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1. Introduction

It is well known that the use of supersymmetry [1] to ex-
tend the Standard Model results in a number of attractive fea-
tures of the models. Apart from curing the Higgs mass finetun-
ing problem, supersymmetry leads to gauge coupling unification,
provides candidates for Dark Matter, and sets the stage for grav-
ity unification via superstrings. Unbroken supersymmetry requires
that each observed particle has a superpartner with equal mass.
Since the observed particle mass spectrum of the SM is not mass-
degenerate, supersymmetry must be broken. Breaking supersym-
metry is a non-trivial problem; it must be broken softly to preserve
the desired cancellations of divergences, and presently there exist a
number of phenomenologically viable supersymmetric extensions
of the Standard Model [2,3].

One characteristic feature of supersymmetry of such extensions
appears in the particle spectrum even if supersymmetry is broken.
Namely, each Standard Model particle must have a superpartner
with spin differing by one-half. This is because in the Standard
Model the bosonic gauge fields are real and transform in the ad-
joint representation of the gauge group GSM = SU(3)C × SU(2)L ×
U (1)Y but the fermionic spinor fields are complex and transform
in the fundamental representations of GSM . As a result, one cannot
combine the observed bosons and fermions into multiplets with-
out violating gauge symmetry. In addition, the left and the right
fermions couple differently to SU(2)L . To accommodate the differ-
ence one is forced to use chiral supermultiplets. These can be only
constructed if one pads each fermion with a superpartner of dif-
fering spin.

Despite an intensive search, most recently at LHC, no super-
partners of the particle of the Standard Model have been detected.
0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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One explanation for this failure could be that the predicted super-
partners don’t exist, which implies that a different realization of
supersymmetry, the one that does not require doubling of the ob-
served spectrum, must be used.

In this Letter we describe such a realization of supersymmetry.
If implemented in a modification of the Standard Model, it would
not require doubling of the Standard Model particle spectrum. We
also show that the s-supersymmetry can be realized as symme-
try of string action. With s-supersymmetry the observed gauge
and fermion fields are allowed to mix through a supersymmetry
transformation and no superpartners are needed. Parameters of s-
supersymmetry are scalars instead of spinors, as is in the standard
supersymmetry. It acts in spaces that are direct sums of spaces
of commuting and anti-commuting differential forms and it re-
quires the use of bi-spinor formalism [4,5] to represent fermions.
(Fermion bi-spinor fields are described by objects that transform
as products of Dirac spinors and their Dirac conjugates.)

Although bi-spinors are seldom used for model building, the
notion of bi-spinor is as old as that of Dirac spinor. In their anti-
symmetric tensor form bi-spinors were discovered in 1928 by Iva-
nenko and Landau [6], in the same year Dirac proposed his theory
of electron [7]. In fact, Ivanenko and Landau constructed an al-
ternative to Dirac’s solution of the electron’s giromagnetic ratio
problem.1 However, the Ivanenko–Landau solution was more com-
plicated than Dirac’s by the standards of the time and naturally the
latter won over as a basic descriptor of quantum fermionic matter.

Although bi-spinors have not been popular in phenomenol-
ogy, they have been much in use in lattice gauge theory and, in

1 Bi-spinors are also referred to as Ivanenko–Landau–Kähler (ILK) [8] or Dirac–
Kähler (DK) spinors.
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particular, for building realizations of Dirac–Kähler twisting of the
standard extended supersymmetry on the lattice [9–13]. Antisym-
metric tensor form of bi-spinors also appears quite often in string
theories in the form of p-forms, differential forms of fixed de-
gree p. P -forms and their quantization have been studied both in
supergravity and in string theory, including formulation of strings
with two time parameters [14–18]. Theories of p-forms typically
are restricted to commuting differential forms of a fixed degree.
Here we will concentrate on the case where commuting and an-
ticommuting inhomogeneous differential forms play equal role in
the dynamics. For brevity we will concentrate on massless gauge
fields and massless bi-spinors.

The Letter has three sections. In the following Section 2 we de-
scribe the needed basic ingredients of differential geometry. It can
be skipped by readers familiar with the subject. Our results are
contained in Section 3. Section 4 presents a brief summary.

2. Differential geometry, Z-basis, and spinbeins

Although our results also apply when background gravity is
present, to emphasize applications to phenomenology we will
work with four-dimensional Minkowski space–time M4 with met-
ric gμν = diag(1,−1,−1,−1). All of the mathematical constructs
we will use generalize with minor modifications to an arbitrary
(pseudo-) Euclidean space–time. We will use the following in-
dex conventions: capital Latin letters A, B, . . . are reserved for the
fermion generations, lower case Latin letters a,b, . . . are for gauge
group representations, lower case Greek letters α,β, . . . for spinor
indices, while μ,ν, . . . for Lorentz tensor indices.

The basic notions of differential geometry that we need are the
standard operations with differential forms on a manifold [19,20],
a basis in the space of differential forms, the Z -basis to define
bi-spinors [21], and the spinbein decomposition of bi-spinors [22]
to extract Dirac spinors from bi-spinors.

Given M4 with coordinates xμ , a differential form A in the
coordinate basis (c-basis) is defined as a sum of homogeneous dif-
ferential forms of degree p with values in the Lie algebra of the
gauge group G

A(x) =
4∑

p=0

Ap(x), Ap(x) = A|μ1···μp |(x)dxμ1 ∧ · · · ∧ dxμp ,

(1)

where ∧ is the exterior product and |μ1 · · ·μp| is a permutation
of indices μ1 · · ·μp with increasing order. In bi-spinor formalism
such differential forms play the role of the fields of the standard
(quantum) field theory.

Additional basic differential-geometric constructs that we need
are the main automorphism α, the main anti-automorphism β ,
and the contraction (., .) of a p-form Ap with a q-form Bq defined
by

αAp = (−1)p Ap, β Ap = (−1)p(p−1)/2 Ap,

(Ap, Bq) = δpqtr(Aμ1···μp )
+Bμ1···μp ,

the exterior derivative d, d2 = 0,

d : Ap → Ap+1, dA4 = 0,

dAp = ∂ν A|μ1···μp | dxν ∧ dxμ1 ∧ · · · ∧ dxμp , (2)

and the Hodge star operator ∗
∗ : Ap → A4−p,

(∗A)4−p = A|μ1···μp |εμ1···μp |ν1···ν4−p | dxν1 ∧ · · · ∧ dxν4−p , (3)

∗ = (−1)p+1 = −α, (4)
where εμ1···μ4 is the totally antisymmetric tensor of rank 4 with
ε0123 = 1, εμ1···μ4 = −εμ1···μ4 . Very useful for us will also be op-
erator �, which we will call the chiral star operator, defined by

� = −i ∗ αβ = −iβ∗, (5)

�� = 1. (6)

From d and ∗ the covariant divergence operator δ is defined by

δ : Ap → Ap−1, δA0 = 0, (7)

δ = ∗d∗, δ2 = 0. (8)

We define a scalar product 〈A, B〉 of differential forms A, B by
linearity from

〈Ap, Bq〉 = δpq

∫
tr

[
αA+

p ∧ ∗Bq
] = δpq

∫
dnx(αAp, Bq). (9)

Note that −δ is the adjoint of d with respect to scalar product
(9) and, therefore, (d − δ) is self-adjoint. For Euclidean space–time
definition (9) must be modified by removing automorphism α.

We now introduce the Z -basis in the space of differential forms
and establish the connection between antisymmetric tensors and
bi-spinors. Given a set of Dirac γ -matrices, γ μ = {γ μ

αβ}, such that
{γ μ,γ ν} = 2gμν , the defining property of the Z -basis, Z = {Zαβ},
is that operator (d − δ) takes the form of the Dirac operator [21]

(d − δ)Z = Z
(
iγ μ∂μ

)
. (10)

Z is an 4 × 4 matrix of differential forms.2 Any differential form A
can be represented in the Z -basis as

A = tr
(

ZΨ (A)
)
, (11)

where Ψ (A) = {Ψαβ(A)} are the coefficients of the representation
and the trace is over the γ -matrix indices. Using (10) we obtain
an explicit expression for Z [21]

Z =
∑

p

γμp · · ·γμ1 dx|μ1 ∧ · · · ∧ dxμp |. (12)

Since differential forms do not depend on the basis in which
they are defined, the coefficients Aμ1···μp (A) of A in the c-basis
and the coefficients Ψαβ(A) of A in the Z -basis represent the same
mathematical object. Also the transformation properties of the
two sets of coefficients can be derived from basis independence
of A: under Lorentz transformation x → Λx the set {Aμ1···μp (A)}
transforms as a collection of antisymmetric tensors, while Ψαβ(A)

transforms as

Ψ (A) → S(Λ)Ψ (A)S(Λ)−1, (13)

where S(Λ) is the spinor representation of the Lorentz group.
Transformation (13) is the transformation law for bi-spinors: by
definition they transform as a product of a Dirac spinor and its
Dirac conjugate. Thus, we can identify the space of all Ψ with the
space of bi-spinors. Relations between the two sets of coefficients
{Aμ1···μp (A)} and Ψαβ(A) are derived using (12) and the complete-
ness relations for γ -matrices

tr
([

γ |μ1 · · ·γ μp |][γ |ν1 · · ·γ νq|]+) = 4δpqδμ1ν1 · · · δμqνp , (14)∑
p

[
γ |μ1 · · ·γ μp |]∗

αβ

[
γ |μ1 · · ·γ μp |]

γ δ
= 4δαγ δβδ. (15)

It is given by

2 For notational convenience our definition of Z is the transposed of that in [21].
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(Ap)|μ1···μp |(Ψ ) = tr(γμp · · ·γμ1Ψ ), (16)

Ψ (Ap) = 1

4

∑
p

γ |μ1 · · ·γ μp | A|μ1...μp |. (17)

One property of Z = {Z p} that we will need below to define chi-
rality of differential forms is

−i ∗ αβ Z p = Zn−pγ
5, γ 5 = iγ 0 · · ·γ 3. (18)

Using the property we obtain for any differential form A = tr(ZΨ )

−i ∗ αβ A = tr
(

Zγ 5Ψ (A)
)
. (19)

We can now define chiral differential forms AL,R using projection
operators P L,R constructed with the use of chiral star operator (5)

AL,R = P L,R A, P L,R = 1

2
(1 ∓ �),

P 2
L,R = 1, P L P R = 0. (20)

Note that on M4 chiral projection operators (20) can be defined
only if A is complex-valued. This can be seen from (5). However,
this is sufficient for our purposes. The situation is different for
Euclidean manifolds, where (∗β)2 = 1 and one can define real chi-
ral differential forms [21]. From (18)–(20) we obtain that in the
Z -basis the coefficients of the chiral differential forms are chiral
bi-spinors
(
1 ± γ 5)Ψ (AL,R) = 0. (21)

Other useful commutator properties of the operators we intro-
duced are

αβ = βα, ∗α = α∗, ∗β = β∗,

(d − δ)α = −α(d − δ), (22)

αP L,R = P L,Rα, (d − δ)P L,R = P R,L(d − δ). (23)

The last ingredient we need is the spinbein decomposition of
bi-spinors that extracts Dirac spinors from Ψ transforming in some
representation of the gauge group: Ψ = {Ψ ab}. It is only needed to
justify the form of the fermionic action. The extraction is done by
using a spinbein ηaA a = 1, . . . , Nη , A = 1, . . . ,4, that is a multiplet
of four commuting normalized Dirac spinors transforming in some
Nη-dimensional representation of the gauge group G

¯̄ηaA = Γ AB η̄aB , Γ AB = diag(1,1,−1,−1),

¯̄ηaA
α ηaB

α = δAB , (24)

where η̄ denotes the Dirac conjugate of η. Spinbein decomposition
of a bi-spinor is the ansatz [22]

Ψ ab = ψaA ¯̄ηAb, (25)

where four generations of Dirac spinors ψaA , a = 1, . . . , Nψ , trans-
form in a Nψ -dimensional representation of G , which is not nec-
essarily the same as that for the spinbein. Note that the form of
spinbein decomposition (24), (25) implies that there are no right
chiral bi-spinors: equation Ψ (1 ± γ 5) = 0 has no solutions.

The number of generations in (25) can be reduced from four to
three or less if one uses a generally covariant constraint det Ψ ab =
0, where only Lorentz indices contribute to the determinant. The
second known method to reduce the number of generations con-
tained in a bi-spinor is the decomposition of Ψ into minimal ideals
of the associated Clifford algebra [5]. However, while coinciding
with ours on M4, this method is not generally covariant.

Given two general differential forms F , H , in the Z -basis we
can write scalar product (9) as
〈F , H〉 =
∫

tr
[ ¯̄Ψ (F )Ψ (H)

]
, ¯̄Ψ (F ) = γ 0Ψ +(F )γ 0. (26)

The appearance of γ 0 in (26) is the result of the presence of au-
tomorphism α in the definition of the scalar product (9). After
spinbein anzatz (25) we obtain an equivalent representation of the
scalar product in terms of Dirac spinor components

〈F , H〉 =
∫

tr
[ ¯̄ψ A(F )ψ A(H)

]
, ¯̄ψ A(F ) = Γ ABψ̄ B(F ). (27)

In (26), (27) ¯̄Ψ (F ) and ¯̄ψ A(F ) are bi-spinor conjugates of a bi-
spinor and Dirac spinor, respectively.

3. Scalar supersymmetry

To describe supersymmetry transformations we need to express
the Lagrangian for gauge fields and fermions in terms of the basic
operations defined in the previous section. In the ξ -gauge the La-
grangian for gauge fields, described by a connection Aμ = Aa

μτ a ,
where τ a , a = 1, . . . , N A , are the generators of the Lie algebra of
gauge group G , is given by

Lg = −1

2
tr

(
Fμν F μν

) + 1

ξ
tr

(
∂μ Aμ

)2
, Aμ = Aa

μτa,

tr(τaτb) = 1

2
δab, (28)

where Fμν = F a
μντa is the curvature of the connection Aμ ,3 the

ξ−1 term fixes the gauge, and tr is the trace over the Lie algebra
indices.

In terms of differential forms gauge fields are described by a
commuting connection 1-form A1, A1 = Aμdxμ , while the curva-
ture of the connection is given by 2-form F , F = (1/2)Fμνdxμ ∧
dxν , F = dA1 A1 ≡ (d + ig A1∧)A1, where g is the coupling con-
stant. Using the contraction of differential forms we can write the
gauged-fixed Lagrangian for gauge fields as

Lg = −1

2
tr(dA1 + ig A1 ∧ A1,dA1 + ig A1 ∧ A1)

+ 1

ξ
tr(δA1, δA1), (29)

where we used ∂μ Aμ = −δA1. The quadratic part of this La-
grangian that describes free fields is then given by

L0
g = −1

2
tr

(
(d − δ)A1, (d − δ)A1

) + λtr(δA1, δA1),

λ =
(

1

ξ
− 1

2

)
, (30)

where d2 = δ2 = 0 was used and, for convenience, we combined d
and δ in the first term.

We will now consider the fermionic fields. We will describe
them by anti-commuting inhomogeneous differential forms Φ

with values in the Lie algebra of the gauge group [5,8,21,22]. The
Lagrangian for Φ must be of the first order and, therefore, has the
unique form given by

L f = tr
(
αΦ, (dA − δA)Φ

)
, (31)

where −δA is the adjoint of dA with respect to (9). The free-field
part of (31) is

L0
f = tr

(
αΦ, (d − δ)Φ

)
. (32)

3 We omit the ghost terms, since they are not relevant for our discussion.
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Comparing (29) with (31) we see that the single principle differ-
ence between gauge fields and bi-spinor fermions is their com-
mutativity property. Otherwise, both are described by the same
mathematical object. Notably, as mathematical constructs, Dirac
spinors are quite different from gauge fields. They cannot even be
defined on some space–times that are otherwise physically per-
fectly acceptable.

Using spinbein decomposition (25) with constant spinbein η we
obtain that in terms of physical Dirac spinor components ψaA the
Lagrangian (32) becomes

L0
f = tr ¯̄Ψ (i/∂)Ψ = tr ¯̄ψ A(i/∂)ψ A, (33)

where ¯̄Ψ , ¯̄ψ are the conjugations of Ψ , ψ defined in (26), (27). The
reduction of (32) to (33) provides justification for the choice of the
fermionic action (31).

Observe that Lagrangian (33) is an alternating sum of La-
grangians for four Dirac spinors ψ A , two of which, those with A =
1,2, enter the sum with the plus sign, while spinors with A = 3,4
enter with the minus sign. The minus sign in the latter two terms
has non-trivial consequences for quantization. Strictly speaking,
the A = 3,4 spinors are Dirac spinors only algebraically. Dynami-
cally they are not Dirac spinors but rather anti-Dirac spinors: their
action is the negative of Dirac spinor action and, hence, under
the canonical quantization the assignment of creation and annihi-
lation operators has to be reversed as compared to the standard
Dirac spinor assignment. This is the only way one can ensure
non-negativity of contribution of A = 3,4 spinors to the quantum
Hamiltonian of the system [22].

We will now describe a realization of supersymmetry in the
space that is a direct sum of spaces of commuting and anti-
commuting differential forms. Because the transformation param-
eters are Lorentz scalars, we shall call it scalar supersymmetry
(s-supersymmetry). As we will see, gauge interactions always break
s-supersymmetry. In an unbroken form it can only be realized for
free field action in the particular ξ -gauge with ξ = 2.

We begin with the simplest case with G = U (1) and zero mass.
The combined U (1) action for ξ = 2 gauge reduces to

S = −1

2

∫
d4x

(
α(d − δ)A, (d − δ)A

)

+
∫

d4x
(
αΦ, (d − δ)Φ

)
. (34)

In (34) A, Φ is an arbitrary complex commuting or anticommut-
ing differential form. To match the bosonic and fermionic degrees
of freedom we were forced to promote A1 in (29), (30) from a real
commuting 1-form to an arbitrary commuting complex differential
form A. We will call (A,Φ) a complex supermultiplet. With such
a modification action (34) is invariant with regard to the transfor-
mation

δA = εΦ, (35)

δΦ = 1

2
ε∗(d − δ)A, (36)

where ε is a complex-valued anticommuting transformation pa-
rameter. It is a Lorentz scalar. To derive invariance of (34) we used
that (d − δ) is self-adjoint and that Φ and ε anticommute. The
former uses the Stokes theorem:

∫
M4

df = ∫
∂M4

f = 0 for vanish-
ing field contributions at infinity. Obviously, transformation (35)
is a supersymmetry transformation: it mixes the bosonic and the
fermionic degrees of freedom.

Representing (35), (36) in the Z -basis and using spinbein de-
composition of Ψ (A), Ψ (Φ) we observe that (35), (36) do not mix
generations of ψaA . This implies that the constraints det Ψ ab(A) =
0, det Ψ ab(Φ) = 0 are consistent with scalar supersymmetry and
(35), (36) are also symmetry transformations for bi-spinors con-
taining three generations of (anti)-Dirac spinors.

It is easy to see that the commutator of two transformations in
(35) is given by

[δ1, δ2] = 1

2

(
ε∗

2ε1 − ε∗
1ε2

)
(d − δ), (37)

while the anticommutator of the corresponding s-supersymmetry
charges is given by

{
Q , Q ∗} = 1

2
(d − δ). (38)

Expression (37) should be compared with the commutator of two
transformations of the standard supersymmetry on M4

[δ̃1, δ̃2] = 2θ̄1γ
μ Pμθ2, (39)

where Pμ = i∂μ is the translation operator and θk , k = 1,2,
are infinitesimal Grassmann parameters transforming as Dirac
spinors. We observe that for complex multiplet the standard and
s-supersymmetry (35), (36) are related via the transformation of
the bases in the space of differential forms {dx|μ1 ∧· · ·∧dxμp |} → Z
that maps (d − δ)Φ into i/∂Ψ (Φ).

The requirement that A is complex-valued may be physically
unacceptable. Hence, the simplest realization of s-supersymmetry
most likely is an illustrative algebraic exercise. Note that, as can
be seen from (5), unlike in Euclidean space–time, in Minkowski
space–time there are no real bi-spinors. Therefore, to provide phys-
ically acceptable realizations of s-supersymmetry we have to re-
strict ourselves to real-valued gauge field differential forms but
we cannot use real-valued fermionic forms. This means that to
match the degrees of freedom we need to reduce their number for
complex-valued fermions by half. The simplest way to do this is
to use chiral fermionic differential forms we described in the pre-
ceding section.4 In addition we have to use two left conversion
operators: one that transforms real forms into left chiral com-
plex forms and one that acts in the opposite direction. The most
obvious left conversion operators are parameterized by a real pa-
rameter μ 	= 0

K A : A → ΦL, K A = √
2P L

(
1 + iμ−1(d − δ)

)
P+, (40)

KΦ : ΦL → A, KΦ = √
2P+

(
1 − iμ−1(d − δ)

)
P L, (41)

where the left chiral differential forms ΦL are defined in (20) and

P+Φ ≡ ReΦ = (1/2)
(
Φ + Φ+) = (1/2)(1 + C)Φ,

CΦ = Φ+, (42)

P−Φ ≡ Im Φ = (1/2i)
(
Φ − Φ+) = (1/2i)(1 − C)Φ, (43)

are projectors on the real and imaginary parts of a complex-valued
differential form Φ . Parameter μ of dimension of mass is needed
in (40), (41) to compensate for the dimension of (d − δ). The right
conversion operators are obtained from (40), (41) by P L → P R .

Using (22), (23), (40)–(43) we obtain the most important prop-
erties of the left conversion operators

K A KΦ : ΦL → ΦL, K A KΦ = (
1 + μ−2(d − δ)2)P L, (44)

KΦ K A : A → A, KΦ K A = (
1 + μ−2(d − δ)2)P+, (45)

α(d − δ)KΦ = K +
A α(d − δ). (46)

4 Another way to cut the fermionic degrees of freedom in half is to use (anti)-
Majorana spinors.
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We can now describe s-supersymmetry realization for U (1) ξ =
2 action for real Abelian massless bosonic fields AR and massless
chiral bi-spinors with the action

S = −1

2

∫
d4x

(
α(d − δ)AR , (d − δ)AR

)

+
∫

d4x
(
αΦL, (d − δ)ΦL

)
. (47)

We will call pair (AR ,ΦL) a chiral supermultiplet. Using projection
operators (20), (42)–(43) we can rewrite it in an equivalent form

S = −1

2

∫
d4x

(
α(d − δ)P+ A, (d − δ)P+ A

)

+
∫

d4x
(
αP LΦ,(d − δ)P LΦ

)
. (48)

In (48) A is an arbitrary complex commuting differential form,
while Φ is an arbitrary complex anticommuting differential form.
Commutativity property of A, Φ is now the only property that dis-
tinguishes bosons from fermions. Action (47), (48) is invariant with
regard to the infinitesimal transformation

δA = iεKΦΦ, δΦ = −1

2
iεK A(d − δ)A, (49)

where, ε is a real anticommuting transformation parameter and in
addition to properties that were used to derive invariance of (34)
under (35), we used (46). On-shell (49) reduces to (35), (36) with
real ε.

We will now consider non-Abelian case with G = SU(N) × U (1)

as an example. Extension to G = SU(N1) × SU(N2) × U (1) of the
Standard Model is straightforward. As we will presently see, the
U (1) factor in G is actually a consequence of s-supersymmetry,
needed to equalize the number of the bosonic and the fermionic
degrees of freedom.

To match the degrees of freedom, in addition to promoting
gauge field 1-form A1 to an arbitrary real inhomogeneous real
differential form A, we have to assign A and ΦL to appropriate
representations of G . We have to keep in mind that ΦL repre-
sents fermions and is an arbitrary chiral complex inhomogeneous
differential form. Further, the physical (anti)-Dirac components of
Ψ = Ψ (ΦL), must transform in the fundamental representation of
G , while the real gauge form A must transform in the adjoint rep-
resentations of the factors of G .

From these requirements we obtain that the simplest choice
with equal number of degrees of freedom for A and ΦL is
when ΦL transforms in N × N̄ , the direct product of fundamen-
tal and anti-fundamental representations of G . This representation
is obtained if we use the spinbein decomposition of ΦL with
(anti)-Dirac fields ψaA

L and spinbein ηaA given by

Φab
L = tr

(
ZΨ ab

L

)
, Ψ ab

L = ψaA
L

¯̄ηb A,

¯̄ηaA = Γ AB η̄aB , ψL,R = 1

2

(
1 ∓ γ 5)ψ, (50)

with ψaA
L , ηaA transforming in the N of G . At the same time A,

which also has to transform in N × N̄ of G , separates into its irre-
ducible components according to

Aab = 1

N
Bδab + W ab, B = tr A,

W aa = 0, a,b = 1, . . . , N, (51)

where B transforms in the trivial, and W ab in the (N2 − 1)-dimen-
sional adjoint representations of G . Note that since ηa are physical
objects that are not observable as fields [22] our representation
assignment matches the physical degrees of freedom but does not
match the observable degrees of freedom. In fact, in our massless
example the number of the observable gauge degrees of freedom
per helicity state is 16N2 for bosons, while for fermions it is 4N .

We can now write down s-supersymmetry transformations for
left chiral scalar supermultiplet with free action in ξ = 2 gauge
(the right chiral case is completely analogous)

S0 = −1

2

∫
d4x tr

(
α(d − δ)A, (d − δ)A

)

+
∫

d4x tr
(
αΦL, (d − δ)ΦL

)
, (52)

where A ≡ AR and in terms of irreducible gauge field components
B , W , of A the gauge part of (52) is given by

S0
g = −1

4

∫
d4x

(
α(d − δ)B, (d − δ)B

)

− 1

2

∫
d4x tr

(
α(d − δ)W , (d − δ)W

)
. (53)

Following the same steps as for (48), (49) we obtain that (52) is
invariant under

δA = iεKΦΦ, δΦ = −1

2
iεK A(d − δ)A, (54)

or, equivalently, under

δB = iεKΦ tr Φ, δW pq = iεKΦ

(
Φ pq − 1

N
δpqtr Φ

)
,

δΦ = −1

2
iεK A

(
(d − δ)

(
1

N
δpq B + W pq

))
, (55)

where ε is an infinitesimal real Grassmann parameter.
Note that, because gauge fields are real, our realization of

s-supersymmetry requires that the left- and the right-handed
fermions couple to their own sets of gauge fields. Since experi-
mentally we observe only one set of gauge fields that couple to
left-handed fermions only, it follows from s-supersymmetry that
the right-handed fermions have nothing to couple to and must be
SU(2) singlets.

We will now discuss what happens when we turn gauge inter-
actions on. The simplest way to introduce gauge interactions is to
use minimal gauging. In our case the minimally gauged Lagrangian
for interacting fields is

L = −1

4
(dB,dB) − 1

2
tr(dW1 W ,dW1 W )

+ tr
(
Φ,(dA1 − δA1)Φ

)
, (56)

dA1 = d + ig B1 ∧ +ig′W1∧, (57)

where A1, B1, W1 are the 1-form components of the expansions of
A, B , W , and g , g′ are coupling constants for the U (1) and SU(N)

factors of G . The Lagrangian (56) is invariant with respect to gauge
transformations

B → B + dφ, (58)

W1 → Ω(x)W1Ω
−1(x) + Ω(x)dΩ−1(x), Ω(x) ∈ SU(N), (59)

W p → Ω(x)W p, p 	= 1, (60)

Φ → exp(iφ0)Ω(x), (61)

where φ = φ(x) is an arbitrary real inhomogeneous differen-
tial form. It follows from Coleman–Mandula theorem [24] that
(58)–(61) are the most general local symmetry transformations
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that can be imposed on a system where A is an inhomogeneous
differential form.

Supersymmetry transformations (54), (55) mix components
B p(W p) of gauge field B(W ) together and thus violate the spe-
cial role B1(W1) play in (56)–(61). We conclude that local gauge
symmetry (56)–(61) breaks s-supersymmetry (54), (55) of the free
part of the Lagrangian. It is an open question, whether linear
realization of s-supersymmetry described here can be at most
symmetry of free part of the Lagrangian or an extension to in-
teracting Lagrangian exists. In any case some realization of s-
supersymmetry must exist. This follows from the existence of
conserved s-supersymmetric current that is a gauged version of s-
supersymmetric current for free-field s-supersymmetry. For details
we refer the reader to [25], where also bi-spinor BRST is described.

As a final remark we note that exact s-supersymmetry has a
realization as a global supersymmetry of a string action. The ac-
tion is a supersymmetric version of the bi-spinor string action
described in [26]. Consider a collection of complex commuting and
anticommuting 2-forms B A and F A , A = 0, . . . , D −1, transforming
in some representation of a gauge group and defined on a two di-
mensional manifold with metric gμν , μ,ν = 0,1 that is imbedded
into D-dimensional Minkowski space–time MD with metric ηAB .
Assume that B A and F A transform in the same representation of a
gauge group. Then the action

S =
∫ √−g d2xηAB tr

((
α(d − δ)B A, (d − δ)B B)

+ (
αF A, (d − δ)F B))

, (62)

is globally both gauge invariant and supersymmetric under the
transformation

δB A = εF A, (63)

δF A = −ε∗(d − δ)B A, (64)

where trace is over the gauge group representation indices. Ex-
panding

B A = B A
0 + B A

μ dxμ + (1/2)B A
2 εμν dxμ ∧ dxν, (65)

and taking into account that

dB A
0 = ∂μB A

0 dxμ, δB A
0 = 0,

(
α dxμ,dxν

) = −gμν, (66)

we find that (62) contains two bosonic strings described by Re B A
0 ,

Im B A
0 . In the alternative, one can use left or right chiral differen-

tial forms for fermions and real differential forms for bosons. Then
only one bosonic string described by real B A

0 is contained in (62).
How action (62) fits into the standard superstring classification and
how its critical dimension depends on D are open questions.

4. Summary

In summary, we presented a new realization of supersymmetry
acting in the space of commuting and anticommuting differen-
tial forms. It could relieve supersymmetric models beyond the SM
from requiring that each observed particle must have a superpart-
ner particle. S-supersymmetry can only be possible if fermionic
matter is represented by bi-spinors, instead of Dirac/Weyl spinors.
S-supersymmetry with non-Abelian gauge fields requires the ap-
pearance of U (1) factor in its gauge group.

We described explicit s-supersymmetry transformations for
non-interacting bi-spinor gauge theory for complex and chiral mul-
tiplets. S-supersymmetry for complex multiplets can be reduced
to the standard supersymmetry on space–times with spin struc-
ture. Chiral multiplet realization of s-supersymmetry seems to be
genuinely different from the standard supersymmetry. The ex-
act nature of interrelation needs more clarification. In any case,
s-supersymmetry cannot be reduced to the standard supersymme-
try on space–time where spinors cannot be defined. At least in
this sense s-supersymmetry presents a novel type of transforma-
tions that mix bosonic and fermionic degrees of freedom.

Since the main benefit of supersymmetry is a cure for Higgs
problem, it is not clear whether interacting s-supersymmetry
would be needed for phenomenological models beyond the SM.
After all, all that is needed is that the divergent contributions
from fermion loops for Higgs self-energy cancel the bosonic ones.
For the renormalized remainder supersymmetry may very well
be broken from the beginning. We note a proposal, where su-
persymmetry is restored in the UV limit [23]. Whether free-field
s-supersymmetry indeed provides the Higgs mass problem cure is
an open question.

Although we concentrated on explicit realization of free-
field s-supersymmetry, the interacting bi-spinor gauge theory s-
supersymmetry should exist. This follows from the existence of
conserved s-supersymmetric current in interacting theory [25],
which turns out to be the minimally gauged version of the cur-
rent of free-field s-supersymmetry.

S-supersymmetry of interacting theory can also be realized in a
superstring action, possibly providing an alternative way for con-
struction of the theory of quantum gravity interacting with gauge
fields and bi-spinor fermionic matter. String s-supersymmetry re-
alization could also provide another, admittedly more circuitous,
route to s-supersymmetry of interacting bi-spinor fields via the
standard stacking of D-branes procedure.

Although bi-spinor gauge theory with SM gauge group is renor-
malizable by power count, the construction of full perturbative
quantum bi-spinor modification of the SM has yet to be com-
pleted. However, some of its unusual features can be gleaned from
its tree-level version, which can be easily constructed by the mini-
mal gauging [22,28]. One distinguishing feature that appears is that
it admits explicit dimension three mass terms that are severely
restricted in form [28]. This, in turn, leads to essentially unique
forms of textures of the CKM and PMNS mixing matrices that agree
with the experiment [27]. In addition it can predict the experimen-
tally observed equality of two CKM matrix elements: Vts = V cb ,
something that the SM in principle cannot do. In distinction from
all recent extensions of the SM, the observed textures appear with-
out addition of new degrees of freedom.

It is Dirac spinors rather than bi-spinors that are the mathe-
matical objects used in the Standard Model to describe fermionic
matter. However, the predictive power of tree-level bi-spinor SM
for lepto-quark mixing and the existence of supersymmetry that
is more compact then the standard one leads us to conjecture
that, if the bi-spinor modification of the SM can be constructed
and proven to satisfy all precision EW constraints, then bi-spinors
could provide a more fitting description of quantum fermionic
matter then Dirac spinors.
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