in G2, so G - N ~ ( x )  is connected (since 

- N ~ ( x )  = G~'1 UR2). Every neighbour y E V(G2) o f x  is a W-vertex or a B-vertex 

and, again by (C1), is adjacent to at least one R-vertex z in a2 (nonadjacent to x). 
Also, every neighbour y E V(G1) of x is adjacent to a nonneighbour of x in 01, 
since (71 has no star-cutset. [] 

The five conditions identified in the lemmas above are now sufficient to define the 
class of graphs generated by Fn (n~>2) using the 2-join operation. Let us firstly say 
that a graph G is finely-colourable if  its vertex set may be partitioned into three sets R, 
W, B such that the conditions (C1)-(C5) hold. A colouring of G with these properties 
is called a fine-colouring and a graph G provided with a fine-colouring is said to be 

finely-coloured. 
We define the class F generated by the basic graphs Fn (n~>2) as following: 

• for every n~>2, Fn E F; 
• if G1 and G2 in F are finely-coloured in R, W, B, then G1 ~bG2 E F. 

The theorem below uses the four previous lemmas to prove that F is correctly defined 
and, moreover, that every graph in F \ {F2) satisfies the hypothesis of the conjecture: 

Theorem 1. The graphs in F \ {F2 } are finely-colourable Berge graphs with the fol- 
lowing properties: 

1. neither G, nor G has an even pair; 
2. neither G, nor G has a star cutset; 
3. neither G, nor G has a stable cutset. 

Proof. It is a routine matter to verify that, for n ~>3, Fn satisfies the hypothesis of 
Lemmas 1, 2, 3, 4. 

For n = 2 not all the properties hold. Namely, there are two exceptions, both in fv2: 
- the nonadjacent pairs of vertices coloured in RW, RB or WB are even pairs in b~2; 
- the two 3-stables are stable cutsets in/Y2. 

According to Remarks 2 and 3, the two exceptions above do not disturb the proofs 
of Lemmas 2 and 3. 

Then we can easily prove by induction that every graph in F has the indicated 
properties. [] 

3. A class of  perfect graphs 

The purpose of this section is to show that the class F defined in Section 2 is a 
class of perfect graphs. To this end we prove that the fine-colourings of the graphs in 
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F have a common structure and use this property to deduce that no P4 of  type RRRR,  
W W W W  exists in a fine-colouring. The perfection results as a simple application of  

a theorem due to Chvfital et al. [2]. 

Since all the graphs in F are obtained from the basic graphs by repeated 2-joins, 

we can regard every G E F as a set of  basic graphs whose vertices are joined ac- 

cordingly to the indicated rule. Apparently, in a fine-colouring of  G it is no need for 

a basic graph to be coloured as described before. Actually, they are coloured in this 

way. 

Lemma 5. In a fine-colouring of  G E F, every basic graph is finely-coloured. 

Proof.  A brief verification shows that a fine-colouring of  a basic graph Fn is a one-to- 

one application from the set of  n-cliques to the set of  colours; therefore, for this easy 

case, the lemma is proved. 

Let G = G1 ~G2 be a graph of  F obtained by 2-joining the finely-coloured graphs 

G1 and G2. We denote by R °ld (resp. W °ld B°ld~ the sets of  R-vertices (resp. W-, B- 
l ' l / 

vertices) in the fine-colouring of  Gi used to obtain G and by R/new (resp. winew, B/n ew) 

the vertices in Gi (i = 1,2) coloured in R (resp. W, B) in an arbitrary fine-colouring 

of  G. Then every vertex in R~ 'ld is adjacent to every vertex in R~ ld and the same 

holds for the W-vertices. The vertices in B °ld (i = 1,2) have neighbours only in 

Gi. 

Claim 1. No R- or W-vertex in Gi (old) becomes a B-vertex in G (new). 

Proof.  Suppose there is such a vertex x E B~ ew V) W2 °ld. Then x has at least one 

neighbour y in B~ ld. We have to consider the following three cases: 
n e w  • x has a neighbour y c BJ 'ld A R 2 . Then all the neighbours o f  x in G1 must be B- 

vertices (new), otherwise the R- and W-neighbours o f  x in G do not induce a clique 

and this contradicts (C2). Consequently, all the vertices in W1 °ld are now B-vertices 

and form a clique. Let z be a vertex in this set. By (C1), z has an R-neighbour t in 

G. If  t is in G1, then tzxy is a P4 coloured RBBR and (C3) is violated. Then all the 

R-neighbours o f  z in G are in fact in W2 °ld. We deduce that no W-neighbour (new) 
u of  z occurs in G 1. Otherwise u is in R~ ld or in B~ Id and it is not adjacent to t, 

therefore z contradicts (C2). Now, the neighbourhood of  z coloured in B contains 
x and at least a vertex in B~ ld (according to (C1) in G1), thus it is not a clique, a 

contradiction. 

• x has a neighbour y E B~ 'ld N W2 new. The reasoning is similar to the preceding one. 

• every neighbour o f  x in B2 (old) is also coloured with B in G. Then all the vertices 

in W1 °ld are now coloured in R, W and form a clique. Also, every neighbour o f  x 
in R~ 'ld is a B-vertex in G. 

We shall firstly prove that in W1 °ld there exist both new W-vertices and new R- 

vertices. Suppose this is not the case and all the vertices in Wl °ld are W in the new 

colouring. We then consider an old R-neighbour y of  x (which must be a B-vertex 
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in the new colouring) and a neighbour q of  y in R~ ld, which is not adjacent to 

a fixed vertex s of  W1 °ld (such a vertex exists, otherwise s would be adjacent to 
the entire set R~ ld, a contradiction). The P4 qyxs implies q E R~ ew. Let r be an 

R-neighbour (new) of x, so r E W f  d (otherwise the new W- and R-neighbours of 

x would not form a clique). We deduce that qyxr is a P4 coloured RBBR,  except if 

yr E E; but then r and y are two adjacent neighbours of  the B-vertex x coloured in 
R and B, a contradiction. The reasoning is similar if we suppose that all the vertices 
in WI °ld are R in the new colouring. 

Consequently, in W1 °ld there exist vertices of both colours R (new) and W (new). 
Let z be a neighbour of  x in B2 °ld. Then z is a B-vertex in G too and its R- or W- 

neighbours are all in G2. Suppose it has an R-neighbour v in B2 °ld or in R~ ld. For 
every vertex w C wl°ld M R~ ew we have then the P4 wxzv which is coloured RBBR,  

a contradiction. We deduce that every R-neighbour of z was coloured with W in 

the fine-colouring of G2. In the same way, we deduce that every W-neighbour of  z 
was coloured with W in the fine-colouring of G2. 

Consider now a neighbour t of  x in R~ ld. Then t is coloured in B (new) and its 

neighbours in G1 cannot be B-vertices (since x is also a B-neighbour of  t, the B- 

vertices adjacent to t in G would not form a clique). Let u C R~ewn R~ 'ld (if there is 
one) be a neighbour of t and v E W2 °ld an R-neighbour o fz .  Since tz E E(G) (both 

are B-vertices in N6(x)), then utzv is a P4 coloured RBBR,  again in contradiction 
with (C3). We have necessarily tv C E(G) and this contradicts the fact that the R- 

and W-vertices adjacent to t form a clique (since v and u are nonadjacent). The 
same reasoning is valid for the W-neighbours of t in R{ 'ld, so the former R-vertices 

in G1 cannot be coloured in R, W or B, a contradiction. [] 

Claim 2. No B-vertex in Gi (old) can chanye its colour in a fine-colourin 9 o f  G. 

Proof. In the basic graphs Fn, every R- or W-vertex is adjacent to exactly one B- 

vertex. By Claim 1, no B-vertex can be added to the initial class, so by induction 

we may suppose that in G1 and G2 every R- or W-vertex is also adjacent to exactly 
one B-vertex. I f  a B-vertex (old) in Gi (i=1 or 2) changes its colour, every former 
R-neighbour of it would have no more B-neighbours in G and that would contradict 

(Cl).  [] 

Proof of Lemma 5 (continued). We show that in every fine-colouring of G, each 
basic graph has the vertices in an n-clique of the same colour. By Claims 1 and 2, the 
set of  B-vertices in every basic graph is unchanged while using the 2-join operation. 
Consequently, one of the three n-cliques of each Fn (say {zt,z2 . . . . .  zn}) is always 
coloured in B and all its neighbours are vertices of the same Fn (see Fig. I). By (C1) 

and (C2) for G, any B-vertex zi has the property that its neighbours xi, Yi are coloured 
in R and W. Suppose that for two indices i and j ,  xi and xj have not the same colour. 
If  xi is an R-vertex and xj a W-vertex, then yj is an R-vertex and xizizjyj is a P4 
coloured RBBR,  a contradiction. Therefore, all the vertices in an n-clique have the 
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same colour and this is a fine-colouring of  F, .  In fact, every fine-colouring of  G may 

be obtained from another fine-colouring by interchanging the colours R and W in some 

basic graphs. [] 

Remark 4. Lemma 5 insures that the vertices of  an n-clique in a basic graph F~ are 

always of  the same colour in a fine-colouring of  G and have the same neighbour set in 

G-F~.  Also, the neighbourhood in G of  each B-vertex is precisely its neighbourhood in 

the basic graph containing it. Moreover, given two basic subgraphs in a graph G E F, 

either the connection between them is R-R,  W-W,  or it is W R ,  R-W.  

Lemma 6. No P4 of  type R R R R  or W W W W  is induced by a fine-coloring o f  G E F. 

Proof. Suppose the contrary and let xyzt be a P4 of  type RRRR.  

If  any two vertices of  this path are contained in the same basic graph Fn, then 

they are contained in the same n-clique of  this graph, so they have precisely the same 

neighbours in G -  Fn, according to Remark 4. Consequently, the other two vertices 

must be in the same basic graph, and this contradicts the fact that in a basic graph the 

vertices of  the same colour form a clique. 

Then every two vertices are in different basic graphs. Consider now F x and F z the 

basic graphs containing x and z, respectively. The R-vertices in F z are not adjacent to 

the R-vertices in F x, therefore, by Remark 4, they must be adjacent to the W-vertices 

in F x. I f x  ~ is a W-vertex in F x, then xtz E E(G). The same holds for y and t, so i f t  ~ is 

a W-vertex in F t then yt ~ E E(G). Moreover, x t and t r are nonadjacent (otherwise the 

edges between F x and F t would be WW-edges or RR-edges and x would be adjacent 

to t since they are both R-vertices), and the same holds for x t and y, respectively t ~ 

and z. We deduce that x~zyt ~ is a P4 coloured in WRR W, a contradiction. [] 

Theorem 2. The graphs in F are perfect graphs. 

Proof.  Let G E F be a graph provided with a fine-colouring. By Lemma 6, the fine- 

coloufing is a partition o f  V(G) into three sets R, W,B which satisfes: 

- no P4 induced in G is coloured RRRR,  WRRW,  R W W R  or W W W W .  
- for each B-vertex x in G, No(x) = K1UK2, where KI and K2 are two disjoint cliques 

with no edge between them. 

If  G was not perfect, then it would contain a minimal imperfect subgraph G ~. Two 

cases occur: 

Case 1: G' contains no B-vertex. If  all the vertices of  G ~ have the same colour, 

then G' is P4-free, thus it is perfect. I f  both colours R and W are present in G ~, we 

have a partition of  V(G ~) into two sets R, W such that no induced P4 is coloured 

RRRR,  R WWR,  W R R W  or W W W W .  By a theorem of  Chv/ltal et al. [2], the graph 
G t is perfect if and only if the subgraphs induced by the vertices coloured in R and, 

respectively, in W are perfect. In our case, the two subgraphs are P4-free, thus they 

are perfect. Conclusion: G' is also perfect. 
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Case 2: G t contains at least one B-vertex. Since G t is minimal imperfect, the B- 

vertex is contained in exactly co co-cliques, where 09 = co(G') is the clique number of  

G'. But every B-vertex is contained in exactly two cliques in G, so it is contained in 
at most two cliques in G ~, therefore co = 1 or 2. In the first case, G' is perfect; in the 

second one, it is an odd hole and this contradicts the fact that G is a Berge graph. 

In both cases we obtain that every subgraph of G is perfect, so G itself is a perfect 
graph. [] 

4. Counterexamples 

For an arbitrary graph H,  consider the following conjecture: 

Conjecture (CH). I f  G is a Berge graph such that 

1. neither G, nor G has an even pair; 
2. neither G, nor G has a star cutset; 

3. neither G, nor G has a stable cutset 
then G or G is H-flee. 

For all graphs H such that there is a graph G/4 in F containing both H and / t ,  
the corresponding conjecture (Cu) is false. We don't know exactly which are these 
graphs, but we indicate a constructive method to found counterexamples for the cases 

when H is a join of  a clique and a stable set. 

If  G = G1(aG2, let (GIc~G2)(R~w) or G(R~ve) be the graph G with the colouring 
obtained from the initial one by interchanging the colours R and W in Gz. Conse- 
quently, the edges between GI and G2 are no more RR-edges or WW-edges, but R W- 

or WR-edges. Obviously, the new colouring is a fine-colouring for the graphs G1 and 
G2. Is it a fine-colouring for the graph G? A reasoning similar to the one in Lemma 1 

gives the affirmative answer for the conditions (C3), (C4) (notice that in G~R~v) the 
adjacency is R-W, W-R, as in (~ before switching the colours R and W). The other 
conditions are insured by the internal properties of Gi (i--1, 2). 

For a fixed n ~>2, consider now the sequence of graphs defined by induction as 
follows: 

= Fn Fo 

G k z ¢'7 k -  1 ,-hfi:" 
~n,(R~-.-~W)'Y n 
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The graph G~ is obtained from G~ -1 by interchanging the colours R and W in its 

subgraph Fn (i.e. the subgraph used to build G~ -1) and 2-joining with a new graph 
Fn; therefore G~ c F. 

The iterative construction above allows us to identify a certain structure of these 
graphs. More precisely, if we denote by F~ the graph Fn used during the step i of the 

i - - I  composition (that is, the graph composed with Gn,(R~w ) to obtain G/) and by Ri, Wi, 

B~ the n-cliques of Fn / coloured in R, IV, B at the present moment of the composition, 
then the graph G~ (k>~2) has the structure in Fig. 2 (The n-cliques are represented by 
points, the join of two subgraphs by continuous line and the already known connections 
in F,~ by dashed line.) 

Indeed, the graph Gn 2 has precisely this structure. By induction, suppose that G~ has 
the configuration in Fig. 2. Its successor G~ +1 is obtained from G~ by interchanging 
the colours R, W in F~ (that is, in Fig. 2, Wk becomes Rk and vice versa) and by 
composing with F~ +1 according to the new colouring. The structure obtained in this 
way is the one in Fig. 2. 

In G~ +1 every vertex in the clique Wk+l is adjacent to every vertex in the cliques 
W1, m2, Wk, for all k/> 1 We deduce that (;..+1 contains as an induced subgraph 

• • ' 7  ' - - n  

the graph H. which is the join of an n-clique and an n-stable. Also, G n+l contains/Q., 
since the n-clique W.+1 is nonadjacent to any of the cliques R1, R2, ..., R.. So neither 
Gn+l nor ~..+1 is H.-free. 

n , - - ? /  

We can then state that the conjecture (Cn) is false for every H which is the join of 
t'/~P+l max{[K[, ISI}. a clique K and a stable set S. A counterexample is ~p , where p = 

Remark 5. Another conjecture says that a minimal imperfect graph cannot contain an 
oddpair ,  i.e., a pair of nonadjacent vertices joined by no even chordless path. Similarly 
to Lemma 2 and Remark 2, one can show that if the only odd pairs in Gi, Gi (i = 1, 
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Fig. 3. 

2) correspond to the RR-, BB-, WW-  edges in Gi, then the 2-join G has the property 
that neither G, nor G has an odd pair. We deduce that all Gn k (except for G~ = F2) 
have this property and that even if we add to (CH) the following hypothesis: 

4. Neither G, nor (~ has an odd pair, 

the conjecture is false. 
For n = 2, the graph Hn = He is precisely the diamond and the counterexample G 3 

is the 2-join of the two finely-coloured Berge graphs in Fig. 3. 
Chvfital noticed that the graph G 3 can be described in the following easier manner: 

in the induced cycle on six vertices wl,w2 . . . . .  w6, substitute the vertex wi with the 
2-clique induced by the vertices Uz, Vi; then, for any i = 1,2,3, add the vertices xi, yi 

and the edges xiYi,XiUi,XiUi+3, UiUi+3, yil)i, yil)i+3, l)il)i+3. 

5. Conclusions 

It is quite hard to believe that a conjecture of type (CH) may be true, although 
the counterexamples we have built do not exhaust the subject. The existence of such 
a large class of "nonconventional" perfect graphs contributes to confirm the idea that 
we really need some new properties of minimal imperfect graphs before being able to 
solve the difficult perfect graph problems. 
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