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Abstract

In this paper, we derive a new asymptotic approximation of the Vlasov-Maxwell equations. This formulation
follows the beam in a speed-of-light frame. It is fourth order accurate in the small characteristic velocity of the beam.
The formulation is simpler than standard particle-in-cell methods in the lab frame or in the beam frame. It promises
to be very powerful in its ability to get an accurate, but fast and easy to implement algorithm.
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1. Introduction

Charged particle beams and plasma physics problems are extensively used in Science and Technology (see for
instance [1]). If we consider collisionless plasma or non-collisional beams, one of the most complete mathematical
models is the time-dependent Vlasov-Maxwell system of equations (cf. [2]). However, the numerical solution of such
a model, which is unavoidable in many situations, [3, 4] requires a large computational effort. Therefore, whenever
possible, we have to take into account the particularities of the physical problem to derive asymptotic approximate
models leading to cheaper simulations (see [5, 6, 7, 8, 9]).

In this work, we consider the case of high energy short beams. A typical example is the transport of a bunch
of highly relativistic charged particles in the interior of a perfectly conducting hollow tube. This is usually modeled
by the Vlasov equation, where the unknown f (X,V, t) represents the distribution function of particles in phase space
(X,V). It is generally coupled with the Poisson or Maxwell equations. Numerical simulations are mostly performed
using the particle-in-cell (PIC) method.

In this talk, we will derive a new asymptotic paraxial model as an approximation of the time-dependent Vlasov-
Maxwell equations. Following [6], the model is derived by introducing a frame which moves along the optical axis at
the speed of light, so that the bunch of particles is evolving slowly in this frame. Then one considers a scaling of the
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equations which reflects the characteristics of the high energy short beam. Finally, we introduce a small parameter
and we use asymptotic expansion techniques to obtain a new paraxial model which is accurate up to fourth order.

The simplicity of the so obtained formulation allows to use a finite-difference discretization for the Maxwell
equations. Hence, using a particle approximation for the Vlasov equation, a particle-in-cell technique can be easily
developed. This approach promises to be very powerful in its ability to get an accurate, but fast and easy to implement
algorithm.

2. The Vlasov Maxwell model

Let us consider a beam of charged particles with mass m and charge q which moves in a perfectly conducting
cylindrical tube. We define the axis of the tube as the z-axis. We denote by Ω the transverse section of the tube, by Γ
its boundary and by ν = (νx, νy, 0) the unit exterior normal to the tube. We suppose that an external magnetic field Be

confines the beam in a neighborhood of the z-axis which may be therefore chosen as the optical axis of the beam. We
denote by x=(x,y,z) the position of the particle, by p=(px,py,pz) its momentum and by v=(vx,vy,vz) its velocity. We
assume that the beam is relativistic and noncollisional so that its distribution function f=f (x,p,t) in the phase space
(x,p) is a solution of the Vlasov equation

∂ f
∂t
+ v.∇x f + F.∇pf = 0, where p = γmv, γ = (1 − υ

2

c2
)−1/2, υ =| v | . (1)

Above F = q(E + v ×B) denotes the electromagnetic force acting on the particles, whereas the electric field E=E(x,t)
and the magnetic field B=B(x,t) satisfy Maxwell’s equations

1
c2

∂E
∂t
− ∇ × B = −μ0J, (2)

∂B
∂t
+ ∇ × E = 0, (3)

∇.E = 1
ε0
ρ, (4)

∇.B = 0. (5)

where the charge density ρ and the current density J are obtained from the distribution function f by

ρ = q
∫

fdp, J = q
∫

vfdp. (6)

In the sequel, it will appear more convenient for the analysis to work in the position-velocity phase space (x,v).
Denoting again by f=f (x,v,t) the distribution function of the particles, we obtain that f is solution to the Vlasov
equation

∂ f
∂t
+ v.∇x f + ∇v · ( 1

γm
(I − 1

c2
v ⊗ v) Ff) = 0, (7)

where I denotes the unit tensor. From now on, assume that the beam is highly relativistic i.e., satisfies γ >> 1. Since
υz�c for any particle in the beam, it is convenient to rewrite the Vlasov-Maxwell equations in the beam frame, i.e.,
in a frame which moves along z-axis with the light velocity c. Hence we set ζ = ct − z, υζ = c − υz and perform the
change of variables (x, y, z, vx, vy, vz, t)→ (x, y, ζ, vx, vy, vζ , t). Next, following [9], [10], we introduce the notations:

x⊥ = (x, y), v⊥ = (vx, vy)

grad⊥ϕ = ( ∂ϕ
∂x ,
∂ϕ
∂y ), curl⊥ϕ = ( ∂ϕ

∂y ,− ∂ϕ∂x ), Δ⊥ϕ =
∂2ϕ
∂x2 +

∂2ϕ
∂y2
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div⊥A⊥= ∂Ax
∂x +

∂Ay

∂y , curl⊥A⊥=
∂Ay

∂x - ∂Ax
∂y , divv⊥A⊥= ∂Ax

∂vx
+
∂Ay

∂vy
,

where ϕ = ϕ(x, y) is a scalar function and A⊥ = (Ax, Ay) a transverse vector field. If we define A⊥ × ez by A⊥ × ez =

(Ay,−Ax), we observe that

div⊥(A⊥ × ez) = curl⊥A⊥, curl⊥(A⊥ × ez) = −div⊥A⊥, curl⊥curl⊥ϕ = −Δ⊥ϕ. (8)

Moreover, if we denote by τ = (−νy, νx) the unit tangent along Γ, we have the relation curl⊥ϕ · τ = − ∂ϕ∂ν . Using the
above notation, the Vlasov equation in the beam frame can be written as

∂ f
∂t
+ v⊥ · grad⊥ f + vζ

∂ f
∂ζ
+ divv⊥ [

1
γm

((I − 1
c2

v⊥ ⊗ v⊥) · F⊥ − 1
c

(1 − vζ
c

)v⊥Fz) f ] +

∂

∂vζ
[

1
γmc

((1 − vζ
c

)v⊥ · F⊥ + (2 − vζ
c

)vζFz) f ) = 0 , (9)

where

γ = (2
vζ
c
− 1

c2
(v⊥2 + vζ

2))−1/2, v⊥ = |v⊥|. (10)

Setting E⊥ = (Ex = Ex − cBy,Ey = Ey + cBx) and Jζ = ρc − Jz = q
∫
υζ f dv, the Ampere and Poisson equations (2)

and (4) give
1
c2

∂E⊥
∂t
− curl⊥Bz +

1
c
∂E⊥
∂ζ
= −μ0J⊥, (11)

1
c2

∂Ez

∂t
+

1
c

div⊥E⊥ = −μ0Jζ , (12)

div⊥E⊥ − ∂Ez

∂ζ
=

1
ε0
ρ. (13)

Similarly, equations (3) and (5) written in the beam frame become

∂B⊥
∂t
+ curl⊥Ez +

∂

∂ζ
(E⊥ × ez) = 0, (14)

∂Bz

∂t
+ curl⊥E⊥ = 0, (15)

div⊥B⊥ − ∂Bz

∂ζ
= 0. (16)

Finally, the electromagnetic force becomes

F⊥ = q(E⊥ + (v⊥ × ez)Bz + vζ(B⊥ × ez)), Fz = q(Ez + v⊥ · (B⊥ × ez)). (17)

The treatment of the boundary conditions can be handled in the same way. We refer the reader to [9], [10] for details.

3. A scaling of the equations

At this point, we restrict ourselves to the case of a short beam. Then, one introduces a scaling of the above
equations, taking in account the three following properties of the beam:

(i.) the beam dimensions are small compared to the longitudinal length of the device ;
(ii.) the longitudinal velocities vz of the particles are close to the light velocity c ;
(iii.) the transverse velocities v⊥ of the particles are small compared to c.

Thus, we introduce two characteristic quantities:
l, the characteristic dimension of the beam,
v, the transverse characteristic velocity of the particles.
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Now, we define a small parameter η with η = v
c � 1. Since the particle velocities are close to c, we have v2 =

v2
⊥ + v2

z = v2
⊥ + c2 − 2cvζ + v2

ζ � c2 so that 2cvζ � v2
⊥. Hence, vζ appears to be of the order v2

c and we choose w = η2c
as a characteristic longitudinal velocity of the particles in the beam frame and consequently w = ηv. We define
l‖ = ηl as a characteristic longitudinal dimension. Finally one takes T = l

v as a characteristic time. We introduce the
dimensionless independent variables x′⊥, ζ

′, t′, v′⊥, v
′
ζ defined by

x = lx′, y = ly′, ζ = l‖ζ′, t = Tt′, vx = vv′x, vy = vv′y, vζ = wv′ζ . (18)

Remark 1. We have seen that it was ”natural” to define a longitudinal characteristic velocity w related to the trans-
verse characteristic velocity v by w = ηv. In the same way, it is ”natural” to introduce a longitudinal characteristic
dimension l‖ different from the transverse characteristic dimension l, and satisfying the relation l‖ = ηl

Next, choosing the scaling factors f , ρ, J, E, B, F as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f =
ε0m

q2l2ω
, ρ = q fυ2ω, J = ρc,

E =
mυ2

ql
, B =

E
c
, F = qE,

(19)

we look for the dependent variables f ,E,B and F as functions of the following forms: f (x⊥, ζ, v⊥, vζ , t) = f f ′(x′⊥, ζ
′, v′⊥, v

′
ζ , t),

E(x⊥, ζ, t) = EE′(x′⊥, ζ
′, t′)′, B(x⊥, ζ, t) = BB′(x′⊥, ζ

′, t′)′, F(x⊥, ζ, v⊥, vζ , t) = FF′(x′⊥, ζ
′, v′⊥, v

′
ζ , t). Note that ρ =

ρn′, with n′ =
∫

f ′dv′, v′ = (v′⊥, vζ) and J⊥ = ηJj′⊥, Jζ = η2J j′ζ .

We are able now to write again the Vlasov-Maxwell equations in the beam frame using these dimensionless variables.
Dropping the primes for simplicity, we get

Proposition 2. The Vlasov equation in dimensionless variables is

∂ f
∂t
+ v⊥ · grad⊥ f + vζ

∂ f
∂ζ
+ divv⊥ [

1
γ

((I − η2v⊥ ⊗ vη) · F⊥ − η(1 − η2vζ)v⊥Fz) f ] +

∂

∂vζ
[
1
γ

((1 − η2vζ)v⊥ · F⊥ + η(2 − η2vζ)vζFz) f ] = 0 , (20)

where, with (10), we have γ = 1
η
(2vζ − (v2

⊥ + η
2v2
ζ ))
− 1

2 .

On the other hand, Maxwell’s equations (11)- (13) give

η
∂E⊥
∂t
− curl⊥Bz +

1
η

∂E⊥
∂ζ
= −ηj⊥, (21)

η
∂Ez

∂t
+ div⊥E⊥ = η2 jζ , (22)

div⊥E⊥ − 1
η

∂Ez

∂ζ
= n, (23)

and equations (14)- (13) also give

η
∂B⊥
∂t
+ curl⊥Ez +

1
η

∂

∂ζ
(E⊥ × ez) = 0, (24)

η
∂Bz

∂t
+ curl⊥E⊥ = 0, (25)

div⊥B⊥ − 1
η

∂Bz

∂ζ
= 0. (26)
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In the above equations, the right-hand sides n, j fulfill the charge conservation equation

∂n
∂t
+ div⊥j⊥ +

∂ jζ
∂ζ
= 0 .

The electromagnetic force F is the same as in [9] or [10]
{

F⊥ = E⊥ + η(v⊥ × ez)Bz + η
2vζ(B⊥ × ez),

Fz = Ez + η(vxBy − vyBx).
(27)

The boundary conditions can be handled in the same way.

4. An asymptotic expansion

Starting from the scaled Vlasov-Maxwell equations, we develop asymptotic expansions of f, n, j and E, B, E⊥, F
in powers of the small parameter η:

f = f 0 + η f 1 + ..., n = n0 + ηn1 + ..., j = j0 + ηj1 + ...,

E = E0 + ηE1 + ..., B = B0 + ηB1 + ..., E = E0 + ηE1 + ..., F = F0 + ηF1 + ... .

The principle of the study consists in replacing formally in the Vlasov-Maxwell equations the functions by their
asymptotic expansions; then to identify the coefficients of η0, η1 . . .. Hence, it is proved that for determining the
asymptotic expansion f = f 0 + η f 1 + η2 f 2 + η3 f 3 of the distribution function f up to the order 3 in η, it is enough
to know the expansion F⊥ = F0

⊥ + ηF
1
⊥ + η

2F2
⊥ of the transverse electromagnetic force F⊥ up to the order 2 and the

expansion F0
z + ηF

1
z of the longitudinal electromagnetic force Fz up to the order 1 only. Then, using the expressions

(27) of the forces, we have
{

F0
⊥ = E0

⊥
F0

z = E0
z

{
F1
⊥ = E1

⊥ + (v⊥ × ez)B0
z

F1
z = E1

z + (vxB0
y − vyB0

x)
F2
⊥ = E2

⊥ + (v⊥ × ez)B1
z + vζ(B0

⊥ × ez) (28)

Hence, it appears that we need only to know the expansion of E⊥ up to the order 2, the principal part B0
⊥ of B⊥, and

the expansions of Ez and Bz up to the order 1.

Next we turn to asymptotic expansions of Maxwell’s equations and their boundary conditions. We get the following
lemma

Lemma 3. The transverse component E0
⊥ of E0 is the unique solution of
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div⊥E0
⊥ = n0 +

∂E1
z

∂ζ
in Ω

curl⊥E0
⊥ = −∂B

1
z

∂ζ
in Ω

E0
⊥ · τ = 0 on Γ

(29)

On the other hand, the transverse component B0
⊥ of B0 is characterized by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div⊥B0
⊥ =

∂B1
z

∂ζ
in Ω

curl⊥B0
⊥ = n0 +

∂E1
z

∂ζ
in Ω

B0
⊥ · ν = B0

⊥ · ν|ζ=0 on Γ

(30)

Similarly, we can characterize the pseudo-field E0
⊥ as follows

F. Assous, F. Tsipis / Procedia Computer Science 1 (2012) 691–698 695
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Lemma 4. The transverse component E0
⊥ of E0 is the unique solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

div⊥E0
⊥ = 0 in Ω

curl⊥E0
⊥ = 0 in Ω

E0
⊥ · τ = B0

⊥ · ν|ζ=0 on Γ

(31)

Remark that up to this order, one can not yet characterize the zero order longitudinal components E0
z and B0

z .

We then obtain the following characterization of the zero order longitudinal components E0
z and B0

z

Lemma 5. The zero order longitudinal electric components satisfies

E0
z = 0

whereas the zero order longitudinal magnetic component is independent of ζ, i.e. B0
z = B0

z (x⊥, t) and solves

Δ⊥B0
z = 0

Lemma 6. The first order transverse pseudo field E1
⊥ is characterized by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div⊥E1
⊥ = 0 in Ω

curl⊥E1
⊥ = −∂B

0
z

∂t
in Ω

E1
⊥ · τ = Be,1

⊥ · ν|ζ=0 on Γ

Up to now, we have determined E0
z , B

0
z ,E0

⊥,E1
⊥ which correspond to purely external fields.

What we have to determine now are the components E0
⊥,B

0
⊥, E

1
z , B

1
z ,E2

⊥. This is the aim of the three following lemmas.

Lemma 7. The first order longitudinal electric component E1
z is characterized by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∂2E1

z

∂ζ∂t
− Δ⊥E1

z = −∂n
0

∂t
+
∂ j0ζ
∂ζ

in Ω

E1
z = 0 on Γ

E1
z (ζ = 0) = 0

and satisfies the initial condition: E1
z (t = 0) is a given function.

Lemma 8. The first order longitudinal magnetic component B1
z is characterized by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∂2B1

z

∂ζ∂t
− Δ⊥B1

z = −curl⊥j0
⊥ in Ω

∂B1
z

∂ν
= j0

⊥ · τ +
∂B0
⊥
∂t
· ν |ζ=0

B1
z (ζ = 0) being a given function

and satisfies the initial condition: B1
z (t = 0) is a given function.

From the characterizations of E1
z and B1

z , one can compute E0
⊥ and B0

⊥ as solutions to the transverse boundary values
problems (29) and (30) respectively.
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Lemma 9. The second order transverse pseudo field E2
⊥ is the unique solution to the equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div⊥E2
⊥ = j0ζ −

∂E1
z

∂t
in Ω

curl⊥E2
⊥ = −∂B

1
z

∂t
in Ω

E2
⊥ · τ = B2

⊥ · ν |ζ=0 − ζ ∂B
0
⊥
∂t
· ν |ζ=0

In order to construct the paraxial model, we need to distinguish the self consistent fields from the external ones, that
is

E = Ee + Es, B = Be + Bs, and consequently E = Ee + Es

one easily obtains the same kind of results for self consistent fields.

5. The paraxial model

Using the results of the previous section, we now want to introduce a simplified paraxial model, which gives the
same asymptotic expansion of f up to the order three. It is derived in an heuristic way based on the above asymptotic
analysis. We will write this model in the beam frame coming back in the physical variables. First note that

Es
⊥ << Es

⊥, c Bs
⊥

that is, the beam fields are largely greater than the ”electromagnetic force” when the beam is ultrarelativistic. Indeed,
E1,s
⊥ ,E2,s

⊥ are equal to zero, whereas E2,s
⊥ is the first non-vanishing pseudo field. At the contrary, the electric and

magnetic fields E0,s
⊥ ,B

0,s
⊥ are different from zero and depends on the charge density ρ (or n0 in dimensionless variables).

In these conditions, we have Es
⊥ − c Bs

⊥ × ez � 0. We deduce with (8) that

div⊥Es
⊥ = div⊥Es

⊥ − c curl⊥Bs
⊥ � 0

curl⊥Es
⊥ = curl⊥Es

⊥ + c div⊥Bs
⊥ � 0

We begin to derive the equations satisfied by Es
⊥. From the equations (29-30), we have

div⊥Es
⊥ −
∂Es

z

∂ζ
=

1
ε0
ρ, div⊥Bs

⊥ −
∂Bs

z

∂ζ
= 0 .

Now, using that div⊥Bs
⊥ � −

1
c

curl⊥Es
⊥, we then get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div⊥Es
⊥ =

1
ε0
ρ +
∂Es

z

∂ζ
in Ω

curl⊥Es
⊥ = −c

∂Bs
z

∂ζ
in Ω

E⊥ · τ = 0 on Γ .

(32)

In another way, we have Bs
⊥ = −Es

⊥ × ez. Hence, we have obtained a quasi-static model for the transverse self con-
sistent fields Es

⊥ and Bs
⊥. Practically, these fields will be computed after that the longitudinal components Es

z , B
s
z have

been determined.

Let us now deal with these longitudinal self-consistent fields. In this paraxial model, Es
z is solution to a second order

wave-like equation: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∂2Es

z

∂ζ∂t
− cΔ⊥Es

z =
1
ε0

(−∂ρ
∂t
+
∂Jζ
∂ζ

) , in Ω

Es
z = 0 on Γ

Es
z|ζ=0

a given data

(33)
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F. Assous et al / Procedia Computer Science 00 (2010) 1–8 8

with the initial condition: Es
z|t=0

being a given data.

Similarly, the longitudinal magnetic part Bs
z solved the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∂2Bs

z

∂ζ∂t
− cΔ⊥Bs

z = μ0 c curl⊥J⊥ , in Ω

∂Bs
z

∂ν
= μ0J⊥ · τ on Γ

Bs
z|ζ=0

0 = 0

(34)

with the initial condition: Bs
z|t=0

being a given data. This allows to compute the longitudinal fields Es
z , B

s
z then the

transverse ones Es
⊥,B

s
⊥.

From these quantities, one can also determine the transverse pseudo-field Es
⊥, by solving the quasi-static system of

equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div⊥Es
⊥ = μ0 c Jζ − 1

c

∂Es
z

∂t
in Ω

curl⊥Es
⊥ = −∂B

s
z

∂t
in Ω

Es
⊥ · τ = 0 on Γ

(35)

As a conclusion, we have derived this model by only assuming that Es
⊥ << Es

⊥ and Es
⊥ << c Bs

⊥ and we have

Theorem 10. The equations (32-35) determine the triple (Es,Bs,Es
⊥) from (ρ, J) in a unique way.

6. Conclusion

In this paper, a new asymptotic approximate model for the Vlasov-Maxwell equations has been described. It has
been constructed from a paraxial approximation of the system of equations, and is adapted to highly relativistic beam.
The simplicity of the obtained formulation would allow us to use very simple numerical schemes (like finite-difference
discretization and particle-in-cell technique). This approach would be very powerful in its ability to get accurate, but
fast and easy to implement algorithm. A more complete study with numerical examples is actually in progress.
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[4] F. Assous, P. Degond, E. Heintzé, P.A. Raviart, J. Segré, On a finite element method for solving the three dimensional Maxwell equations,

J. Comput. Physics, 109(2), 222–237, (1993).
[5] M.A. Mostrom, D. Mitrovich, D.R. Welch, The ARCTIC Charged Particle Beam Propagation Code, J. Comput. Physics, 128(2) 489–497

(1996).
[6] S. Slinker, G. Joyce, J. Krall, R.F. Hubbard, ELBA - A Three Dimensional Particle Simulation Code for High Current Beams, Proc. of the

14th Inter. Conf Numer. Simul. Plasmas, Annapolis, (1991).
[7] P. Degond,P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell. Math. Mod. Meth. Appl. Sci., 3(4) 513–562

(1993).
[8] P.A. Raviart, E. Sonnendrucker, A hierarchy of approximate models for the Maxwell equations, Numer. Math., 73(3), 329–372 (1996).
[9] G. Laval, S. Mas-Gallic, P.-A. Raviart, Paraxial approximation of ultrarelativistic intense beams, Numer. Math., 69(1), 33–60 (1994).

[10] F. Assous, F. Tsipis, A PIC Method for Solving a Paraxial Model of Highly Relativistic Beams, J. Comput. Appl. Math, 227-1, 136–146,
(2009).

698 F. Assous, F. Tsipis / Procedia Computer Science 1 (2012) 691–698


