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1. Introduction

In this paper we study the existence problem for extremals of the Sobolev immersion theorem
for variable exponents W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω). By extremals we mean functions where the following
infimum is attained

S
(

p(·),q(·),Ω) = inf
v∈W 1,p(x)

0 (Ω)

‖∇v‖L p(x)(Ω)

‖v‖Lq(x)(Ω)

. (1.1)
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Here Ω ⊂ R
N is a bounded open set and the variable exponent spaces Lq(x)(Ω) and W 1,p(x)

0 (Ω) are
defined in the usual way. We refer to the book [3] for the definition and properties of these spaces,
though in Section 2 we review the results relevant for this paper.

The critical exponent is defined as usual by

p∗(x) =
{

Np(x)
N−p(x) if p(x) < N,

∞ if p(x) � N.

When the exponent q(x) is subcritical, i.e. 1 � q(x) < p∗(x) − δ for some δ > 0, the immersion
is compact (see [6], Theorem 2.3), so the existence of extremals follows easily by direct mini-
mization. But when the subcriticality is violated, i.e. 1 � q(x) � p∗(x) with A = {x ∈ Ω: q(x) =
p∗(x), p(x) < N} 	= ∅ the compactness of the immersion fails and so the existence (or not) of min-
imizers is not clear. For instance, in the constant exponent case, it is well known that extremals do
not exists for any bounded open set Ω .

There are some cases where the subcriticality is violated but still the immersion is compact. In fact,
in [14], it is proved that if the criticality set is “small” and we have a control on how the exponent
q reaches p∗ at the criticality set, then the immersion W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω) is compact, and so the
existence of extremals follows as in the subcritical case.

However, in the general case A 	= ∅, up to our knowledge, there are no results regarding the
existence or not of extremals for the Sobolev immersion theorem. This paper is an attempt to fill this
gap.

In order to state our main results, let us introduce some notation.

• The Rayleigh quotient will be denoted by

Q p,q,Ω(v) := ‖∇v‖L p(x)(Ω)

‖v‖Lq(x)(Ω)

. (1.2)

• The Sobolev immersion constant by

S
(

p(·),q(·),Ω) = inf
v∈W 1,p(x)

0 (Ω)

Q p,q,Ω(v). (1.3)

• The localized Sobolev constant by

Sx = sup
ε>0

S
(

p(·),q(·), Bε(x)
) = lim

ε→0+ S
(

p(·),q(·), Bε(x)
)
, x ∈ Ω. (1.4)

• The critical constant by

S = inf
x∈A Sx. (1.5)

• The usual Sobolev constant for constant exponents

K −1
r = inf

v∈C∞
c (Rn)

‖∇v‖Lr(RN )

‖v‖Lr∗ (RN )

. (1.6)

With these notations, our main results can be stated as
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Theorem 1.1. Assume that p(·),q(·) : Ω → [1,+∞) are continuous functions with modulus of continuity
ρ(t) such that

ρ(t) log(1/t) → 0 as t → 0 + .

Assume, moreover, that the criticality set A is nonempty.
Then, for every domain Ω it holds

S
(

p(·),q(·),Ω)
� S � inf

p−
A�r�p+

A
K −1

r ,

where p−
A := infA p(·) and p+

A := supA p(·).

Theorem 1.2. Under the same assumptions of the previous theorem, if supΩ p(·) � infΩ q(·) and if the strict
inequality holds

S
(

p(·),q(·),Ω)
< S,

then there exists an extremal for the immersion W 1,p(x)
0 (Ω) ↪→ Lq(x)(Ω).

These two theorems give rise to two natural questions:

(1) Is S = infp−
A�r�p+

A
K −1

r or is the inequality strict?

(2) For what domains Ω and exponents p(x), q(x) is the strict inequality S(p(·),q(·),Ω) < S
achieved?

We give partial answer to these questions in this paper. For question (1) we show that Sx = K −1
p(x)

for every point x ∈A which is a local minimum of p and a local maximum of q. As far as we know, it
is an open problem to determine whether this inequality holds in general or not. For question (2), we
show that the strict inequality is achieved for every domain Ω such that the subcriticality set Ω \A
contains a sufficiently large ball. It will be interesting to know if there exists an example of the strict
inequality in the case where q(x) = p∗(x) in Ω .

In the course of our study of question (1), we need to show that the constant S(p(·),q(·),Ω) is
continuous with respect to p(·) and q(·) in the L∞(Ω) topology for monotone sequences. We believe
that this result has independent interest.

The proof of Theorem 1.2 heavily relies on the Concentration–Compactness Theorem for variable
exponents that was proved independently by [8] and [9]. Moreover, what is needed here is a slight
refinement of the version in [8]. Though this refinement follows as a simple observation in [8], we
make here a sketch of the full proof of the Concentration–Compactness Theorem in order to make the
paper self contained.

The other key ingredient in the proof is the adaptation of a convexity argument due to P.L. Lions,
F. Pacella and M. Tricarico [11] in order to show that a minimizing sequence either concentrates at a
single point or is strongly convergent.

Analogous results can be obtained for the trace embedding theorem by applying similar tech-
niques. See [7].

To end this introduction, let us comment on different applications where the p(x)-Laplacian has
appeared.

Up to our knowledge there are two main fields where the p(x)-Laplacian has been proved to be
extremely useful in applications:

• Image processing.
• Electrorheological fluids.
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For instance, in [2], Y. Chen, S. Levin and R. Rao proposed the following model in image processing

E(u) =
∫
Ω

|∇u(x)|p(x)

p(x)
+ f

(∣∣u(x) − I(x)
∣∣)dx → min

where p(x) is a function varying between 1 and 2 and f is a convex function. In their application,
they chose p(x) close to 1 where there is likely to be edges and close to 2 where it is unlikely to be
edges.

The electrorheological fluids application is much more developed and we refer to the monograph
by M. Ružička, [15], and its references. In these models, after some simplifications, it leads to solve

{−�p(x)u = f (x, u,∇u) in Ω,

u = 0 on ∂Ω
(1.7)

for some nonlinear source f . In most cases, the source term is taken to be only dependent on u and
so in order for the usual variational techniques to work, one needs a control on the growth of f given
by the Sobolev embedding. In this regard there are plenty of literature that deal with this problem
(just to cite a few, see [1,4,5,12,13]). When the source term has critical growth in the sense of the
Sobolev embedding, there are only a few results on the existence of solutions for (1.7). We refer to
the above mentioned works of [8,9,14] and also the work [16] where multiplicity results for (1.7) are
obtained.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we collect some
preliminaries on variable exponent spaces that will be used throughout the paper. In Section 3 we
revisit the proof of the Concentration–Compactness Theorem in the version of [8] in order to make
the necessary refinement. In Section 4 we prove our main results, Theorem 1.1 and Theorem 1.2. In
Section 5 we prove the continuity of the Sobolev constant with respect to p and q in the L∞ topology.
In Section 6 we give partial answer to question (1) and show that for x a local minimum of p and
local maximum of q, Sx = K −1

p(x) . Finally, in Section 7 we give partial answer to question (2) and show

that if Ω \A contains a sufficiently large ball, then S(p(·),q(·),Ω) < S .

2. Preliminaries on variable exponent Sobolev spaces

In this section we review some preliminary results regarding Lebesgue and Sobolev spaces with
variable exponent. All of these results and a comprehensive study of these spaces can be found in [3].

The variable exponent Lebesgue space L p(x)(Ω) is defined by

Lp(x)(Ω) =
{

u ∈ L1
loc(Ω):

∫
Ω

∣∣u(x)
∣∣p(x)

dx < ∞
}
.

This space is endowed with the norm

‖u‖L p(x)(Ω) = inf

{
λ > 0:

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx � 1

}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {
u ∈ W 1,1

(Ω): u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)
}
.
loc
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The corresponding norm for this space is

‖u‖W 1,p(x)(Ω) = ‖u‖L p(x)(Ω) + ‖∇u‖L p(x)(Ω).

Define W 1,p(x)
0 (Ω) as the closure of C∞

c (Ω) with respect to the W 1,p(x)(Ω) norm. The spaces

L p(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable and reflexive Banach spaces when 1 < infΩ p �

supΩ p < ∞.
As usual, we denote the conjugate exponent of p(x) by p′(x) = p(x)/(p(x) − 1) and the Sobolev

exponent by

p∗(x) =
{

Np(x)
N−p(x) if p(x) < N,

∞ if p(x) � N.

The following result is proved in [6,10] (see also [3], p. 79, Lemma 3.2.20 (3.2.23)).

Proposition 2.1 (Hölder-type inequality). Let f ∈ L p(x)(Ω) and g ∈ Lq(x)(Ω). Then the following inequality
holds

∥∥ f (x)g(x)
∥∥

Ls(x)(Ω)
�

((
s

p

)+
+

(
s

q

)+)
‖ f ‖L p(x)(Ω)‖g‖Lq(x)(Ω),

where

1

s(x)
= 1

p(x)
+ 1

q(x)
.

The Sobolev embedding theorem is also proved in [6] (see also [10]), Theorem 2.3.

Proposition 2.2 (Sobolev embedding). Let p,q ∈ C(Ω) be such that 1 � q(x) � p∗(x) for all x ∈ Ω . Then
there is a continuous embedding

W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Moreover, if infΩ(p∗ − q) > 0 then, the embedding is compact.

As in the constant exponent spaces, Poincaré inequality holds true (see [3], p. 249, Theorem 8.2.4)

Proposition 2.3 (Poincaré inequality). Assume p(x) is log-Hölder continuous, i.e. p(x) verifies that

∣∣p(x) − p(y)
∣∣ � C1

|log |x − y|| , for x 	= y,

for some constant C1 > 0. Then, there is a constant C > 0, C = C(Ω), such that

‖u‖L p(x)(Ω) � C‖∇u‖L p(x)(Ω),

for all u ∈ W 1,p(x)
0 (Ω).

Remark 2.4. By Proposition 2.3, we know that ‖∇u‖Lp(x)(Ω) and ‖u‖W 1,p(x)(Ω) are equivalent norms on

W 1,p(x)
0 (Ω).
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Throughout this paper the following notation will be used: Given q : Ω → R bounded, we denote

q+ := sup
Ω

q(x), q− := inf
Ω

q(x).

The following proposition is also proved in [10] and it will be most usefull (see also [3], Chapter 2,
Section 1).

Proposition 2.5. Set ρ(u) := ∫
Ω

|u(x)|p(x) dx. For u ∈ L p(x)(Ω) and {uk}k∈N ⊂ L p(x)(Ω), we have

u 	= 0 ⇒
(

‖u‖L p(x)(Ω) = λ ⇔ ρ

(
u

λ

)
= 1

)
, (2.1)

‖u‖L p(x)(Ω) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1), (2.2)

‖u‖L p(x)(Ω) > 1 ⇒ ‖u‖p−
L p(x)(Ω)

� ρ(u) � ‖u‖p+
L p(x)(Ω)

, (2.3)

‖u‖L p(x)(Ω) < 1 ⇒ ‖u‖p+
L p(x)(Ω)

� ρ(u) � ‖u‖p−
L p(x)(Ω)

, (2.4)

lim
k→∞

‖uk‖L p(x)(Ω) = 0 ⇔ lim
k→∞

ρ(uk) = 0, (2.5)

lim
k→∞

‖uk‖L p(x)(Ω) = ∞ ⇔ lim
k→∞

ρ(uk) = ∞. (2.6)

For much more on these spaces, we refer to [3].

3. Refinement of the Concentration–Compactness Theorem

In this section we make a refinement of the Concentration–Compactness Theorem for variable
exponent spaces that was proved independently by [8] and [9].

The refinement made here is essential in the remaining of the paper and it involves a precise
computation of the constants. More precisely, we prove

Theorem 3.1. Let {un}n∈N ⊂ W 1,p(x)
0 (Ω) be a sequence such that un ⇀ u weakly in W 1,p(x)

0 (Ω). Then there
exists a finite set I , positive numbers {μi}i∈I and {νi}i∈I and points {xi}i∈I ⊂A such that

|un|q(x) ⇀ ν = |u|q(x) +
∑
i∈I

νiδxi weakly in the sense of measures, (3.1)

|∇un|p(x) ⇀ μ� |∇u|p(x) +
∑
i∈I

μiδxi weakly in the sense of measures, (3.2)

Sxi ν
1

q(xi )

i �μ
1

p(xi )

i . (3.3)

Remark 3.2. The refinement that we present here is in inequality (3.3).

Proof. As in [8] it is enough to consider the case where un ⇀ 0 weakly in W 1,p(x)
0 (Ω).

Now, consider φ ∈ C∞
c (Ω), from Sobolev inequality for variable exponents, we obtain

S
(

p(·),q(·),Ω)‖φun‖Lq(x)(Ω) �
∥∥∇(φun)

∥∥
p(x) . (3.4)
L (Ω)
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In order to compute the right-hand side, we observe that

∣∣∥∥∇(φun)
∥∥

L p(x)(Ω)
− ‖φ∇un‖L p(x)(Ω)

∣∣ � ‖un∇φ‖L p(x)(Ω). (3.5)

Then, we see that the right-hand side of (3.5) converges to 0. In fact,

‖un∇φ‖L p(x)(Ω) �
(‖∇φ‖L∞(Ω) + 1

)p+‖un‖L p(x)(Ω) → 0,

as W 1,p(x)
0 (Ω) is compactly embedded in L p(x)(Ω).

Therefore, taking n → ∞ in (3.4), we have,

S
(

p(·),q(·),Ω)‖φ‖
Lq(x)
ν (Ω)

� ‖φ‖
L p(x)
μ (Ω)

. (3.6)

This is a reverse-Hölder type inequality for the measures μ and ν . Now, as in [8] it follows that (3.1)
and (3.2) hold.

Again, exactly as in [8] it follows that the points {xi}i∈I belong to the critical set A.
It remains to see (3.3).
Let φ ∈ C∞

c (RN ) be such that 0 � φ � 1, φ(0) = 1 and supp(φ) ⊂ B1(0). Now, for each i ∈ I and
ε > 0, we denote φε,i(x) := φ((x − xi)/ε).

Since supp(φε,iun) ⊂ Bε(xi), by (3.6) with Ω = Bε(xi), we obtain

S
(

p(·),q(·), Bε(xi)
)‖φε,i‖Lq(x)

ν (Bε(xi))
� ‖φε,i‖L p(x)

μ (Bε(xi))
.

By (3.1), we have

ρν(φi0,ε) :=
∫

Bε(xi0 )

|φi0,ε|q(x) dν

=
∫

Bε(xi0 )

|φi0,ε|q(x)|u|q(x) dx +
∑
i∈I

νiφi0,ε(xi)
q(xi)

� νi0 .

From now on, we will denote

q+
i,ε := sup

Bε(xi)

q(x), q−
i,ε := inf

Bε(xi)
q(x),

p+
i,ε := sup

Bε(xi)

p(x), p−
i,ε := inf

Bε(xi)
p(x).

If ρν(φi0,ε) < 1 then

‖φi0,ε‖Lq(x)
ν (Bε(xi0 ))

� ρν(φi0,ε)
1/q−

i,ε � ν
1/q−

i,ε
i0

.

Analogously, if ρν(φi0,ε) > 1 then

‖φi0,ε‖Lq(x)
(Bε(x ))

� ν
1/q+

i,ε
i0

.

ν i0
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Therefore,

min
{
ν

1
q+

i,ε
i , ν

1
q−

i,ε
i

}
S
(

p(·),q(·), Bε(xi)
)
� ‖φi,ε‖L p(x)

μ (Bε(xi))
.

On the other hand,

∫
Bε(xi)

|φi,ε|p(x) dμ�μ
(

Bε(xi)
)

hence

‖φi,ε‖L p(x)(Bε(xi))
� max

{
ρμ(φi,ε)

1
p+

i,ε , ρμ(φi,ε)

1
p−

i,ε
}

� max
{
μ

(
Bε(xi)

) 1
p+

i,ε ,μ
(

Bε(xi)
) 1

p−
i,ε

}
,

so we obtain,

S
(

p(·),q(·), Bε(xi)
)

min
{
ν

1
q+

i,ε
i , ν

1
q−

i,ε
i

}
� max

{
μ

(
Bε(xi)

) 1
p+

i,ε ,μ
(

Bε(xi)
) 1

p−
i,ε

}
.

As p and q are continuous functions and as q(xi) = p∗(xi), letting ε → 0, we get

(
lim
ε→0

S
(

p(·),q(·), Bε(xi)
))

ν
1/p∗(xi)

i �μ
1/p(xi)

i ,

where μi := limε→0 μ(Bε(xi)).
The proof is now complete. �

4. Proof of the main results

We begin this section with the proof of Theorem 1.1.

4.1. Proof of Theorem 1.1

First we prove a uniform upper bound for S(p(·),q(·),Ω) depending only on p−
A and p+

A .

Lemma 4.1. With the assumptions of Theorem 1.1, it holds that

S
(

p(·),q(·),Ω)
� inf

p−
A�r�p+

A
K −1

r ,

where K −1
r is given in (1.6).

Proof. First, we observe that our regularity assumptions on p and q implies that

q(x0 + λx) = q(x0) + ρ1(λ, x) = p∗(x0) + ρ1(λ, x),

p(x0 + λx) = p(x0) + ρ2(λ, x),

with limλ→0+ λρk(λ,x) = 1 uniformly in Ω (k = 1,2).
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Now, let φ ∈ C∞
c (Ω), and define φλ to be the rescaled function around x0 ∈ A as φλ =

λ
−n

p∗(x0) φ(
x−x0

λ
). Then we have

1 =
∫
Ω

(
φλ

‖φλ‖Lq(x)(Ω)

)q(x)

dx =
∫
Ωλ

λ
−N(p∗(x0)+ρ1(λ,x0+λy))

p∗(x0)
+N

(
φ(y)

‖φλ‖Lq(x)(Ω)

)q(x0)+ρ1(λ,x0+λy)

dy,

where Ωλ = 1
λ
(Ω − x0).

Since

λ
−Nρ1(λ,x0+λy)

p∗(x0)

(
φ(y)

‖φλ‖Lq(x)(Ω)

)ρ1(λ,x0+λy)

→ 1 when λ → 0 + in
{|φ| > 0

}
,

we get

1 =
∫
RN |φ(y)|q(x0) dy

limλ→0 ‖φλ‖q(x0)

Lq(x)(Ω)

.

Analogously,

1 =
∫
Ω

( |∇φλ|
‖∇φλ‖L p(x)(Ω)

)p(x)

dx

=
∫
Ωλ

λ
−N(p(x0)+ρ2(λx0+λy))

p∗(x0)
+N

( 1
λ
|∇φ(y)|

‖∇φλ(y)‖L p(x)(Ω)

)p(x0)+ρ2(λx0+λy)

dx

=
∫
Ωλ

λ
−N(p(x0)+ρ2(λx0+λy))

p∗(x0)
+N−p(x0)−ρ2(λx0+λy)

( |∇φ(y)|
‖∇φλ(y)‖L p(x)(Ω)

)p(x0)+ρ2(λx0+λy)

dx.

Again,

λ
−Nρ2(λx0+λy)

p∗(x0)
−ρ2(λx0+λy)

( |∇φ(y)|
‖∇φλ(y)‖L p(x)(Ω)

)ρ2(λx0+λy)

→ 1 when λ → 0 + in
{|∇φ| > 0

}
,

so we arrive at

1 =
∫
RN |∇φ(y)|p(x0) dy

limλ→0+ ‖∇φλ‖p(x0)

L p(x)(Ω)

.

Now, by definition of S(p(·),q(·),Ω),

S
(

p(·),q(·),Ω)
�

‖∇φλ‖L p(x)(Ω)

‖φλ‖Lq(x)(Ω)

and taking limit λ → 0+, we obtain

S
(

p(·),q(·),Ω)
�

‖∇φ‖L p(x0)(RN )

‖φ‖ q(x0) N
L (R )
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for every φ ∈ C∞
c (Ω). Then,

S
(

p(·),q(·),Ω)
� K −1

p(x0),

so,

S
(

p(·),q(·),Ω)
� inf

p−
A�r�p+

A
K −1

r

as we wanted to show. �
Now, the proof of Theorem 1.1 follows easily as a simple corollary of Lemma 4.1.

Proof of Theorem 1.1. Applying Lemma 4.1 to the case Ω = Bε(x0) for x0 ∈A we get that

S
(

p(·),q(·), Bε(x0)
)
� K −1

p(x0)

for every ε > 0. So

Sx0 � K −1
p(x0).

Now, for the first inequality, we just observe that the Sobolev constant is nondecreasing with respect
to inclusion, so

S
(

p(·),q(·),Ω)
� S

(
p(·),q(·), Bε(x0)

)

for every ball Bε(x0) ⊂ Ω .
So the result follows. �

4.2. Proof of Theorem 1.2

Now we focus on our second theorem. We begin by adapting a convexity argument used in [11]
to the variable exponent case.

Theorem 4.2. Assume that p+ < q− . Let {un}n∈N be a minimizing sequence for (1.3). Then the following
alternative holds

• {un}n∈N has a strongly convergence subsequence in Lq(x)(Ω), or
• {un}n∈N has a subsequence such that |un|q(x) ⇀ δx0 weakly in the sense of measures and |∇un|p(x) ⇀

S p(x0)
x0 δx0 weakly in the sense of measures, for some x0 ∈A.

Proof. Let {un}n∈N be a normalized minimizing sequence, that is,

S
(

p(·),q(·),Ω) = lim
n→∞‖∇un‖L p(x)(Ω)

and

‖un‖Lq(x)(Ω) = 1.

Since {un}n∈N is bounded in W 1,p(x)
0 (Ω), by the Concentration–Compactness Theorem (Theorem 3.1),

we have that, for a subsequence that we still denote by {un}n∈N ,
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|un|q(x) ⇀ ν = |u|q(x) +
∑
i∈I

νiδxi , weakly in the sense of measures,

|∇un|p(x) ⇀ μ� |∇u|p(x) +
∑
i∈I

μiδxi , weakly in the sense of measures,

where u ∈ W 1,p(x)
0 (Ω), I is a finite set, xi ∈A and S−1

xi
μ

1/p(xi)

i � ν
1/p∗(xi)

i .
Hence, using Theorem 4.1,

1 = lim
n→∞

∫
Ω

|∇un|p(x)

‖∇un‖p(x)
L p(x)(Ω)

dx

�
∫
Ω

∣∣S
(

p(·),q(·),Ω)−1∇u
∣∣p(x)

dx +
∑
i∈I

S
(

p(·),q(·),Ω)−p(xi)μi

�
∫
Ω

∣∣S
(

p(·),q(·),Ω)−1∇u
∣∣p(x)

dx +
∑
i∈I

S−p(xi)
xi

μi

� min
{(

S
(

p(·),q(·),Ω)−1‖∇u‖L p(x)(Ω)

)p+
,
(

S
(

p(·),q(·),Ω)−1‖∇u‖L p(x)(Ω)

)p−} +
∑
i∈I

ν

p(xi )
p∗(xi )

i

� min
{‖u‖p+

Lq(x)(Ω)
,‖u‖p−

Lq(x)(Ω)

} +
∑
i∈I

ν

p(xi )
p∗(xi )

i

where in the last inequality we have used the definition of S (1.3).
Now, as ‖un‖Lq(x)(Ω) = 1 and un ⇀ u weakly in Lq(x)(Ω), it follows that ‖u‖Lq(x)(Ω) � 1, hence

min
{‖u‖p+

Lq(x)(Ω)
,‖u‖p−

Lq(x)(Ω)

} = ‖u‖p+
Lq(x)(Ω)

� ρq(u)
p+
q− .

So we find that

ρq(u)
p+
q− +

∑
i∈I

ν

p(xi )
p∗(xi )

i � 1. (4.1)

On the other hand, as un is normalized, we get that

1 = ρq(u) +
∑
i∈I

νi . (4.2)

Since p+ < q− , by (4.1) and (4.2), we can conclude that either ρq(u) = 1 and the set I is empty, or
u = 0 and the set I contains a single point.

If the first case occurs, then 1 = ‖un‖Lq(x)(Ω) = ρq(un) = ρq(u) = ‖u‖Lq(x)(Ω) and, as Lq(x)(Ω) is a

strictly convex Banach space, it follows that un → u strongly in Lq(x)(Ω).
If the second case occurs it easily follows that ν0 = 1 and μ0 = S p(x0)

x0 . �
With the aid of this result, we are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let {un}n∈N be a minimizing sequence for (1.3).
If {un}n∈N has a strongly convergence subsequence in Lq(x)(Ω), then the result holds.
Assume that this is not the case. Then, by the previous theorem, there exists x0 ∈ A such that

|un|q(x) ⇀ δx0 weakly in the sense of measures and |∇un|p(x) ⇀ S p(x0)
x0 δx0 weakly in the sense of mea-

sures
So, for ε > 0, we have

∫
Ω

( |∇un|
Sx0 − ε

)p(x)

dx → S p(x0)
x0

(Sx0 − ε)p(x0)
> 1.

Then, there exists n0 such that for all n � n0, we know that:

‖∇un‖L p(x)(Ω) > Sx0 − ε.

Taking limit, we obtain

S
(

p(·),q(·),Ω)
� Sx0 − ε.

As ε > 0 is arbitrary, the result follows. �
5. Continuity of the Sobolev constant with respect to p and q

In this section, we prove the continuity of the Sobolev constant S(p(·),q(·),Ω) with respect to p
and q in the L∞(Ω) topology for monotone sequences.

We first prove an easy lemma on the continuity of the Rayleigh quotient.

Lemma 5.1. Let pn → p and qn → q in L∞(Ω). Then, for every v ∈ C∞
c (Ω), Q pn,qn,Ω(v) → Q p,q,Ω(v).

Proof. We only need to prove that

‖∇v‖L pn(x)(Ω) → ‖∇v‖L p(x)(Ω) and ‖v‖Lqn(x)(Ω) → ‖v‖Lq(x)(Ω).

For that, we have

∫
Ω

( |v|
‖v‖Lq(x)(Ω) + δ

)qn(x)

dx →
∫
Ω

( |v|
‖v‖Lq(x)(Ω) + δ

)q(x)

dx < 1,

so, there exist n0 such that ∀n � n0,

∫
Ω

( |v|
‖v‖Lq(x)(Ω) + δ

)qn(x)

dx < 1.

Therefore ‖v‖Lqn(x)(Ω) � ‖v‖Lq(x)(Ω) + δ. Analogously, we obtain ‖v‖Lq(x)(Ω) − δ � ‖v‖Lqn(x)(Ω) . In con-
clusion, for every δ > 0 we get

‖v‖Lq(x)(Ω) − δ � lim inf ‖v‖Lqn(x)(Ω) � lim sup ‖v‖Lqn(x)(Ω) � ‖v‖Lq(x)(Ω) + δ.

In a complete analogous fashion, we get

‖∇v‖L p(x)(Ω) − δ � lim inf ‖∇v‖L pn(x)(Ω) � lim sup ‖∇v‖L pn(x)(Ω) � ‖∇v‖L p(x)(Ω) + δ.

This finishes the proof. �
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Now we prove the main result of the section.

Theorem 5.2. Let pn → p and qn → q in L∞(Ω). Assume, moreover, that pn � p and that qn � q. Then
S(pn(·),qn(·),Ω) → S(p(·),q(·),Ω).

Proof. Given δ > 0 we pick u ∈ C∞
c (Ω) such that Q p,q,Ω(u) � S(p(·),q(·),Ω) + δ. Since, by

Lemma 5.1, limn→∞ Q pn,qn,Ω(u) = Q p,q,Ω(u), we obtain, using u as a test-function to estimate
S(pn(·),qn(·),Ω), that

lim sup
n→∞

S
(

pn(·),qn(·),Ω)
� lim sup

n→∞
Q pn,qn,Ω(u)

= Q p,q,Ω(u)

� S
(

p(·),q(·),Ω) + δ,

for any δ > 0. It follows that

lim sup
n→∞

S
(

pn(·),qn(·),Ω)
� S

(
p(·),q(·),Ω)

.

We now claim that there holds

lim inf
n→∞ S

(
pn(·),qn(·),Ω

)
� S

(
p(·),q(·),Ω)

.

The claim will follow if we prove that for any u ∈ C∞
c (Ω),

‖∇u‖L pn(x)(Ω) �
(
1 + o(1)

)‖∇u‖L p(x)(Ω), (5.1)

and

‖u‖Lqn(x)(Ω) �
(
1 + o(1)

)‖u‖Lq(x)(Ω), (5.2)

where o(1) is uniform in u. Since pn � p we can use Hölder inequality (Theorem 2.1), with 1
p =

1
pn

+ 1
sn

to obtain

‖∇u‖L p(x) �
(
(p/pn)

+ + (p/sn)+
)‖∇u‖L pn(x)‖1‖Lsn(x)

�
(
1 + o(1)

)‖∇u‖L pn(x) max
{|Ω|(1/sn)+ , |Ω|(1/sn)−}

= (
1 + o(1)

)‖∇u‖L pn(x) ,

where the o(1) are uniform in u. Eq. (5.1) follows. We prove (5.2) in the same way considering
tn = qnq

q−qn
and writing that

‖v‖Lqn(x) �
(
(qn/q)+ + (qn/tn)

+)‖v‖Lq(x)‖1‖Ltn(x)

= (
1 + o(1)

)‖v‖Lq(x) .

The proof is now complete. �
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6. Investigation on the validity of S = infp−
A���r���p+

A
K −1

r

In this section we investigate whether the equality

S = inf
p−
A�r�p+

A
K −1

r (6.1)

holds or not.
We show that, under certain assumptions on p(x0) and q(x0), x0 ∈A the equality

Sx0 = K −1
p(x0) (6.2)

is valid.
As far as we know, it is an open problem to determine whether the equality holds true or not in

general.
The aim of this section is to prove the following theorem.

Theorem 6.1. Assume that p(·) has a local minimum and q(·) has a local maximum at x0 ∈A and at least one
of those is strict. Then

lim
ε→0

S
(

p(·),q(·), Bε(x0)
) = K −1

p(x0).

This theorem is a direct consequence of Theorem 5.2 and the following result:

Proposition 6.2. Assume 0 ∈A and denote by p = p(0), Bε = Bε(0).
For any u ∈ C∞

c (Bε), there holds

‖u‖Lq(x)(Bε)
= εN/p∗(

1 + o(1)
)‖uε‖Lqε(x)(B1)

and

‖∇u‖L p(x)(Bε)
= εN/p∗(

1 + o(1)
)‖∇uε‖L pε(x)(B1),

where o(1) is uniform in u, pε(x) := p(εx), qε(x) := q(εx) and uε(x) := u(εx).

Assuming Proposition 6.2 we can prove Theorem 6.1.

Proof of Theorem 6.1. We have

Q
(

p(·),q(·), Bε

)
(u) = (

1 + o(1)
)

Q
(

pε(·),qε(·), B1
)
(uε),

where the o(1) is uniform in u, so that, noticing that the map u ∈ C∞
c (Bε) �→ uε ∈ C∞

c (B1) is bijective,

S
(

p(·),q(·), Bε

) = (
1 + o(1)

)
S
(

pε(·),qε(·), B1
)

= (
1 + o(1)

)
S
(

p(0),q(0), B1
)

= (
1 + o(1)

)
S
(

p(0), p(0)∗, B1
)

which proves Theorem 6.1. �
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It remains to prove Proposition 6.2.

Proof of Proposition 6.2. Given u ∈ C∞
c (Bε) we have

‖u‖Lq(x)(Bε)
= inf

{
λ > 0: Iλ,ε

q (u) � 1
}
,

where

Iλ,ε
q (u) :=

∫
Bε

∣∣∣∣u(x)

λ

∣∣∣∣
q(x)

dx =
∫
B1

∣∣∣∣ uε(x)

λε
− N

qε(x)

∣∣∣∣
qε(x)

dx.

Writing that

ε
− N

qε(x) = exp
{−N lnε

(
q(0) + O (ε)

)−1} = ε−N/p∗(
1 + o(1)

)
,

where the O (ε) and the o(1) are uniform in x and u, we obtain

‖u‖Lq(x)(Bε)
= inf

{
λ > 0: Iλ,ε

q (u) � 1
}

= εN/p∗(
1 + o(1)

)
inf

{
λ̃ > 0: I λ̃,1

qε
(uε)� 1

}
, (6.3)

from which we deduce the result. The proof of the result for the gradient term is similar: we have

‖∇u‖L p(x)(Bε) = inf
{
λ > 0: Iλ,ε

p (∇u) � 1
}
,

and

Iλ,ε
p (∇u) =

∫
Bε

∣∣∣∣∇u(x)

λ

∣∣∣∣
p(x)

dx =
∫
B1

∣∣∣∣ ∇uε(x)

λε
1− N

pε(x)

∣∣∣∣
pε(x)

dx,

and we can end the proof as before. �
7. On the strict inequality S(p(·),q(·),Ω) < S

In this section we provide with an example of a domain Ω and exponents p,q where the condition
S(p(·),q(·),Ω) < S is satisfied.

The condition is the existence of a large ball where the exponent q is subcritical. Up to our knowl-
edge it is not known if S(p(·),q(·),Ω) < S can hold when q ≡ p∗ on Ω .

This example somewhat relates to the one analyzed in [14]. More precisely, we can show

Theorem 7.1. Assume that B R ⊂ Ω \A where B R is a ball of radius R. Moreover, assume that q+
B R

< (p∗)−B R
.

Then, if R is large enough, we have that S(p(·),q(·),Ω) < S.

Proof. Assume that Ω contains a subcritical ball B R . Take u ∈ C∞
c (B1) such that |u|, |∇u| � 1, and

consider uR(x) = u(x/R). We take R big enough to have

RN−p+
∫
B

|∇u|p+
dx > 1, RN

∫
B

|u|q+
> 1
1 1
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and

‖∇u‖
L

p−
B R (B R )

‖u‖
L

q+
B R (B R )

R
N(1/(p−

B R
)∗−1/q+

B R
)
< S.

Then we claim that

‖∇uR‖L p(x)(B R )

‖uR‖Lq(x)(B R )

< S.

We first note that

∫
B R

|∇uR |p(x) dx =
∫
B1

RN−p(Rx)|∇u|p(Rx)(x)dx � RN−p+
∫
B1

|∇u|p+
dx > 1

so that, by Proposition 2.5,

‖∇uR‖L p(x)(B R ) �
(∫

B R

|∇uR |p(x) dx

)1/p−
B R

� R

N−p−
B R

p−
B R

(∫
B1

|∇u|p−
B R dx

)1/p−
B R

.

In the same way

∫
B R

|uR |q(x) dx = RN
∫
B1

|u|q(Rx) dx � RN
∫
B1

|u|q+
> 1

so that

‖uR‖Lq(x)(B R ) �
(∫

B R

|uR |q(x) dx

)1/q+
B R

� R
N/q+

B R ‖u‖
Lq+

R
,

from which we deduce our claim. This finishes the proof. �
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