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ABSTRACT 

This after-dinner talk is mainly a brief discussion of interactions between linear 

algebra and some other mathematical branches. 

This is not a history of the development of linear algebra. What I intend to 
do is to present my personal view of some aspects of its development during 
the last sixty years. 

Sixty years ago, four-dimensional space was a subject of science fiction. It 
was also a fascinating topic in many popular writings on relativity theory. In 
widely used textbooks (e.g., [14, 24]), the name “linear algebra” had not yet 
made its debut. Linear transformations were treated as changes of variables 
without mentioning the structure of a vector space. In fact, the word “vector” 
cannot be found in the subject index of [14] or [24]. The first modern texts on 
linear algebra, such as Schreier and Sperner [59, 601 and van der Waerden 
[64], were published about sixty year ago, but in the beginning were not 
widely distributed outside Germany. Although Peano’s axioms for vector 
spaces were given in his 1888 book [51], one had to wait until 1923-32 for 
these axioms to appear in books such as Weyl [65, 661, van der Waerden [64], 
Banach [12], and von Neumann [48]. 

As late as 1931, Weyl wrote in the introduction of his book [66]: “It is 
somewhat distressing that the theory of linear algebras must again and again 
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be developed from the beginning, for the fundamental concepts of this branch 
of mathematics crop up everywhere in mathematics and physics, and a 
knowledge of them should be as widely disseminated as the elements of 
differential calculus.” 

Today, linear algebra crops up in various branches of mathematics, physics, 
engineering, statistics, operations research, economics, etc. Problems in these 
fields often lead to new problems and significant results in linear algebra The 
modern development of linear algebra has not only greatly benefited by its 
manifold interactions with other mathematical and nonmathematical fields, 
but it has also deeply influenced the development of these fields. It is perhaps 
not out of place to quote from a second-hand source [23, p. 4261 a statement 
by Stanislaw Jerzy Let: “Ideas hop like fleas from one human being onto the 
other. But they do not bite all of them.” In the following lines, I shall discuss 
this hopping of ideas in the form of interactions between linear algebra and 
some other mathematical branches. 

COMBINATORIAL MATHEMATICS AND MATRIX THEORY 

The area of intersection of linear algebra and combinatorial mathematics 
has now become a well developed discipline known as combinatorial matrix 
theory [18]. One direction of this theory is the study of block designs, (0, 1) 

matrices, latin squares, Hadamard matrices, etc. [33, 571. Another direction is 
the interplay between linear algebra and graph theory, in particular the study 
of graph spectra [ZO-221 and the graph-theoretical methods for studying 
inclusion regions and estimates for the eigenvalues of matrices [17]. 

Closely related to graph theory is the theory of matroids [l, 191, which W% 

originally introduced in the 1930s by G. Birkhoff, Mac Lane, and Whitney to 
generalize basic concepts such as linear dependence, span, and basis in linear 
algebra. Now a large part of combinatorial mathematics (e.g., graph theory, 
combinatorial lattice theory, transversal theory) can be unified into the realm 
of the theory of matroids, which has its roots in linear algebra 

FROM LINEAR ALGEBRA TO CONVEX AND NONLINEAR ANALYSIS 

The far-reaching influence of linear algebra on linear functional analysis is 
well known. In nonlinear analysis, Lusternik and Schnirelmann’s theory of 
category and critical points [42, 411 was inspired by Fischer’s minimax charac- 
terization of the eigenvalues of Hermitian matrices (after Courant’s generaliza- 
tion to linear analysis). A main result in game theory and mathematical 
economics is von Neumann’s minimax theorem, which is a theorem in linear 
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algebra concerning bilinear forms. It was von Neumann’s ingenious proof of 
this theorem [47, 501 that started the fixed-point theorems for set-valued 
mappings. These fixed-point theorems and general minimax theorems 
(no longer restricted to bilinear forms) have now become part of nonlinear 
analysis. They have wide applications in various branches of mathematical 
analysis (e.g., potential theory, partial differential equations, monotone opera- 
tors, variational inequalities, optimization problems), game theory, and mathe- 
matical economics [7-91, [23, 26, 35, 691. The theory of games has stimulated 
interest in systems of linear inequalities [4O] and linear programming, which 
should be regarded as a chapter of linear algebra. Nonlinear programming 
[lo, 441 and convex analysis [55, 27, 131 are only natural extensions in this 
development. On the other hand, work on matrix computation for problems in 
linear and nonlinear programming has led to the research on computational 
methods for approximation of fixed points and economic equilibria [58, 291. 

LINEAR ALGEBRA AND GROUP REPRESENTATIONS 

In noncommutative harmonic analysis, two main problems are the determi- 
nation, up to equivalence, of all irreducible linear representations of a locally 
compact group, and the decomposition of a given representation into irre- 
ducible ones [34, 461. The theory of finite-dimensional representations and the 
geometry of classical groups [67, 251 may be considered as a branch of linear 
algebra, which is substantially enriched by the additional ingredients from 
group theory. This is particularly true for compact groups, for every irre- 
ducible representation of any compact group is finite-dimensional. Since all 
continuous complex-valued functions on any compact group are almost peri- 
odic, an essentially algebraic treatment (involving very little topological con- 
sideration) of representations of compact groups is possible, as von 
Neumann’s theory of almost periodic functions [49, 431 has made clear. 

For many important groups, finite-dimensional irreducible unitary repre- 
sentations have been ingeniously constructed. The detailed calculations of 
matrix elements of -these representations have also made it possible to use 
representation theory to unify the theory of important classes of special 
functions such as the polynomials of Legendre, Jacobi, Laguerre, Hermite, and 
Tchebycheff, Bessel functions, gamma functions, and hypergeometric func- 
tions. Thus, the modern theory of special functions [63] is closely related to 
linear algebra. 

It should also be mentioned that a substantial part of Lie algebras can be 
treated purely algebraically as a branch of linear algebra [37]. 
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INTERACTIONS WITH MATHEMATICAL PHYSICS 

It is well known that the theory of group representations plays an impor- 
tant role in many parts of mathematics as well as in quantum mechanics and in 
elementary particle physics. The special functions mentioned above are also 
basic tools of mathematical physics. 

Many inequalities for eigenvalues or singular values of compact operators 
in Hilbert spaces are natural extensions of finite-dimensional results in linear 
algebra. These inequalities have also become useful tools in mathematical 
physics [2, 30, 52, 611. 

Another important area of linear algebra, the geometry of indefinite inner 
product spaces and the spectral theory of operators on these spaces, has its 
origin in Dirac’s work on quantum theory. The mathematical foundation was 
laid by Pontrjagin, M. G. Krein and his school. Now there is a comprehensive 
theory of indefinite inner product spaces [3, 11, 16, 32, 36, 681. Many 
important applications have been made in differential equations, spectral 
theory of polynomial operator pencils, mechanics, scattering theory, quantum 
field theory, systems theory, etc. 

Investigations of vibrations of mechanical systems in the nineteenth cen- 
tury have directly led to certain area of classical mathematical analysis (e.g., 
the works of Sturm, Liouville, Routh, Hurwitz, Liapunov). Motivated by 
problems on small vibrations, F. R. Gantmacher and M. G. Krein [28] 
developed the theory of totally positive matrices, or more generally oscillatory 
matrices, beginning in 1935. This beautiful matrix analysis has applications not 
only in mechanics and differential equations, but also in interpolation by spline 
functions, stochastic processes, and statistical decision theory [38]. 

RELATIONSHIP WITH COMPLEX ANALYSIS 

The intersection of linear algebra (or more generally, operator theory) and 
complex analysis is an extremely fertile ground for interactions, and continues 
to expand with rapid advances. Interplay with complex analysis brings power- 
ful techniques to operator theory and increases its depth. The earliest appear- 
ance of complex analysis in operator theory is in functional calculus. Now the 
theory of operator-valued analytic functions of a complex variable is also well 
developed [6, 39, 53, 54, 56, 621. Many classical results on bounded analytic 
functions on the open unit disc or half plane have inspired generalizations or 
analogous results for operator-valued analytic functions (in particular, results 
on interpolation, factorization, integral representation, etc.). Thus the familiar 
names in classical complex analysis-Schwarz, Pick, Fatou, Caratheodory, 
Hardy, Blaschke, and Nevanlinna-appear also in the contemporary literature 
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of operator theory. For some classical results in complex analysis, one might 
even think that their appropriate setting is the C” algebra of bounded linear 
operators on a complex Hilbert space (or the algebra of all n x n complex 
matrices) rather than the complex plane. Sometimes it is not clear whether a 
theorem belongs to operator theory or to complex analysis (perhaps to non- 
commutative complex analysis). Even in the central core of operator theory, 
such as the spectral analysis of operator-valued analytic functions or operator 
polynomials [45], the methods depend heavily on results from complex analy- 
sis. This “symbiotic relationship” (a phrase borrowed from Dick Brualdi’s 
opening talk at this Conference) of operator theory and complex analysis is not 
only mutually beneficial, it has also numerous applications in differential 
equations, engineering, prediction theory, and stochastic processes. 

The above is but a glimpse, through my eyes, into the manifold interactions 
between linear algebra and other mathematical branches. It is only due to the 
limitation of my knowledge that many important areas (e.g., the relationship 
between linear algebra and various algebraic fields) have to be left untouched. 

The author wishes to thank the organizers of the Conference for their 

invitation to present this after-dinner talk, and to Frank Uhlig for his generous 

help in preparing the manuscript for publication. 
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APPENDIX. WORDS OF THANKS BY FRANK UHLIG 

Dear friends and matricians: It is time to acknowledge Ky Fan’s life 
contribution to us with a special and symbolic gift. 

As we learnt today, “God gave us matrices.“’ However, we must equally 
acknowledge the spiritual fact that matrices, or our mind, our thoughts, our 
emotions, and our work, give us God. 

Much of Ky Fan’s life here was spent giving us of his mind, his thoughts, 
and his problems in mathematics. We have shared in them and have been 
enriched by them for many decades. 

May I then offer Ky Fan my laurel, a wreath of cotton from the rich 
Alabama soil, which like the laurel of antiquity is a trophy for poets of the soul. 

The rest of this package contains a symbolic gift. Please, Ky, share with us 
the contents of this bowl, and do symbolically again what you have done for us 
mathematicians over the years: share the mints. 

’ Referriqg to Nick Trefethen’s talk. 


