DISCRETE
MATHEMATICS

ELSEVIER Discrete Mathematics 171 (1997) 213-227

Building counterexamples

Irena Rusu~™
LRI, URA. 410 du CN.RS., bdt. 490, 91405 Orsay-cedex, France

Received 14 February 1995; revised 22 February 1996

Abstract

A conjecture concerning perfect graphs asserts that if for a Berge graph G the following three
conditions hold: (1) neither G, nor G has an even pair; (2) neither G, nor G has a stable cutset;
(3) neither G, nor G has a star-cutset, then G or G is diamond-free. We show that this conjecture
is not valid and that, in a way, every weaker version is false too. To this end, we construct a
class of perfect graphs satisfying the hypothesis above and indicate counterexamples within this
class for the instances of the conjecture obtained by replacing the diamond with any graph H
which is the join of a clique and a stable set.

1. Introduction

For a graph G = (V,E), let us call a clique any set of pairwise adjacent vertices in
G. The clique number w(G) of G represents the cardinality of a largest clique in G,
while the chromatic number y(G) of G is the minimum number of colours necessary
to colour the vertices of G in such a way that any two adjacent vertices have different
colours. Using these two parameters, Berge defined a graph G = (V,E) to be perfect if
for each of its subgraphs the clique number equals the chromatic number. It was proved
by Lovasz [5] that a graph G is perfect if and only if its complement graph G is perfect
too. No characterization with minimal forbidden subgraphs is known for perfect graphs,
although a conjecture of Berge (called the strong perfect graph conjecture, abbreviated
SPGC) has been formulated thirty years ago and it is neither proved, nor invalidated.

Conjecture 1 (SPGC). A graph is perfect if and only if it contains no odd hole and
no odd antihole.

A hole is a chordless cycle with at least five vertices, while an antihole is the
complement graph of a hole. A hole is odd if it has odd number of edges. Graphs
without odd holes and odd antiholes are usually called Berge graphs. An equivalent
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version of the SPGC can be formulated using the notion of minimal imperfect graph,
which designates an imperfect graph such that every proper induced subgraph is perfect.

Conjecture 2 (SPGC’). Every minimal imperfect graph is an odd hole or an odd
antihole.

As a first step toward proving (SPGC'), some properties of minimal imperfect graphs
have been investigated.

A subset C of V is called a cutset of G if the subgraph of G induced by V — C
is not connected. As it was shown by Tucker [8], a minimal imperfect Berge graph
cannot contain a stable cutset, i.e., a cutset C such that the subgraph [Cls induced
by C in G is edgeless. Moreover, in [1], Chvatal proved that no minimal imperfect
graph has a star-cutset, that is, a cutset C containing a vertex adjacent to all the other
vertices in C.

In a graph G two nonadjacent vertices x, y form an even pair if there is no odd
chordless path joining x and y in G. It was proved by Meyniel [6] that no minimal
imperfect graph has an even pair.

Unfortunately, the exact importance of these three properties of minimal imperfect
graphs is not known. The following conjecture, due to Bruce Reed [7] and involving
a well-known class of perfect graphs, namely the line-graphs of bipartite graphs, has
been disproved by Hougardy [4]:

Conjecture 3 (Reed). Let G be a Berge graph satisfying the conditions below:
1. neither G, nor G has an even pair;
2. neither G, nor G has a star cutset.
Then G or G is the line-graph of a bipartite graph.

Several authors proposed a weaker conjecture by substituting the conclusion “G or G
is the line-graph of a bipartite graph” with “G or G is diamond-free”, where a diamond
is the graph obtained by deleting an edge of a clique on four vertices. Still weaker
than the conjecture above is the one we shall examine along this paper.

Conjecture 4. Let G be a Berge graph such that
1. neither G, nor G has an even pair;
2. neither G, nor G has a star cutset;
3. neither G, nor G has a stable cutset.
Then G or G is diamond-free.

Obviously, since the diamond-free Berge graphs are perfect [9], a proof of this
conjecture would also be a proof of the SPGC. Our purpose here is to give a coun-
terexample not only for this conjecture, but also for every weaker version of it obtained
by replacing the diamond with any graph H which is the join of a clique and a stable
set (that is, all possible edges between the two sets are present in H). The counter-
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examples will be iteratively built using a composition of two graphs G, and G, into
another graph G with the same properties as the initial graphs.

2. The 2-join

Let G = (V,E) be a graph and consider a partition of its vertex set ¥ in p subsets
Vi,Va,...,V,. This is a natural way to indicate the classes of vertices in G having
the same behaviour relative to a certain property, whatever is this property. In our
case, the vertices in a class will have the same neighbours in the graph joined to
G by the operation defined below. Some reasons of simplicity decided us to limit the
approach to the case p=3. The partition sets will be denoted by R, W, B, each of them
representing the set of vertices in G coloured respectively in red, white and blue. We
shall also use the term of Q-vertex for a vertex coloured in Q, where Q € {R, W, B}.
A QP-edge xy is an edge whose extremities are coloured in Q, respectively in P, for
any Q, P € {R,W,B}.

Given two graphs G; = (V1,E) and G, = (V3,E3) coloured in R, W and B, denote
by G = G1¢G, the graph G = (V,E) defined as follows:

V=Wnulbl
E=F, UEZU{xy |(x,y) € R XRz}U{Zt | (z,t) e W) x Wz},

where R; (resp. W;) is the set of red (resp. white) vertices in G, for i=1, 2. The blue
vertices in G have precisely the same neighbours as they had in the two initial graphs.
Notice that the new graph G may be also obtained from the graphs

Gy = V(G U {xi, m LEG) U {xiv,v € Ri}U{yw,we W} U{xin})
and
G; = (V(Gz) U {)Cz,yz},E(Gz) U {XQL‘,U € R)_} U {yzw,w S Wz} U {)Czyz})

using the 2-join operation defined by Cornuéjols and Cunningham [3]. According to
that definition, the 2-join of G| and G} is the graph H resulted by eliminating x;, y;
(i = 1,2) and joining every neighbour of x; (resp. of y;) in G to every neighbour of
x; (resp. of y;) in Gy. A brief verification shows that G and H are in fact the same
graph. That is why, for convenience, we shall say along this paper that G = G,9G;
is the 2-join of G| and G,.

For every n>=2, consider now the graph F, (already coloured) with the vertex set

V(Fn) = {xlax27""xn} U {ylayZB"-ayn} U {21722’-“,2"}’

where R = {x1,x2,...,%:}, W = {y1,¥2,-.., n}> B = {z1,22,...,2,} are the sets of
vertices coloured, respectively, in red, white and blue.

The edge set E(F,) is defined such that [R]g,, [W]r,, [B]r, are n-cliques and for all
i€ {1,2,...,n}, [x, yi,zi]F, is a 3-clique (see Fig. 1).
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Fig. 1. The graph F,.

It is easy to verify that, for n >3, F, satisfies the hypothesis of the conjecture (the
case n =2 is particular). In order to define a class of graphs using F, (n>2) and
the 2-join operation, let us see which general conditions are sufficient to preserve the
hypothesis.

In the four lemmas below, we shall say that a graph is coloured in R, W, B (or
simply coloured) if its vertex set is partitioned in R, W, B such that the following
condition holds (Q is an arbitrary colour of the set {R, W, B}):

(C1): For every Q-vertex x € V, the neighbourhood Ng(x) intersects each of R, W]
B, but contains none of them, except possibly for Q.

As we can easily notice, the 2-join of two coloured graphs is a coloured graph too.
The proofs of the lemmas are symmetrical for R, W and for the two graphs G;, G,
therefore we shall analyse only the nonsymmetrical cases.

Lemma 1. Let G; (i = 1,2) be two coloured Berge graphs satisfying the following
conditions:

(C2): If x € B, then Ng(x) = K1 UK, where K| C B; and K, C R; U W; are two
disjoint cliques with no edge between them;

(C3): For every odd chordless path Ru;...uyR (resp. Wuy...unW) in Gj, there
is some p € {1,2,...,2k} such that u, € R; (resp. W;);

(C4): There is no odd chordless path RWW...WR (resp. WRR...RW) in G..
Then G = G1¢G; is a coloured Berge graph and satisfies (C2), (C3) and (C4).

Proof. We firstly show that G has no odd holes and no odd antiholes. Suppose there
is an odd hole C induced in G and let V' (C) be its vertex set. OQbviously, C is not
entirely contained in a graph G; since these graphs are Berge. To pass from a graph
into the other one, an edge xy such that x and y have the same colour is needed.
Without loss of generality we may suppose that x € R; and y € R;. Let z be the
other neighbour of x along the cycle C. If z € R, then yz € E(G) is a chord in C, a
contradiction. Thus z € R; or z is not a red vertex.
Three positions of the cycle are then possible with respect to the initial graphs.
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o C = xyPyzx, where x € Ry, z,y € R, and P, is a chordless path in G, — R;. In
this case, yP,z is an odd chordless path in G, in which only the extremities are red
vertices. By (C3), such a path is not induced in G.

e C = xyPytuvPjzx, where x € Ry, z,y € Ry, u € Wy, t,v € W, and P,, P} are
chordless paths in B,. Suppose that yP,t is even. Then V(P;) must contain an odd
number of B-vertices. But this is not possible because of (C2).

o C = xyPytwPix, where x € R, y e R, ve Wy, t € Wo and P; (i =1, 2) is a
chordless path in B;. Again, one of the two paths must contain an odd number of
B-vertices and that is not possible.

We deduce that G contains no odd holes.

Suppose now that G contains some odd antihole C and that C has a B-vertex. If C
has more than five vertices, then in G the B-vertex is nonadjacent to at least one path
on four vertices. Therefore, in G the B-vertex has such a path in its neighbourhood.
But that contradicts (C2). Consequently, C induces a 5-cycle in G, thus its complement
is a 5-cycle in G. But G has no odd holes, a contradiction.

We may then suppose that the antihole C contains no B-vertices. By (C4), a rea-
soning similar to the one we used to deduce that G has no odd holes proves that in
fact there is no odd hole in G. Then G is a Berge graph.

We subsequently prove that G satisfies the conditions (C2), (C3), (C4).

(C2): By definition, the operation ¢ does not change the neighbour set of a B-vertex.

(C3): Assume the contrary and let x, y be two nonadjacent R-vertices in G joined
by an odd chordless path P with no R-vertices. Then x and y are both in G; or both
in G, (say they are in G;). By (C2), if there are any B-vertices on P, their num-
ber is even. An even number of W-vertices is then required in order to have an odd
chordless path (notice that if there are no W-vertices, P is entirely contained in G,
a contradiction). Whatever would be the repartition of the W-vertices in Gy and G,
there is a chord in P.

(C4): Assume the contrary and let x, y be two nonadjacent R-vertices in G joined
by an odd chordless path P’ containing only W-vertices. Notice that in G, the red
vertices in a graph are joined to the white and to the blue vertices in the other one.
Consequently, if x, y are both in Gy, then every W-vertex of P’ in G, (and there exists
at least one) would be adjacent to both x and y, a contradiction. The only possible
case is x € Ry, y € R, such that their neighbours along P’ (u and, respectively, v) are
in W,, respectively in W). The W-vertices u and v are nonadjacent in G, therefore at
least another W-vertex occurs on P’. But then P’ would have chords. [

Remark 1. Notice that the condition (C2) could be relaxed, but such a modification
would also be relaxing the conclusion of Lemma 1. Later reasonings will involve
precisely the indicated form of (C2).

Lemma 2. Let G; (i = 1,2) be two coloured graphs such that neither G;, nor G; has
an even pair and
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(C2): If x € B;, then Ng,(x) = K, UK>, where Ky C B; and K, C R; U W; are two
disjoint cligues with no edge between them,

(C5): For every R-vertex (resp. W-vertex) x in G;, there is an even chordless path
XxRR...RW (resp xWW ...WR) in G,.

Then neither G = G,¢G,, nor G has an even pair and G satisfies (C2) and (C5).

Proof. For every pair of vertices w,v in the same graph G, if u,v are nonadjacent
(resp. adjacent) then there is an odd chordless path joining them in the same graph
(resp. in its complement graph). This path is also an odd chordless path in G (resp.
in G).

Let now u,v be a pair of vertices in G such that u € V(Gy) and v € V((,). Four
nonsymmetrical cases can occur:

® u € R|, v € Ry; by (C1), there is a W-vertex ¢ in G, adjacent to u and, obviously,
nonadjacent to v. Also, there is a B-vertex w in G, adjacent to v and nonadjacent to
u. Moreover, ¢t and w are nonadjacent, so fuvw is a chordless path on four vertices
in G. The complement of this graph is the odd chordless path on four vertices uwtv
joining u and v in G. We deduce that (u,v) is not an even pair in G.

e u € Ry, v € Wy, by (C5) there is an even chordless path uRR...RW in Gj; then
uRR..Wv is an odd chordless path in G.

e u € Ry, v € By; by (C1) there exists a B-neighbour w of v in G, and by (C2) w
has an R-neighbour ¢ that is nonadjacent to v. Then utwv is an odd chordless path
joining u and v in G.

e uc By, ve By if t is a W-vertex in Gy adjacent to u (according to (C1)) and w
a W-vertex in G, adjacent to v, then utwv is an odd chordless path joining « and v
in G.

Thus G and G have no even pair. Obviously, the conditions (C2) and (C5) are also
valid for G. [

Remark 2. In fact, the RW-, RB- and WB-edges in G; may be even pairs in G; and
the conclusion is still valid. While 2-joining G; and G, by (C1) we can find for a
WR-edge xy in G a W-vertex u and an R-vertex v in G, such that uv ¢ E(G), so
xvuy is an odd chordless path joining x and y in G. For a WB-edge zt in Gy, since
(C2) is true the B-vertex ¢ has a B-neighbour a in G; nonadjacent to z. As before, z
has a W-neighbour b in G, and afzb is a P4 in G that induces an odd chordless path
in G joining z and ¢.

Lemma 3. Let G; (i = 1,2) be two coloured graphs such that neither G;, nor G; has
a stable cutset. Then the same property holds for G = G1¢G..

Proof. Assume the contrary and let S be a stable cutset in G. Since neither Gy, nor G,
has a stable cutset, G| = G; — S and G) = G — S are connected. Moreover, they can
have at most one colour in common and that one is B (otherwise G —.S is connected).
Consequently, S contains at least one of Ry, Rz, so by (Cl) it is not a stable.
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Let now S’ be a stable cutset in G and let G|, G} be the connected components
of G — §'. Neither G/, nor G}, contains a B-vertex (otherwise the two subgraphs are
connected), therefore all the B-vertices are in §’. Since none of By, B; is empty, S’
cannot be a stable set, a contradiction. [

Remark 3. We can notice that in the proof we do not really need to use the hypothesis
that G, (i = 1,2) has no stable cutset. Indeed, suppose that G; may have stable cutsets,
let S be a stable cutset of G and consider 4;,4,,...,4, the connected components of
G — S'. The graph G — §’ contains at least one B-vertex v. Without loss of generality
we may assume that v is a B-vertex in G| contained in the connected component 4.
Then V(Gy)C A4, U8, s0 4s,...,4, CV(Gy). This implies that B, and one of R, W,
are included in S’. But since §’ is a stable set we get a contradiction to (C1).

Lemma 4. Let G; (i = 1,2) be two coloured graphs such that neither G;, nor G; has
a star-cutset. Then the same property holds for G = G1¢G,.

Proof. We shall use a result of Chvatal [1] stating that a graph G has a star-cutset
if and only if it has at least one of the following properties:

(i) G has a vertex w such that the set of all the vertices distinct from w and not
adjacent to w induces a disconnected subgraph of G;

(i1) G has at least two nonadjacent vertices, and it has adjacent vertices v, w such that
w dominates v.

Assume now that the lemma is not true and let S be a star-cutset of G. We denote
by x the vertex of S adjacent to all the other vertices in S. Two nonsymmetrical cases
are possible:

e x € By; then SCV(Gy) and G; —S is connected. The two connected components are
precisely G| —S and G», therefore G; — S contains no R-vertices and no W-vertices.
The condition (C1) is violated.

e x € Ry; denote Nj(x) = Ng(x)U {x} and G| = G| — Nj(x). Then V(G)— Nj(x) =
W, U B, U V(G]). By (C1), every B-vertex of G, has a neighbour in G, coloured
W. This one is adjacent to all the W-vertices in G| (at least one such vertex exists,
by (C1)). Moreover, G is a connected graph (otherwise N (x) N V(G}) would be
a star-cutset for Gy, a contradiction). Conclusion: G — N((x) is connected.

To prove that no star-cutset S exists, it is sufficient to show that every neighbour of
x in G is adjacent to at least one nonneighbour of x. For the neighbours of x in Gy,
this property is insured by the fact that G, has no star-cutset. The neighbours of x in
(G, are R-vertices, which are adjacent to some of the W-vertices in G,.

Let us now prove that G has no star-cutset. Suppose the contrary.

® x € B); as before, denote N:(x) = {x}UNg(x) and let G-; =G, —N5(x) (connected)
be the graph induced in G, by the vertices nonadjacent to x. One has G-{ =G-N (’;(x)
(since all vertices in G, are adjacent to x), so N é(x) is not a star-cutset of G. By
(C1), there is at least one W-vertex and at least one R-vertex in G adjacent to
x. Therefore, in G| there exist at least one R-vertex and at least one W-vertex.
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Consequently, every neighbour y € G, of x is adjacent to a nonneighbour of x (the
R-vertex or the W-vertex in G;). Since N (x) N V(Gy) is not a star-cutset in Gy,
the same holds for the neighbours of x in G1

® x € Ry; the graph G-; is connected and contains at least one W-vertex, by (Cl1).
This vertex is adjacent to all the R-vertices in G,, so G —N, é(x) is connected (since
G-N é(x) = G_; UR;). Every neighbour y € V' (G3) of x is a W-vertex or a B-vertex
and, again by (Cl), is adjacent to at least one R-vertex z in G, (nonadjacent to x).
Also, every neighbour y € V(G;) of x is adjacent to a nonneighbour of x in G,
since Gl has no star-cutset. [

The five conditions identified in the lemmas above are now sufficient to define the
class of graphs generated by F, (n>2) using the 2-join operation. Let us firstly say
that a graph G is finely-colourable if its vertex set may be partitioned into three sets R,
W, B such that the conditions (C1)—(C5) hold. A colouring of G with these properties
is called a fine-colouring and a graph G provided with a fine-colouring is said to be
finely-coloured.

We define the class I' generated by the basic graphs F, (n=2) as following:

e for every n=2, F, eT;
e if Gy and G; in I' are finely-coloured in R, W, B, then G,¢G; € I'.

The theorem below uses the four previous lemmas to prove that I” is correctly defined
and, moreover, that every graph in I'\ {F;} satisfies the hypothesis of the conjecture:

Theorem 1. The graphs in '\ {F,} are finely-colourable Berge graphs with the fol-
lowing properties:

1. neither G, nor G has an even pair;

2. neither G, nor G has a star cutset;

3. neither G, nor G has a stable cutset.

Proof. It is a routine matter to verify that, for n>3, F, satisfies the hypothesis of
Lemmas 1, 2, 3, 4.

For n = 2 not all the properties hold. Namely, there are two exceptions, both in F5:
— the nonadjacent pairs of vertices coloured in RW, RB or WB are even pairs in Fy;
— the two 3-stables are stable cutsets in F5.

According to Remarks 2 and 3, the two exceptions above do not disturb the proofs
of Lemmas 2 and 3.

Then we can easily prove by induction that every graph in I’ has the indicated
properties. [

3. A class of perfect graphs

The purpose of this section is to show that the class I' defined in Section 2 is a
class of perfect graphs. To this end we prove that the fine-colourings of the graphs in
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I’ have a common structure and use this property to deduce that no P4 of type RRRR,
WWWW exists in a fine-colouring. The perfection results as a simple application of
a theorem due to Chvatal et al. [2].

Since all the graphs in I' are obtained from the basic graphs by repeated 2-joins,
we can regard every G € I' as a set of basic graphs whose vertices are joined ac-
cordingly to the indicated rule. Apparently, in a fine-colouring of G it is no need for
a basic graph to be coloured as described before. Actually, they are coloured in this
way.

Lemma 5. In a fine-colouring of G € I', every basic graph is finely-coloured.

Proof. A brief verification shows that a fine-colouring of a basic graph F, is a one-to-
one application from the set of n-cliques to the set of colours; therefore, for this easy
case, the lemma is proved.

Let G = G ¢G, be a graph of I' obtained by 2-joining the finely-coloured graphs
G and G,. We denote by R4 (resp. W9, BP') the sets of R-vertices (resp. W-, B-
vertices) in the fine-colouring of G; used to obtain G and by R Y (resp. W,"¥, B'¥)
the vertices in G; (i = 1,2) coloured in R (resp. W, B) in an arbitrary fine-colouring
of G. Then every vertex in RPM is adjacent to every vertex in R{!Y and the same
holds for the W-vertices. The vertices in B,-Old (i = 1,2) have neighbours only in

G;.
Claim 1. No R- or W-vertex in G; (old) becomes a B-vertex in G (new).

Proof. Suppose there is such a vertex x € Bj* N W4, Then x has at least one

neighbour y in B!, We have to consider the following three cases:

e x has a neighbour y € B9 N R, Then all the neighbours of x in G; must be B-
vertices (new), otherwise the R- and W-neighbours of x in G do not induce a clique
and this contradicts (C2). Consequently, all the vertices in WlOld are now B-vertices
and form a clique. Let z be a vertex in this set. By (C1), z has an R-neighbour ¢ in
G. If ¢t is in Gy, then tzxy is a P4 coloured RBBR and (C3) is violated. Then ali the
R-neighbours of z in G are in fact in WY, We deduce that no W-neighbour (new)
u of z occurs in G;. Otherwise u is in R or in B and it is not adjacent to ¢,
therefore z contradicts (C2). Now, the neighbourhood of z coloured in B contains
x and at least a vertex in B¢ (according to (C1) in Gy), thus it is not a clique, a
contradiction.

e x has a neighbour y € 32old N WY, The reasoning is similar to the preceding one.

o cvery neighbour of x in B, (old) is also coloured with B in G. Then all the vertices
in W4 are now coloured in R, W and form a clique. Also, every neighbour of x
in R{' is a B-vertex in G.

We shall firstly prove that in W there exist both new W-vertices and new R-
vertices. Suppose this is not the case and all the vertices in W are W in the new
colouring. We then consider an old R-neighbour y of x (which must be a B-vertex
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in the new colouring) and a neighbour g of y in R%¢, which is not adjacent to
a fixed vertex s of WP (such a vertex exists, otherwise s would be adjacent to
the entire set R'Y, a contradiction). The Py gyxs implies g € R*¥. Let r be an
R-neighbour (new) of x, so » € W, (otherwise the new W- and R-neighbours of
x would not form a clique). We deduce that gyxr is a P4 coloured RBBR, except if
yr € E; but then r and y are two adjacent neighbours of the B-vertex x coloured in
R and B, a contradiction. The reasoning is similar if we suppose that all the vertices
in WP are R in the new colouring.

Consequently, in W' there exist vertices of both colours R (new) and W (new).
Let z be a neighbour of x in By, Then z is a B-vertex in G too and its R- or W-
neighbours are all in G,. Suppose it has an R-neighbour v in B{' or in R, For
every vertex w € Wl‘Jld N R we have then the P4 wxzv which is coloured RBBR,
a contradiction. We deduce that every R-neighbour of z was coloured with W in
the fine-colouring of G;. In the same way, we deduce that every W-neighbour of z
was coloured with W in the fine-colouring of G,.

Consider now a neighbour ¢ of x in R{. Then ¢ is coloured in B (new) and its
neighbours in G cannot be B-vertices (since x is also a B-neighbour of ¢, the B-
vertices adjacent to ¢ in G would not form a clique). Let u € Rl“e"’ﬁRl"ld (if there is
one) be a neighbour of ¢ and v € W, an R-neighbour of z. Since tz € E(G) (both
are B-vertices in Ng(x)), then utzv is a P4 coloured RBBR, again in contradiction
with (C3). We have necessarily v € E£(G) and this contradicts the fact that the R-
and W-vertices adjacent to ¢ form a clique (since v and u are nonadjacent). The
same reasoning is valid for the W-neighbours of ¢ in RP!, so the former R-vertices
in G, cannot be coloured in R, W or B, a contradiction. [

Claim 2. No B-vertex in G; (old) can change its colour in a fine-colouring of G.

Proof. In the basic graphs F,, every R- or W-vertex is adjacent to exactly one B-
vertex. By Claim 1, no B-vertex can be added to the initial class, so by induction
we may suppose that in G, and G, every R- or W-vertex is also adjacent to exactly
one B-vertex. If a B-vertex (old) in G; (i=1 or 2) changes its colour, every former
R-neighbour of it would have no more B-neighbours in G and that would contradict
(C1). O

Proof of Lemma 5 (continued). We show that in every fine-colouring of G, each
basic graph has the vertices in an n-clique of the same colour. By Claims 1 and 2, the
set of B-vertices in every basic graph is unchanged while using the 2-join operation.
Consequently, one of the three n-cliques of each F, (say {zi,z2,...,z,}) is always
coloured in B and all its neighbours are vertices of the same F, (see Fig. 1). By (C1)
and (C2) for G, any B-vertex z; has the property that its neighbours x;, y; are coloured
in R and W. Suppose that for two indices i and j, x; and x; have not the same colour.
If x; is an R-vertex and x; a W-vertex, then y; is an R-vertex and x;zz;y; is a P
coloured RBBR, a contradiction. Therefore, all the vertices in an n-clique have the
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same colour and this is a fine-colouring of F,. In fact, every fine-colouring of G may
be obtained from another fine-colouring by interchanging the colours R and W in some
basic graphs. [

Remark 4. Lemma 5 insures that the vertices of an n-clique in a basic graph F, are
always of the same colour in a fine-colouring of G and have the same neighbour set in
G—F,. Also, the neighbourhood in G of each B-vertex is precisely its neighbourhood in
the basic graph containing it. Moreover, given two basic subgraphs in a graph G € I,
either the connection between them is R—R, W-W, or it is W-R, R-W.

Lemma 6. No P4 of type RRRR or WWWW is induced by a fine-coloring of G € T.

Proof. Suppose the contrary and let xyzt be a P4 of type RRRR.

If any two vertices of this path are contained in the same basic graph F,, then
they are contained in the same n-clique of this graph, so they have precisely the same
neighbours in G — F,, according to Remark 4. Consequently, the other two vertices
must be in the same basic graph, and this contradicts the fact that in a basic graph the
vertices of the same colour form a clique.

Then every two vertices are in different basic graphs. Consider now F* and F? the
basic graphs containing x and z, respectively. The R-vertices in F* are not adjacent to
the R-vertices in F*, therefore, by Remark 4, they must be adjacent to the W-vertices
in F*. If x' is a W-vertex in F*, then x'z € E(G). The same holds for y and ¢, so if ¢’ is
a W-vertex in F' then yt’ € E(G). Moreover, x’ and ¢’ are nonadjacent (otherwise the
edges between F* and F' would be WW-edges or RR-edges and x would be adjacent
to ¢ since they are both R-vertices), and the same holds for x’ and y, respectively ¢
and z. We deduce that x'zyt’ is a P4 coloured in WRRW, a contradiction. [

Theorem 2. The graphs in I' are perfect graphs.

Proof. Let G € I' be a graph provided with a fine-colouring. By Lemma 6, the fine-
colouring is a partition of ¥ (G) into three sets R, W, B which satisfies:

— no P4 induced in G is coloured RRRR, WRRW, RWWR or WWWW.

— for each B-vertex x in G, Ng(x) = K; UK;, where K| and K are two disjoint cliques
with no edge between them.

If G was not perfect, then it would contain a minimal imperfect subgraph G’. Two
cases occur;

Case 1. G' contains no B-vertex. If all the vertices of G’ have the same colour,
then G’ is P4-free, thus it is perfect. If both colours R and W are present in G, we
have a partition of V(G’) into two sets R, W such that no induced P; is coloured
RRRR, RWWR, WRRW or WWWW. By a theorem of Chvatal et al. [2], the graph
G’ is perfect if and only if the subgraphs induced by the vertices coloured in R and,
respectively, in W are perfect. In our case, the two subgraphs are Ps-free, thus they
are perfect. Conclusion: G’ is also perfect.
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Case 2: G’ contains at least one B-vertex. Since G’ is minimal imperfect, the B-
vertex is contained in exactly w w-cliques, where w = w(G’) is the clique number of
G'. But every B-vertex is contained in exactly two cliques in G, so it is contained in
at most two cliques in G’, therefore » = 1 or 2. In the first case, G’ is perfect; in the
second one, it is an odd hole and this contradicts the fact that G is a Berge graph.

In both cases we obtain that every subgraph of G is perfect, so G itself is a perfect
graph. [

4. Counterexamples
For an arbitrary graph H, consider the following conjecture:

Conjecture (Cy). If G is a Berge graph such that
1. neither G, nor G has an even pair;
2. neither G, nor G has a star cutset;
3. neither G, nor G has a stable cutset

then G or G is H-free.

For all graphs H such that there is a graph Gy in I' containing both H and H,
the corresponding conjecture (Cy) is false. We don’t know exactly which are these
graphs, but we indicate a constructive method to found counterexamples for the cases
when H is a join of a clique and a stable set.

If G = G1¢G,, let (Gi¢9Ga)rmw) of Growy be the graph G with the colouring
obtained from the initial one by interchanging the colours R and W in G,. Conse-
quently, the edges between G, and G, are no more RR-edges or WW-edges, but RW-
or WR-edges. Obviously, the new colouring is a fine-colouring for the graphs G; and
G;. Is it a fine-colouring for the graph G? A reasoning similar to the one in Lemma 1
gives the affirmative answer for the conditions (C3), (C4) (notice that in Gg.w) the
adjacency is R—W, W-R, as in G before switching the colours R and W). The other
conditions are insured by the internal properties of G; (i=1, 2).

For a fixed n>2, consider now the sequence of graphs defined by induction as
follows:
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The graph G% is obtained from G“~! by interchanging the colours R and W in its
subgraph F, (i.e. the subgraph used to build G¥~') and 2-joining with a new graph
F,; therefore GX € T.

The iterative construction above allows us to identify a certain structure of these
graphs. More precisely, if we denote by F? the graph F, used during the step i of the
composition (that is, the graph composed with GLIIL—»W) to obtain G) and by R;, W;,
B; the n-cliques of F, coloured in R, W, B at the present moment of the composition,
then the graph G¥ (k>2) has the structure in Fig. 2 (The n-cliques are represented by
points, the join of two subgraphs by continuous line and the already known connections
in F. by dashed line.)

Indeed, the graph G2 has precisely this structure. By induction, suppose that G¥ has
the configuration in Fig. 2. Its successor G¥*! is obtained from G* by interchanging
the colours R, W in F,’f (that is, in Fig. 2, W, becomes R; and vice versa) and by
composing with F¥*! according to the new colouring. The structure obtained in this
way is the one in Fig. 2.

In GX*! every vertex in the clique Wy, is adjacent to every vertex in the cliques
W\, Wa, ..., Wi, for all k=1. We deduce that G"*! contains as an induced subgraph
the graph H, which is the join of an n-clique and an n-stable. Also, G**! contains H,,
since the n-clique W,y is nonadjacent to any of the cliques R, R,, ..., R,. So neither
G, nor Git! is H,-free.

We can then state that the conjecture (Cy) is false for every H which is the join of
a clique X and a stable set S. A counterexample is Gﬁ“, where p = max{|K|,|S|}.

Remark 5. Another conjecture says that a minimal imperfect graph cannot contain an
odd pair, i.e., a pair of nonadjacent vertices joined by no even chordless path. Similarly
to Lemma 2 and Remark 2, one can show that if the only odd pairs in G;, G; (i =1,
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2) correspond to the RR-, BB-, WW- edges in G;, then the 2-join G has the property
that neither G, nor G has an odd pair. We deduce that all GX (except for G} = F,)
have this property and that even if we add to (Cy) the following hypothesis:

4. Neither G, nor G has an odd pair,

the conjecture is false.

For n = 2, the graph H, = H, is precisely the diamond and the counterexample G;
is the 2-join of the two finely-coloured Berge graphs in Fig. 3.

Chvatal noticed that the graph G3 can be described in the following easier manner:
in the induced cycle on six vertices wq,ws,..., ws, substitute the vertex w; with the
2-clique induced by the vertices u;,v;; then, for any i = 1,2,3, add the vertices x;, y;
and the edges x; y;, xit;, Xithiv3, Wilhi 13, ViVi, ViVit3, Uilit3.

5. Conclusions

It is quite hard to believe that a conjecture of type (Cy) may be true, although
the counterexamples we have built do not exhaust the subject. The existence of such
a large class of “nonconventional” perfect graphs contributes to confirm the idea that
we really need some new properties of minimal imperfect graphs before being able to
solve the difficult perfect graph problems.
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