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Abstract 

In this paper we suggest a multi-start greedy heuristic for a real-life truck and trailer routing problem. The considered 
problem is a site dependent heterogeneous fleet truck and trailer routing problem with soft and hard time windows and split 
deliveries. This problem arises in delivering goods from a warehouse to stores of a big retail company. There are about 400 
stores and 100 vehicles for one warehouse. Our heuristic is based on sequential greedy insertion of a customer to a route 
with further improvement of the solution. The computational experiments are performed for real-life data. We also provide 
a mixed integer linear programming formulation for precise and clear description of the problem. 
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1. Introduction 

Real-life transportation logistics problems differ greatly from classical vehicle routing problems. In this 
paper we consider one of such real-life problems arising in delivering goods from a warehouse to stores of a 
big retail company. This problem is a site dependent heterogeneous fleet truck and trailer routing problem with 
soft and hard time windows and split deliveries. The problem consists in minimizing the total cost of delivery 
of orders made by stores.  

A possible vehicle and a service time depend on a store to be served. Some stores can be served only by 
small-size vehicles, some – only by a truck without a trailer, some – by a vehicle with a refrigerator, etc. 
Moreover, a store can have two parts in its order: one which needs a refrigerator and another which does not. 
Correspondingly, a heterogeneous fleet of vehicles contains different types of vehicles and travelling costs 
depend on a vehicle and its state (whether it travels with a trailer or without it). Each vehicle has also a fixed 
cost spent if this vehicle is used for delivery. Every used vehicle makes only one route. 
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The stores which can be visited only by a truck without a trailer are called truck-stores. To serve such a store 
a road-train can leave its trailer either at a transshipment location or at a trailer-store (a store which can be 
served from a trailer). A truck without a trailer can visit several stores including trailer-stores also, but then it 
should return to take its trailer. When a trailer is left at a trailer-store, this store is served from it and at the same 
time the truck visits several truck-stores. In this case a load transfer can be necessary, either if there are not 
enough goods in the truck to serve these truck-stores (load transfer to a truck), or if there are not enough goods 
in the trailer to serve this trailer-store (load transfer to a trailer). 

A hard time window is defined by open and close times of a store. Hard time windows cannot be violated. 
Each store also has a soft time window defining a preferred hours of delivery. Soft time windows can be 
violated, but the total number of violations is limited. Transshipment locations have only hard time windows. If 
an order of a store is larger than the largest suitable vehicle capacity then it is split between the minimal 
required number of vehicles. A smaller order can be split between two vehicles, but the number of such splits is 
limited. Only one of the split deliveries is required to satisfy the soft window of a store, all the other should 
only satisfy the hard window. 

One of the first papers devoted to the truck and trailer routing problem belongs to Semet & Taillard (1993). 
These authors suggest a tabu-search algorithm for a real-life site dependent heterogeneous fleet truck and trailer 
routing problem with hard time windows. Split deliveries are not allowed and a trailer can be left only at a 
trailer-store in their problem. A cluster-first route-second heuristic is developed by Semet (1995) for a similar 
problem, but without time windows. The author also provides an integer programming formulation for this 
problem. In the papers of Semet & Taillard (1993) and Drexl (2011) the truck and trailer routing problem is 
considered in the formulations very close to our one. Particularly, in these formulations trucks and trailers can 
have different capacities, travel costs, travel times, and trailers are strictly bound to its trucks, so that one truck 
cannot travel with the trailer of another truck. Such formulations can be called as Heterogeneous Fleet Truck 
and Trailer Routing Problem (HFTTRP) and HFTTRP with Time Windows (HFTTRPTW). 

A number of papers consider the truck and trailer routing problem in a simpler formulation with a 
homogeneous fleet of vehicles, where all trucks and all trailers are identical. This formulation is usually called 
in the literature simply as Truck and Trailer Routing Problem (TTRP). The papers on the TTRP belong to 
authors Chao (2002), Scheuerer (2006), Lin et al. (2009, 2010, 2011), Villegas et al. (2011a,b). Chao (2002) 
suggested a tabu-search algorithm for the TTRP. Scheuerer (2006) developed two constructive heuristics and a 
tabu-search algorithm for the TTRP. Lin et al. (2009, 2010) introduced an efficient simulated annealing 
heuristic for the TTRP and later Lin et al. (2011) applied a similar heuristic for the TTRP with Time Windows 
(TTRPTW). Villegas et al. (2011a) proposed a hybrid GRASP/VNS heuristic for the TTRP and later Villegas 
et al. (2011b) combined this heuristic with a set-partitioning formulation for the TTRP. 

Hoff (2006), Hoff & Lokketangen (2007) developed a tabu-search algorithm for the multi-depot HFTTRP 
arising in the milk collection. Caramia & Guerriero (2010a,b) suggested a multi-start cluster-first route-second 
local search-third heuristic for a similar milk collection HFTTRP. Drexl (2011) developed an integer 
programming formulation and a branch-and-price algorithm for the HFTTRPTW. 

In this paper we propose a multi-start greedy heuristic for a site dependent HFTTRP with soft and hard time 
windows and split deliveries. To our knowledge such a general formulation has never been considered in the 
literature. Our heuristic is based on a greedy insertion procedure similar to the insertion procedures suggested 
by Solomon (1987). We also apply a simple improvement procedure which tries to move deliveries in the 
current route earlier to avoid delays. 

The paper is organized as follows. In the next section we provide a mixed integer linear programming 
formulation for the considered problem. In Section 3 we present a detailed description of our algorithm 
together with its pseudo-code. Computational experiments for real-life instances containing up to 400 orders 
and 100 vehicles are given in Section 4. 
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2. Mathematical formulation 

An oriented graph for the considered problem is denoted as ),( AVG , where V  is the set of vertices, and 
VVA  is the set of arcs. The set of vertices is divided into 4 sets including the depot (vertex 0), trailer-

stores, truck-stores, and transshipment locations. The depot vertex also has a copy in the transshipment 
locations, so that any vehicle can leave its trailer directly at the depot and then make a pure truck-route. Below 
we will use term “location” for any vertex representing a store or a transshipment location (any vertex 

}0{\Vi ). The input of the problem is given by the following parameters: 
n , 1n , 2n , 3n ,  – the number of stores, trailer-stores, truck-stores, and transshipment locations 
 0   – the depot 

},...,1{ 11 nV   – the set of trailer-stores,  
},...,1{ 2112 nnnV  – the set of truck-stores, 

},...,1{ 33 nnnV  – the set of transshipment locations, 
321}0{ VVVV  – the set of all possible route locations, 

K , 1K , 2K , K  – the set of all vehicles, vehicles with trailer, without trailer, with refrigerator 
kf    – the fixed cost of using vehicle k , 

kQ , 1
kQ , 2

kQ   – the total capacity of vehicle k , capacity of its trailer, capacity of its truck 

iq , iq    – the total demand of store i , its demand which needs a refrigerator 
k
is    – the service time of total demand of store i  for vehicle k , 
k

ir    – the time to leave trailer and make load transfer at location i  for vehicle k , 
iop , icl   – the open and close time of location i  (hard time window), 

ier , ilt    – the earliest and latest preferred time of delivery to store i  (soft time window), 
kl
ijc , 

kl
ijt    – the cost, time of arc ),( ji  for vehicle k  with trailer ( 1l ) or without ( 2l ), 

   – the maximum number of soft time window violations, 
   – the maximum number of stores with split deliveries excluding inevitable splits 
The following Boolean, integer, and fractional variables are used in the suggested mixed integer linear 

programming model: 
}1,0{kl

ijx  – equals 1, if vehicle k  travels along arc ),( ji  with trailer ( 1l ) or without it ( 2l ), 
]1,0[k

iy  – the fraction of demand of store i  delivered by vehicle k , 
}1,0{k

iz  – equals 1, if vehicle k  delivers some fraction of demand to store i  in its route, 
}1,0{kz  – equals 1, if vehicle k  is used in one of the routes, 
}1,0{k

iu  – equals 1, if vehicle k  leaves trailer at location i , 
Rbk

i  – the begin time of the delivery to store i  by vehicle k , 
Rek

i  – the end time of the delivery to store i  by vehicle k , 
Rak

i  – the arrive time of vehicle k  to store i , 

Rd k
i  – the demand served by the truck of vehicle k  in a truck subtour starting from the first store in this 

subtour and ending in store i ; for example for subtour ),...,,,...,,( 010 jijjj p , in which 1j  is the first store 

visited by the truck after store 0j  where the trailer is left, this demand will be equal to: ijjj

k
jj

k
i

p

yqd
,,...,1

 
}1,0{k

iv  – equals 1, if vehicle k  is not used for store i  or it starts service at i  out of its soft window, 
}1,0{iv   – equals 1, if the soft window of store i  is violated, 
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}1,0{i  – equals 1, if the delivery for store i  is split, though its total demand can be delivered by one 
vehicle, 

}1,0{
21kkw  – equals 1, if the split delivery by vehicle 2k  to store i  is ended before the split delivery by 

vehicle 1k  to this store is started. 
The complete mixed integer linear programming formulation is presented below. 
Objective function: 

min
2

1 Kk
kk

l Kk Vi Vj

kl
ij

kl
ij zfxcf

       (1) 
Demand and capacity constraints: 

121
Kk

k
iyVVi

         (2) 

k
ik

k
i

k
i yzyzVViKk ,, 21        (3) 

k
VVi

k
ii QyqKk

21
         (4) 

Travelling and flow conservation constraints: 

0,, 11
2

k
ji

k
ij xxVjViKk                     (5) 

k
Vi

kl
il zxKkl

}0{\
0},2,1{

        (6) 

k
i

l Vj

kl
ij zxViKk

2

1
}0{\,

        (7) 

Vj

kl
ji

Vj

kl
ij xxViKkl ,},2,1{

       (8) 
Hard time window constraints: 

0000
kkk ebaKk         (9) 

k
i

k
i

k
i

k
ii

k
ii

k
ii

k
i ysbecleopaopbViKk ,,,}0{\,                 (10) 

11
3131 1},0{, k

ij
k
ij

k
i

k
j xMtebVVjVViKk                (11) 

22
2121 1,, k

ij
k
j

k
i

k
ij

k
i

k
j xuuMtebVVjVViKk                (12) 

11
3131 11},0{, k

ij
k
j

k
i

k
ij

k
i

k
j xuuMteaVVjVViKk     (13) 

22
3121 11,, k

ij
k
j

k
i

k
ij

k
i

k
j xuuMteeVVjVViKk                (14) 
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22
2131 11,, k

ij
k
i

k
ij

k
i

k
i

k
j xuMtrabVVjVViKk                (15) 

Soft time window constraints: 

MltbvMbervzvViKk i
k
i

k
i

k
ii

k
i

k
i

k
i /)(,/)(,1}0{\,                (16) 

||1}0{\ KvvVi
Kk

k
ii                     (17) 

}0{\Vi
iv

                       (18) 
Split deliveries number constraints: 

kKki
Kk

k
ikKki QqzQqVVi max/2max/21                  (19) 

21max/21
Kk

k
ikKki zQqVVi                   (20) 

kKki
Kk

k
ii QqzVVi max/21                    (21) 

21 VVi
i                        (22) 

Split deliveries time constraints: 

)11(/)(,,},0{\ 2121

211221
k
i

k
i

k
i

k
ikk zzMMebwkkKkkVi         (23) 

)11(/)(1,,},0{\ 2121

211221
k
i

k
i

k
i

k
ikk zzMMebwkkKkkVi   (24) 

)11(,,},0{\ 21

21

21
1221

k
i

k
ikk

k
i

k
i zzMMwbekkKkkVi                (25) 

Truck subtour capacity constraints: 

)1(}0{\},0{\, 2k
ij

k
j

k
jj

k
i

k
j xuMyqddVjViKk                (26) 

2
31, k

k
j QdVVjKk                     (27) 

Refrigerator constraints: 

ii
Kk

k
i qqyVVi /21                      (28) 

The objective function (1) of the problem minimizes the total cost including travelling costs and fixed costs 
of vehicles used in routes. Demand and capacity constraints (2) – (4) guarantee that the total demand is 
delivered to every store and every vehicle is loaded not more than its capacity. Constraints (3) require that 
variables k

iz  and kz  are equal to 1 if 0k
iy . 

Travelling and flow conservation constraints (5) – (8) guarantee that every trailer tour and every truck 
subtour is a cycle, and every trailer tour includes the depot. Constraint (5) requires that any truck-store cannot 
be visited by a vehicle with trailer. Constraint (6) requires that every route including pure truck-routes contains 
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the depot (vertex 0). Constraint (7) requires that if a vehicle visits a location then it have to travel from this 
location to another location. Constraint (8) requires that if a vehicle arrives to a store it then leaves it in every 
route and every truck subtour.  

Constraints (2) – (8) together determine basic restrictions on the main variables. First they require the certain 
k
iy  variables to be greater than zero so that every store gets its demand. It then makes the corresponding k

iz  
and kz  variables to be equal to 1, which means that the corresponding vehicles are used in the solution. In its 
turn it causes that the corresponding kl

jx0  variables are equal to 1 (every used vehicle goes out from the depot in 
its route), and for every store j  the corresponding kl

ijx  and kl
jix '  variables are also equal to 1 (every store served 

by the corresponding vehicle should be visited and then left by this vehicle). As a result due to these constraints 
all the stores will be served in the solution and every used vehicle will make a cyclic route passing through the 
depot, but together with such routes it will make also a number of disjoint cyclic routes covering all the stores 
which it should serve. In order to avoid such solutions and require, that every used vehicle makes one cyclic 
trailer tour and several cyclic truck subtours starting and ending in one of the main tour points, we use time 
window constraints (9) – (15). 

Hard time window constraints (9) – (15) guarantee that every route is started from the depot (vertex 0), 
every customer is served not earlier than its open time and the service is ended not later than its close time. 
Constraints (9) require that every vehicle leaves the depot at time 0. First two constraints (10) require that any 
vehicle arrives to any location and begins unloading at a store or leaves trailer at a transshipment location not 
earlier than the open time of this location. Next two constraints (10) require that the service at the location is 
performed during its service time k

is  and is ended not later than its close time. For transshipment locations 
there is no service time: 0k

is , and trailer decoupling and load transfer time is taken into account separately 
by means of k

ir  parameter.  
Constraint (11) requires that any vehicle travelling from the depot, a trailer-store or a transshipment location 

i  to a trailer-store or a transshipment location j  cannot begin service at location j  earlier than it leaves 
location i  plus the travelling time 1k

ijt  between these locations. In case 01k
ijx  (the vehicle is not travelling 

from i  to j ) this constraint transforms into an inequality which is always true due to the “big-M” constant. 
Constraint (12) requires that any truck without a trailer travelling from store i  to store j , in which a trailer is 
not left ( 0k

j
k
i uu ), cannot begin service at location j  earlier than it leaves location i  plus the travelling 

time 2k
ijt  between these locations. In case 02k

ijx  or 1k
iu  or 1k

ju  (the truck is not travelling from i  to j  or 
the trailer is left at store i  or at store j ) this constraint transforms into an inequality which is always true. 

Constraint (13) requires that any vehicle travelling from the depot, a trailer-store or a transshipment location 
i , where it does not leave a trailer ( 0k

iu ) to a trailer-store or a transshipment location j  where it leaves the 
trailer ( 1k

ju ) cannot arrive to location j  earlier than it leaves location i  plus the travelling time 1k
ijt  between 

these locations. In case 01k
ijx  or 1k

iu  or 0k
ju  (the vehicle is not travelling from i  to j  or the trailer is 

left at location i  or is not left at location j ) this constraint transforms into an inequality which is always true. 
This constraint on arrive time is necessary only for trailer-stores where the trailer is left for unloading and at the 
same time the truck makes a subtour. For such stores unloading from the trailer can begin much later than the 
arrive time in order to satisfy the soft time window, but the truck does not wait here and immediately travels to 
next store, for which the begin service time is controlled by constraint (15). 

Constraint (14) requires that any truck travelling from store i  to a trailer-store or a transshipment location 
j  where it has left the trailer ( 1k

ju ) cannot leave this location with the trailer earlier than it leaves location i  
plus the travelling time 2k

ijt  between these locations. In case 02k
ijx  or 1k

iu  or 0k
ju  (the vehicle is not 

travelling from i  to j  or the trailer is left at store i  or is not left at location j ) this constraint transforms into 
an inequality which is always true. 

Constraint (15) requires that any truck leaving a trailer at a trailer-store or a transshipment location i  
( 1k

iu ) and travelling to store j  cannot begin service at location j  earlier than it arrives to location i  plus 
the time k

ir  spent on load transfer and decoupling the trailer and the travelling time 2k
ijt  between these locations. 
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In case 02k
ijx  or 0k

iu  (the truck is not travelling from i  to j  or the trailer is not left at store i ) this 
constraint transforms into an inequality which is always true. 

Soft time window constraints (16) – (18) limit the number of soft time window violations. Constraints (16) 
require that variable k

iv  equals 1 if either vehicle k  does not visit store i  in its route, or it visits this store 
violating its soft time window, which means that it starts service before or later the time window. Constraint 
(17) requires that variable iv  equals 1 if all the deliveries (in case of split deliveries) to store i  violate its time 
window. In case of split deliveries only one delivery is required to satisfy the soft time window. Finally 
constraint (18) requires the total number of soft time window violations to be limited by parameter . 

Split deliveries number constraints (19) – (22) limit the number of stores for which the delivery is split 
between two vehicles excluding those which demand is greater than the capacity of the largest vehicle. For 
such stores split deliveries are unavoidable, but its number should be as less as possible. This is provided by 
constraint (19) which requires that the number of vehicles visiting such a store is equal to the minimal possible 
number of largest vehicles that is enough to serve its total demand. Constraint (20) requires that the number of 
deliveries for other stores cannot be greater than two. Constraint (21) sets the variable i  to be equal to the 
number of deliveries made to store i  in the solution. Constraint (22) limits the total number of stores with split 
deliveries excluding unavoidable splits by parameter . 

Split deliveries time constraints (23) – (25) guarantee that for every location at most one vehicle is present at 
this location at every time moment. Constraints (23) and (24) require that variable 21kkw  equals 1, if the split 
delivery by vehicle 2k  to store i  is ended before the split delivery by vehicle 1k  to this store is started, and 
equals 0, otherwise. Constraint (25) requires that in case 0

21kkw  the split delivery by vehicle 1k  is ended 
before the split delivery by vehicle 2k  is started. Thus any two split deliveries to any store cannot intersect. In 
case of a transshipment location this means that two trailers cannot stay at this location simultaneously. 

Truck subtour capacity constraints (26) and (27) guarantee that the total demand served in a truck subtour 
including all stores from the first one up to any chosen store i  increases and cannot be greater than the truck 
capacity. Refrigerator constraints (28) require that all the orders requiring a refrigerator can be served only by a 
vehicle equipped with a refrigerator. Note that a vehicle with a refrigerator can also serve common orders. 

Except refrigerator constraints this model can be easily extended with many other restrictions on the orders 
which can be served by vehicle k  for store i . The model also allows adding other constraints connected with 
site dependencies simply by setting k

iz  to zero for every vehicle k  which cannot deliver orders to store i . 
Note that the presented mathematical model does not allow vehicles to make multiple truck subtours starting 

in one trailer-store or transshipment location. This is because for the considered real-life problem the triangle 
inequality is true, and thus joining of two truck subtours starting in one location reduces the total travel cost. 
However, potentially there can be cases when the total demand of stores in such two truck subtours is greater 
than the truck capacity and the optimal solution contains such two subtours. Looking at the real-life data we 
can assume that such cases are very rare and thus our model is precise enough for the considered problem. 

3. Algorithm description 

In this section we provide a description of our algorithm.  We use multi-start greedy randomized insertion 
heuristic. The main algorithm is quite simple. We generate many solutions in a greedy way and choose the best 
one in term of the objective function i.e. the one with the lowest cost.  

 
Algorithm 1 Main procedure 

function Main(iterationsNumber) 
output: solution 

f* =  
for i=1 to iterationsNumber do 
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 S = BuildGreedySolution()  
  if f(S) < f* then 
        S* = S 
        f* = f(S) 
       endif 
endfor 

           return S* 
     end function 
  
Algorithm 2 Build a greedy solution 

function BuildGreedySolution() 
output: solution 

S = Ø  
U = V U  is the set of customers having unserved demand 
while U ≠ Ø do 
 customer = ChooseRandomly(U, μ)         choose random customer from the set of first μ most expensive unserved customers 

R = (customer) create a new route with one customer 
k = getProperVehicle(customer) 
success = true 
while success do  
     success = InsertBestCustomer(R) 
end while  
S=S R 

end while 
            return S 
     end function 
  

We build a new solution by constructing routes sequentially. Every route is also constructed by adding 
customers sequentially. The first customer in a route is chosen randomly from the top μ most expensive 
customers who still have unserved demand. The cost of customer j is measured as the direct travel cost 1

0
k

jc  
from the depot to it. The type of the first customer determines the type of the selected vehicle. We choose an 
available vehicle with the biggest capacity that can serve the selected customer. So if the customer has an 
unserved order requiring refrigerator, we choose the biggest available vehicle with a refrigerator.  

In the next steps function InsertBestCustomer inserts customer with the biggest value of 
totalCustomerGoodness to the route R, until it is possible. The total customer goodness is a value that reflects 
how it is good to add this customer to the current route. 

Building of a new route stops when the function InsertBestCustomer returns false. It happens when there is 
no customer that can be added to the current route or adding new customer becomes unprofitable i.e. any 
remaining customer is cheaper to be served directly by a separate vehicle than to be added to the current route 
R.  
 
Algorithm 3 Insert customer with the biggest value of totalGoodness 

function InsertBestCustomer(R, k) 
output: "true" if a new customer has been added to the route, "false" otherwise  

L ← the list of remaining customers that can be served by vehicle k chosen for the current route R  
maxTotalCustomerGoodness =  
foreach i L do 
     goodness = 

1
0
k
ic  
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     if not setDemandToDeliver(R, i, goodness) then  
         continue  
     endif 
     minInsertionBadness, position ← calculateMinInsertionBadness(R, i) 
     directCost = ||/1

0 Rfc k
k
i  direct cost estimation 

     if (directCost < minInsertionBadness) then 
        continue   this customer is cheaper to be served by a separate vehicle 
     endif 
     totalCustomerGoodness ← goodness – minInsertionBadness 
     if totalCustomerGoodness > maxTotalCustomerGoodness then  
         maxTotalCustomerGoodness ← totalCustomerGoodness 
         bestCustomer ← customer 
         bestPosition ← position 
     endif   
end foreach 
if (maxTotalCustomerGoodness = ) then 
     return false  
endif 
insert customer bestCustomer to position bestPosition in route R  

    end function 
 

As described above the function InsertBestCustomer chooses which customer is better to be added to route 
R. We have the list of customers L having unserved demand which can be visited by vehicle k that is chosen for 
the current route R. After that for every customer i from the list L we decide what part of its demand iq  should 
be delivered. That is what setDemandToDeliver function does. We use a greedy approach again. It is 
reasonable for a vehicle to serve the total demand when possible. In case when a vehicle can serve only a part 
of demand, we make a random choice to perform this delivery with probability  or not to perform it. Since 
we have a limit on the number of splits, the probability  depends on the remaining number of splits and on 
the expected number of splits. When the random choice is not to make split, the function setDemandToDeliver 
returns false. 

The value of totalCustomerGoodness is calculated for every customer who still has an unserved demand 
that can be completely or partly satisfied by the current vehicle. The totalCustomerGoodness is calculated as 
the difference between the constant value of goodness and the value of minInsertionBadness which is 
dynamically calculated for the current customer and route. The value of goodness for a customer is directly 
proportional to the travel cost from the depot. 

 
Algorithm 4 Decide what part of demand should be delivered 
function setDemandToDeliver(R, i,k ) 
     freeCapacity ←remaining capacity of vehicle k in route R 
     if demand that can be delivered by vehicle k to customer i > remaining demand of customer i then 
          deliverTotalDemand() 
     else 

          doSplit  ←  "true" with probability 
litsNumberexpectedSp

rplitsNumberemainingS  

          if (doSplit) then 
              deliver all possible demand    
          else 
              return false; 
          endif 
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     endif 
     return true 
end function 
  
Algorithm 5 Calculate the minimal value of badness for all possible insertion places in the route 
function calculateMinInsertionBadness(R, i) 
output: the minimal value of insertion badness, the best position of insertion 
     minInsertionBadness ←  
     bestPosition ← 0 
     route ),...,( 1 miiR  
     foreach },...,3,2{ mp  do 

         ),...,,,,...,(' 11 mpp iiiiiR  insert customer  i  to position  p  in route R 

          laterViolationsDelta ← 0 
          foreach },...,,{ mp iiij  do 

              if (delay( ', Rj  ) > 0) 
                  earlierViolationsDelta ← shiftEarlier( ', Rj  ) 
                  laterViolationsDelta ← laterViolationsDelta + delay( ', Rj  ); 
              endif 
          end foreach 
          penaltyDelta ← penalty * (earlierViolationsDelta + laterViolationsDelta) 
          insertionBadness ← costDelta(i, p, R') + penaltyDelta  
          if (insertionBadness < minInsertionBadness) then  
                minInsertionBadness ← insertionBadness 
                bestPosition ← p 
          endif  
     end foreach 
     return minInsertionBadness, bestPosition 
end function 

 
Algorithm 5 describes how minInsertionBadness is calculated. The purpose of minInsertionBadness is to 

show how expensive it is to add the customer to the current route. We allow a customer to be inserted to any 
position in the route. Therefore we choose the minimal value from all possible values of badness which 
correspond to different positions in the route and different possible cases of insertion. Note that Algorithm 5 
describes only the simplest case of insertion. 

In case of a delivery started after the soft time window we measure the delay )0,max(min j
k
jKk

ltb  – the 

difference between the delivery begin time and the latest preferred time (the end of the soft time window). 
Since for split deliveries only one vehicle should satisfy the soft time window we take the minimal delay for all 
vehicles Kk . For all possible positions in route R we try to insert customer i and minimize the sum of delays 
by shifting earlier begin delivery times for all customers. We make this shift so that the delays become 
minimal, but the shift is as small as possible in order not to increase time window violations too much because 
of too earlier begin delivery times. The violation of the begin time of the soft time window is measured as 

)0,max(min k
jjKk

ber . After that we calculate a value of insertionBadness as the sum of costDelta and 

penaltyDelta. 
The costDelta function calculates the difference between the cost of the route without customer i and the 

cost of the route with customer i which is inserted to position p. Variable penaltyDelta reflects the value of soft 
time window violations. We use the input parameter penalty to specify how crucial the violations of soft time 
windows are. When it is set to infinity no violations are possible, when to zero – soft time windows are not 
taken into account. The value of penalty is chosen empirically so that the number of violations in the obtained 
greedy solutions does not exceed the limit  too frequently. 
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Since we consider truck and trailer version of VRP it is not easy to calculate the value of costDelta. 
Insertion of a customer into the route with truck subtours can be done in several ways. Let us look at these 
cases. There are two different ways how a new store (u) can be inserted into a trailer route between two trailer-
stores. The first case is trivial (Fig. 1a-1), a truck with a trailer travels from store (i) to store (u) and after that 
goes to store (j). In this case costDelta is calculated as 111 k

ij
k
uj

k
iu ccccostDelta . 

In the second case(Fig. 1a-2) a truck leaves the trailer at store (i), goes to store (u), and returns to store (i) to 
take the trailer. After that a truck with a trailer travels to store (j). In this case 22 k

ui
k
iu cccostDelta . It is clear 

that the first case is better in terms of cost, but the second case can be better in terms of time. This is because 
unloading at customer (i) can take long time, and in the second case it is made in parallel with travelling to 
customer (u) and serving it. 

A truck-store can be inserted into a trailer route in two ways (Fig. 1b). In the first case a vehicle leaves a 
trailer for unloading at store (i), goes without it to serve truck-store (u), returns back to take the trailer at store 
(i), and after that travels with the trailer to trailer-store (j). In this case 22 k

ui
k
iu cccostDelta . In the second case 

a vehicle leaves a trailer at the available transhipment location (i') closest to store (u) and goes to serve truck-
store (u). After unloading at store (u) the truck returns to take the trailer at transhipment location (i') and goes 
with the trailer to trailer-store (j). So 11

'
2
'

2
'

1
'

k
ij

k
ji

k
ui

k
ui

k
ii ccccccostDelta . 

Figure 1d represents the case of a broken truck route. A broken truck route means that a new trailer-store 
(u) is inserted into a truck subtour between two stores (i) and (j). In the first case (Fig. 1d-1) a vehicle returns to 
customer (i') to take the trailer after store (i), then goes with the trailer to serve customer (u), leaves the trailer 
for unloading at store (u), goes to serve stores from (j) to (j') without the trailer and after store (j') comes back 
to store (u) to take the trailer.  In this case 1

'''
1
''

21
''

2
'

21
'

2
'

k
ji

k
ij

k
ij

k
uj

k
uj

k
uj

k
ui

k
ii cccccccccostDelta . In the second 

case (Fig. 1d-2) trailer-store (u) is inserted directly into a truck subtour and the vehicle serves it without the 
trailer. This case has 222 k

ij
k
uj

k
iu ccccostDelta . 

There are two cases of changing the place for leaving a trailer (Fig. 2). In the first case (Fig. 2a) a new 
trailer-store (u) is inserted after trailer-store (i) where the trailer has been left. So we can move the place of 
leaving a trailer from (i) to (u). In this case 1

'
22

'
1
'

22
'

1 k
ij

k
ji

k
ii

k
uj

k
ju

k
ui

k
iu ccccccccostDelta . In the second case 

(Fig. 2b) a trailer is left at a new store (u) instead of transhipment location (i). This case has 
1
'

22
'

1
''

1
'

22
'

1
''

k
ij

k
ji

k
ii

k
ii

k
uj

k
ju

k
ui

k
ui cccccccccostDelta . 
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Fig. 1 (a) Insertion of a trailer-
store 

(b) Insertion of a truck-store into 
a trailer route 

(c) Insertion of a truck-
store into a truck 
subtour 

(d) Insertion of a trailer-store into a 
truck subtour 

 trailer-store  truck-store  leave trailer with unloading at a trailer-store take trailer at a trailer-store 

 leave trailer at transhipment location take trailer at transhipment location 
 

  
Fig. 2           (a) (b) 
 
4. Computational experiments 
 
To perform an empirical analysis of our algorithm we have used two instances with different number of 
customers. The first instance is a small one and has 11 customers. The list of customers with their parameters is 
presented in Table 2. The matrices of travel times and costs for vehicles without refrigerators are presented in 
Table 3 and Table 4 correspondingly.  
The second instance is a real one with 292 customers. In this instance the total demand that can be served only 
by a vehicle with refrigerator is 490.5 pallets and the total demand that does not require refrigerator is 2293.5 
pallets. Both instances have two types of vehicles. One – with refrigerator and capacity of 19.5 pallets in a 
truck and 19 pallets in a trailer. Another – without refrigerator and with capacity of 19 pallets in a truck and 20 
pallets in a trailer. A fixed cost for a vehicle without refrigerator is 2000, and a fixed cost for a vehicle with 
refrigerator is 2600. Vehicles with refrigerator have travel costs 1.5 times greater than vehicles without 
refrigerator. In both examples we allow 20% of delays and 15% of splits. The list of the performed 
computational experiments is presented in Table 1. 
In the second row characteristics of the exact solution of the small instance are presented. A simple greedy 
insertion approach fails to find this exact solution as shown in the third row. Our approach finds the exact 
solution in less than 100 iterations (see row 4). Rows 5-9 show the results obtained for the real-life instance. 
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The suggested approach finds a solution with 20% lower cost than the simple greedy one. It spends about one 
hour to make 100k iterations to get such a solution. It is not reasonable to make more than 100k iterations 
because the solution improves insignificantly for 1000k iterations. 
 
Table 1. Computational experiments. 

Instance Total cost, rub Distance, km km/pallets Number of 
vehicles 

without ref. 

Number of  
vehicles 
with ref. 

Percent 
of time 
window 

violations 

Percent 
of splits 

Small test - exact 
solution 

70035 3720 35.7692 2 4 18 0 

Small test - simple 
greedy 

102464 4342 51.75 4 5 18 0 

Small test - our algorithm 
- 100 iterations 

70035 3720 35.7692 2 4 18 0 

Real test - simple greedy 1217452 64907 24.7223 61 51 20 11 
Real test - our algorithm 
- 1000 iterations  

984599 52780 18.9583 50 39 17 11 

Real test - our algorithm 
- 10k iterations 

974712 52325 18.7949 49 39 18 8 

Real test - our algorithm 
- 100k iterations 

966671 51718 18.5769 49 39 18 9 

Real test - our algorithm 
- 1000k iterations 

963242 51324 18.3224 48 39 19 12 

 
Table 2. Customers. 

Customer Ref. demand No ref. 
demand 

Soft time 
widow begin 

Soft time 
window end 

Open time 
(hard time 
window) 

Close time 
(hard time 
window) 

Is truck-store 

1 0 10.5 15:00 16:00 10:00 21:00 Y 
2 0 10 11:30 12:30 10:00 22:30 Y 
3 1 4.5 15:00 16:00 10:00 21:30 Y 
4 0 9.5 10:00 11:00 9:30 21:00 N 
5 2 7 10:00 11:00 10:00 22:00 N 
6 1.5 7 10:00 11:00 10:00 21:30 N 
7 0 9 16:00 17:00 10:00 21:00 N 
8 6.5 9.5 11:00 12:00 10:00 22:00 Y 
9 2 7 12:30 13:30 10:00 22:00 Y 

10 0 7.5 17:30 18:30 10:00 22:00 Y 
11 2.5 7 18:00 19:00 9:30 20:00 N 

 
Table 3. Travel times. 

# 0 1 2 3 4 5 6 7 8 9 10 11 

0 0 48 310 588 357 314 311 136 183 453 448 606 

1 48 0 290 568 374 294 291 153 199 470 464 586 

2 310 290 0 290 509 5 2 402 449 482 680 509 

3 588 568 290 0 787 294 291 680 727 351 548 272 

4 357 374 509 787 0 513 510 230 261 590 585 794 

5 314 294 5 294 513 0 4 406 453 486 684 513 
6 311 291 2 291 510 4 0 403 450 483 680 509 

7 136 153 402 680 230 406 403 0 155 463 458 666 
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8 183 199 449 727 261 453 450 155 0 416 410 619 

9 453 470 482 351 590 486 483 463 416 0 204 210 
10 448 464 680 548 585 684 680 458 410 204 0 375 

11 606 586 509 272 794 513 509 666 619 210 375 0 

 
Table 4. Travel costs. 
# 0 1 2 3 4 5 6 7 8 9 10 11 

0 0,00 188,90 3023,37 6218,58 3693,33 3038,81 3026,15 1225,67 1521,02 4604,38 4716,52 6389,66 

1 188,90 0,00 2805,19 6000,40 3844,78 2820,62 2807,96 1377,13 1672,48 4755,84 4867,97 6171,48 

2 3023,37 2805,19 0,00 3260,43 5540,30 20,46 7,80 4030,56 4325,91 5086,74 7100,10 5511,83 

3 6218,58 6000,40 3260,43 0,00 8735,51 3275,86 3263,20 7225,77 7521,12 3568,39 5581,75 2593,15 

4 3693,33 3844,78 5540,30 8735,51 0,00 5555,73 5543,07 2505,31 2533,46 6336,44 6448,57 8582,89 

5 3038,81 2820,62 20,46 3275,86 5555,73 0,00 15,77 4045,99 4341,34 5102,17 7115,53 5527,27 

6 3026,15 2807,96 7,80 3263,20 5543,07 15,77 0,00 4033,33 4328,68 5089,51 7102,87 5514,61 

7 1225,67 1377,13 4030,56 7225,77 2505,31 4045,99 4033,33 0,00 1262,44 4789,63 4901,76 7036,08 

8 1521,02 1672,48 4325,91 7521,12 2533,46 4341,34 4328,68 1262,44 0,00 3946,21 4058,34 6192,66 

9 4604,38 4755,84 5086,74 3568,39 6336,44 5102,17 5089,51 4789,63 3946,21 0,00 2038,39 2271,47 

10 4716,52 4867,97 7100,10 5581,75 6448,57 7115,53 7102,87 4901,76 4058,34 2038,39 0,00 3944,61 

11 6389,66 6171,48 5511,83 2593,15 8582,89 5527,27 5514,61 7036,08 6192,66 2271,47 3944,61 0,00 
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