
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 9, 355-365 (1974)

Testing Flow Graph Reducibility

R. ENDRE TARJAN*

Computer Science Division, University of California, Berkeley, California 94720

Received July 3, 1974

Many problems in program optimization have been solved by applying a technique
called interval analysis to the flow graph of the program. A flow graph which is
susceptible to this type of analysis is called reducible. This paper describes an algorithm
for testing whether a flow graph is reducible. The algorithm uses depth-first search
to reveal the structure of the flow graph and a good method for computing disjoint
set unions to determine reducibility from the search information. When the algorithm
is implemented on a random access computer, it requires O(E log* E) time to analyze
a graph with E edges, where log* x = min{i I log "~x ~ 1}. The time bound compares
favorably with the O(E log E) bound of a previously known algorithm.

INTRODUCTION

Many code optimization methods model the flow of control in a computer program
by a directed graph, called a flow graph. In order for some of these methods to work,
the flow graph must have a special property called reducibility. Such methods include
algorithms for finding dominators [1], finding common subexpressions [2, 3], finding
active variables [4, 5], determining constant propagation [6], finding useless defini-
tions [6], and solving other problems [7, 8]. Some interesting classes of computer
programs, such as "go-to-less-programs," give rise to flow graphs which are neces-
sarily reducible [9], and all programs may be modeled by a reducible flow graph using
a process of "node splitting" [10]. However, this can be computationally expensive.
We would like a fast algorithm for determining whether these optimization methods
can be applied to any given program; that is, an algorithm for determining whether
a flow graph is reducible.

A "reducible" flow graph is a flow graph to which a technique called "interval
analysis" may be applied to determine the graph's structure. Cocke [2] and Allen [7]
were the original formulators of this notion. Hecht and Ullman [9] simplified the
definition of reducibility, giving two simple transformations which characterize the

* This research was partially supported by the National Science Foundation, Contract
No. NSF-GJ-35604X, and by a Miller Research Fellowship.

355
Copyright �9 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.

356 R. ENDRE TARJAN

class of reducible graphs. They also gave several structural characterizations of redu-
cibility [1 I]. Hopcraft and Ullman have constructed an O(E log E) algorithm which
tests a graph for reducibility according to Hecht and Ullman's definition [12], if the
problem graph has E edges.

This paper gives an algorithm which is asymptotically faster than Hopcroft and
Ullman's. The algorithm tests one of Hecht and Ullman's structural characterizations.
It happens that the algorithm simultaneously tests the definition, which is more
useful for applications. The method uses depth-first search [13, 14] to reveal the
structure of the flow graph and a good set union algorithm [15, 16, 17] to test reduci-
bility using the search information. The exact running time of the algorithm depends
upon the exact running time of the set union algorithm, which is unknown. However,
a good bound on this running time is known, and the reducibility algorithm requires
O(min{E log* E, V log V + E}) time to test a graph with V vertices and E edges,
where log* x = min{i I log ~i~ x ~< 1}. If E > V log V, the algorithm requires O(E)
time and is optimal to within a constant factor, since every edge must be examined to
determine reducibility.

Basic Notions

To study a graph algorithm we need a model of computation and some terminology
from graph theory. We will assume a random-access computer model with memory
cells able to hold integers of size V if the problem graph has V vertices. All simple
operations (arithmetic operations, comparisons, logical operations) require fixed times.
We shall study worst-case resource requirements and shall ignore constant factors.

A directed graph G = (~F', ~) is an ordered pair consisting of a set of "vertices"
~r whose number is generally denoted by V and a set of "edges" ~ whose number is
generally denoted by E. Each edge is an ordered pair (v, w) of distinct vertices; we say
the edge (v, w) "leaves" v and "enters" w. If G1 = (~ , all) is a graph and ~ C fP,
~t _C if, then G 1 is a "subgraph" of G. If ~ = f/~ and G2 = (~/P~, ff n 7P~ • ~r
Gz is the "subgraph of G induced by the vertices ~ ."

A sequence of edges (vl, v2) , (v2, %),..., (vn-x, vn) in G is a "path" from v 1 to vn.
This path "contains" vertices v 1 ,..., v, and "avoids" all other vertices. There is a path
of no edges from every vertex to itself. Vertex w is "reachable" from vertex v if there
is a path from v to w. A graph is "strongly connected" if every vertex is reachable from
every other. A "flow graph" (G, s) is a graph with a distinguished vertex s such that
every vertex is reachable from s. Vertex v "dominates" vertex w in flow graph (G, s)
if v @ w and every path from s to w contains v.

A "(directed, rooted) tree" (T, r) is a flow graph such that r has no entering edges
and every other vertex has exactly one entering edge. Vertex r is called a "root" of T.
We write v -+ w if there is an edge (v, w) in T; in this case v is the "father" ofw and w
is a "son" of v. We write v *-+ w if there is a path from v to w in T; v is an "ancestor"
of w and w is a "descendant" of v. (Every vertex is an ancestor and a descendant of

FLOW GRAPH REDUCIBILITY 357

itself.) If T 1 is a tree and T 1 is a subgraph of T, 7"1 is called a "subtree" of T. If T
is a subgraph of a directed graph E and T contains all the vertices of G then T is a
"spanning tree" of G.

If T is a tree rooted at r, a preorder numbering [18] of the vertices of T is any
numbering which can be generated by the following algorithm.

begin

procedure PREORDER(v); begin

number v greater than any previously numbered vertex;
comment if v = r it may be numbered arbitrarily;
for w such that v -+ w do PREORDER(w);

end;

PREORDER(r);

end;

LEMMA 1. Let ND(v) be the number of descendants of each vertex v in a tree T.
I f T has V vertices and they are numbered from 1 to V in preorder, then v -~ w iff
v <~ w < v + ND(V).

Proof. See [14].
Let (G, s) be a flow graph, and let T be a spanning tree of G rooted at s which has

a preorder numbering. T is a "depth-first spanning tree" (DFST) if the edges in G,
but not in T, can be partitioned into three sets:

(1) A set of edges (v, w) with w *-* v in T, called cycle arcs;

(2) A set of edges (v, w) with v -*-* w in T, called forward arcs;

(3) A set of edges (v, w) with neither v *-* w nor w -~ v, and w < v, called
cross arcs.

A DFST is so named because it can be generated by starting at s and carrying out
a depth-first search of G, numbering the vertices in increasing order as they are
reached during the search. A properly implemented algorithm using depth-first search
requires O(V + E) time to generate a DFST, number the vertices in preorder,
calculate ND(v) for each vertex, and find the sets of cycle arcs, forward arcs, and cross
arcs [13, 14]. Figures 1 and 2 show the application of depth-first search to a flow graph.

Flow Graphs and Reducibility

Let v and w ~ s be two vertices in a flow graph (G, s). By "collapsing w into v,"
we mean forming a new graph G' from G by deleting vertex w and its incident edges,
adding an edge (v, x) for each deleted edge (w, x) with x ~ v and (v, x) not already an

57t/913-9

358 R. ENDRE TARJAN

1
FIc. 1. A flow graph. Is this graph reducible ?

edge, and adding an edge (x, v) for each deleted edge (x, w) with x @ v and (x, v)
not already an edge. G' is obviously a flow graph.

If G' is formed from G by several collapsing operations, each vertex v' in G' corre-
sponds to a set of vertices in G; namely, those collapsed into v'. If (v, w) is an edge
of G such that v is collapsed into v' in G' and w is collapsed into w', then either v' ~ w'
or (v', w') is an edge of G'. In this case (v', w') in G' corresponds to (v, w) in G.

Consider the following transformation.

T2: If (v, w) is the only edge entering w and w J- s, collapse w into v.

A flow graph is "reducible" if and only if it can be transformed into the graph
consisting only of vertex s by repeated application of T 2 . This definition differs from
Hecht and Ullman's definition in that they allow loops (edges of the form (v, v)) in
their flow graphs and allow another transformation which deletes loops. It is easy to see
that a flow graph with loops is reducible in Hecht and Ullman's sense if and only if
after removing loops it is reducible in our sense.

If G' is obtained from G by repeated application of T 2 , G' is a "reduction" of G.
A unique graph results if T~ is applied until it is no longer applicable [9]; thus, the
order of transformations doesn't matter in a test for reducibility. To test the reducibility
of (G, s), suppose we count the number of edges entering each vertex. Then we find
a vertex with only one entering edge and apply 7'2, collapsing the graph and updating
the number of edges entering each other vertex. We repeat until we reduce the graph
entirely or we get stuck. Each application of T~ requires O(V) time and reduces the
number of vertices by one, so this obvious algorithm has an O(V 2) time bound.

Hopcroft and Ullman have improved this algorithm to O(E log E) by applying a
clever method of updating information after T 2 is applied [12]. Hopcroft and Ullman's

FLOW GRAPH REDUCIBILITY 359

algorithm is only an improvement if E is small relative to V, but this is generally true
in any flow graph representing a computer program.

Hecht and Ullman have given several structural characterizations of reducible flow
graphs [11]. One of these gives a faster reducibility algorithm. Later we shall see that
the algorithm can be used to calculate a sequence of Tz applications which will reduce
a reducible flow graph.

Let T be a D F S T of a flow graph (G, s).

THEOREM 2 (Hecht and Ullman). G is reducible iff w dominates v for each cycle
arc (v, w) (relative to T).

Proof. See [11].
For each vertex w in G, let C(w) = {v] (v, w) is a cycle arc} and let P(w) =

{v] 3z ~ C(w) such that there is a path from v to z which avoids w}. I f there are no
cycle arcs (v, w), both C(w) and P(w) are empty.

LEMMA 3. G is reducible iff for all w and for all v ~ P(w), w *-+ v in T.

Proof. For any v and w, if v is not a descendant of w then there is a path in T from s
to v which doesn't contain w. I f there is a w and a v ~ P(w) such that v is not a des-
cendant of w, this means that there is a path which avoids w from s to some vertex in
C(w), and G is not reducible by Theorem 2. Conversely, if G is not reducible, by
Theorem 2 there is a cycle arc (v, w) and a path which avoids w from s to v. Then
s ~ P(w) but s is not a descendant ofw. Q.E.D.

Let w be the highest numbered vertex in G with an entering cycle arc. Suppose
that for all v ~ P(w), w *-~ v in T. Let G' be formed from G by collapsing all vertices
of P(w) into w.

LEMMA 4. Every arc (v', w') in G' corresponds to an arc (v, w') of G with v' *~. v in T.

Proof. Let (v, w') be an arc of G. I f w' ~ P(w), then v ~ P(w) ~9 {w}. I f v ~ P(w),
then w ~ v. Thus , either (% w') corresponds to no arc of G', or (v, w') corresponds to
an arc (v', w') of G' with v' = v or v ' = w *-+ v. Q.E.D.

Let T ' be the subgraph of G' whose edges correspond to the edges of T.

LEMMA 5. T', with numbering the same as that of T, is a D F S T of G'. Cycle arcs
of G' correspond to cycle arcs of G, forward arcs of G' correspond to forward arcs or cross
arcs of G, and cross arcs of G' correspond to cross arcs of G.

Proof. The subgraph of T induced by P(w)~A (w} is a tree. Each vertex of G',
except s, obviously has exactly one edge of T ' entering it, so T ' is a tree. Furthermore,
the numbering of T is obviously a preorder numbering of T' . L e m m a 4 implies that

360 R. ENDRE TARJAN

a cycle arc of G corresponds either to nothing or to a cycle arc of G', a forward arc of G
corresponds either to nothing or to a forward arc of G', and a cross arc of G corresponds
either to nothing or to a cross arc or a forward arc of G'. I t follows that T ' is a D F S T
and the rest of Lemma 5 is true. Q.E.D.

LEMMA 6. For any vertex x < w, let P'(x) and C'(x) be defined in G' relative to T'
as P(x) and C(x) were defined in G relative to T. Then x ~ y in T' for all y ~ P'(x) iff
x *-*y in T for ally ~P(x).

Proof. Suppose there is a y in P'(x) such tha ty is not a descendant o fx in T'. Then
y is not a descendant of x in T. Furthermore, there is an x-avoiding path p ' in G'
f r o m y to some z ' such that (z', x) is a cycle arc of G'. By Lemma 5, (z', x) corresponds
to some cycle arc (z, x) in G. The subgraph of G induced by the vertices P(w) u {w}
is strongly connected. Thus, there is an x-avoiding path p from y to z in G consisting
of arcs corresponding to arcs of p ' and possibly some arcs between vertices in
P(w) w {w}. Thus y ~ P(x).

Conversely, suppose there is a y in P(x) such that y is not a descendant of x in T.
I f y (~ P(w), then y ~ P'(x) and y is not a descendant of x in T'. I f y ~ P(w), then w
is not a descendant of x in T', and w ~ P'(x). Q.E.D.

Lemmas 3-6 lead to an efficient algorithm for testing the reducibility of a flow
graph (G, s). Let T be a D F S T of (G, s) and let w 1 > w 2 > -" > w n be the vertices
of G with entering cycle arcs. We calculate P(wx). I f there is some nondescendant
of w 1 in P(wl) we stop; otherwise we collapse the vertices of P(wl) into wl to form a
graph G' and calculate P'(w2) in G'. I f P'(w~) contains a nondescendant of P'(w~) we
stop; otherwise we form G" by collapsing P'(w2) into w 2 and calculate P"(w~) in G".
We continue in this way until we know that G is not reducible or we run out of cycle
arcs, in which case G is reducible.

The only tricky part of this algorithm is forming G', G", and so on by collapsing
vertices. We use a disjoint set union algorithm described in [15, 16, 17]. A set with
name v will contain v and all vertices collapsed into v in the current graph. Initially
there will be V sets, each with the name of the single vertex it contains. The function
FIND(x) will return the name of the set containing x (that is, the vertex which corre-
sponds to x in the current graph). The procedure U N I O N (A , B, C) will compute
the union of sets .4 and B (destroying .4 and B), and give the new set the name C.

The reducibility algorithm appears below in algolic notation. It is important to
remember that by Lemma 4 the first vertex of any edge never changes during the
collapsing operations. In addition to testing reducibility, the algorithm calculates, for
each vertex x, the first of w 1 , w2 ,..., wn into which x is collapsed. This value is called
HIGHPT(x) and is defined to be zero if x is never collapsed. HIGHPT(x) will be used
to construct a sequence of transformations T 2 to reduce a reducible graph.

FLOW GRAPH REDUCIBILITY 361

procedure REDUCE(G, s); begin

a: construct DFST of G using depth-first search, numbering vertices from 1
to V in preorder and calculating ND(v) for each vertex v;

b: for v = 1 until V do begin

make lists of all cycle arcs, forward arcs, and cross arcs entering vertex v;
construct a set named v containing v as its only element; HIGHPT(v) : = 0;
end;

c: for w = V step - - 1 until 1 do begin

comment P will contain vertices in P(w) as defined in the current graph.
Q will contain vertices in P whose entering edges haven't been examined;

P:----- :3;

d: for each cycle arc (v, w) entering w do add FIND(v) to P;

Q : = P ;

comment now we construct P(w) by exploring backward from vertices in Q;
while Q ~ :~ do begin

select a vertex x E Q and delete it from Q;

e: for each forward arc, tree arc, or cross arc (y, x) entering x

do begin

comment all cycle arcs entering x have already been collapsed;

y' : = FIND(y);

i f w > y ' or w 6- ND(w) <~ y ' then go to N;

i f y ' q~ P and y ' ~ w then add y' to P and to Q;

if HIGHPT(y') ~- 0 then HIGHPT(y') :-~ w;

end;

end;

comment now P = P(w) in the current graph;

for x ~ P do UNION(x, w, w);

comment this collapsing may produce duplicate edges which are not deleted,
but this does not affect the algorithm;

end;

Y: comment if program arrives here G is reducible, take appropriate action;
go to DONE;

N: comment if program arrives here G is not reducible, take appropriate action;

DONE: end;

362 R. ENDRE TARJAN

I t is easy to prove by induction on the number of vertices with entering cycle arcs
that this procedure correctly tests the reducibility of G. This follows from Lemmas 3-6.
Steps a and b require O(V + E) time. Each cycle arc of G is examined exactly once
in Step d. Once a vertex becomes an element of P it is collapsed into some other vertex
and its entering vertices are never reexamined. Thus, each forward arc, tree arc, or
cross arc is examined exactly once in Step e. Each vertex becomes an element of P
at most once during all executions of loop c. It follows that loop c requires O(V -[- E)
time plus time for O(V) UNION's and O(E) FIND's . The total time of the algorithm
is dominated by the time for the set operations, which is O(m~n{ V log V + E, E log*E})
by the results in [14, 16, 17]. The algorithm obviously requires O(V + E) storage
space.

Reducing a Reducible Graph

The algorithm above is nonconstructive, but we can use HIGHPT(v) to construct
a sequence of transformations T 2 which will reduce a reducible graph G. We can assign
numbers, called SNUMBER's to the vertices of G so that tree arcs (v, w), satisfy
SNUMBER(v) < SNUMBER(w) and cross arcs (v, w) also satisfy SNUMBER(v) <
SNUMBER(w). This can be done during the depth-first search of G[12], and cor-
responds to traversing the spanning tree of G using depth-first search and proceeding
to highest numbered vertices first. Suppose we apply the reducibility algorithm and
with each vertex v we associate the pair (HIGHPT(v) , SNUMBER(v)). When the
algorithm is finished, we order the vertices so that a vertex labeled (xl, YI) appears
before a vertex labeled (x2, y,) if and only if x 1 > x2 or Xx = x2 and Yl < Y2 �9 This
order of vertices is called reduction order. We can carry out this sorting in O(V) time
using a two-pass radix sort [19].

LZMMA 7. I f G is reducible, then we may collapse the vertices of G in reduction order
using T 2 .

Proof. We prove Lemma 7 by induction on the number of vertices collapsed.
Suppose all the vertices up to v in reduction order may be collapsed. This creates
a graph G' which is a reduction of G. Consider vertex v. I f v is not the start vertex,
a single tree arc enters v in G. I f G contains a cycle arc (u, w) with v *-~ w, all vertices x
on the tree path from u to w will have been collapsed before v, since HIGHPT(x) ~ w,
and HIGHPT(v) < v ~ w. If G contains a forward arc (u, w) with v *-~ w, then
HIGHPT(w) ~ u by Lemmas 3 and 6. Furthermore HIGHPT(x) ~ HIGHPT(w)
and SNUMBER(x) ~ SNUMBER(w) for all vertices x on the tree path from u to w.
I t follows that all vertices on the tree path from u to w have been collapsed before w.
Suppose G contains a cross arc (u, w) with v *-~ w. Let x be the highest numbered
common ancestor of u and w. Then HIGHPT(w) ~ x by Lemmas 3 and 6, and all
vertices y on the tree paths from x to w and from x to u satisfy H I G H P T (y)
HIGHPT(w) and SNUMBER(y) ~ SNUMBER(w). Thus all vertices on these tree

FLOW GRAPH REDUCIBILITY 363

/
/

/ "" . ~1~

/ /~ ~\CR I T / rX
/ / / " \X . t J . y / ~ ,
, I ~ ~ s t ~ 9
J' t ~ t T cy~: \~r , r

FIG. 2. Depth- f i r s t search of the g raph in Fig. I. Vert ices are n u m b e r e d in search order.
T ree arcs are labelled T, cycle arcs CY, forward arcs F , and cross arcs CR.

paths have been collapsed before w. It follows that in G' vertex v can have only one
edge entering it, and we may collapse v. The lemma holds in general by induction.

Q.E.D.

Figure 3 gives H I G H P T values, SNUMBER's, and a reduction order for the graph
in Fig. 2.

~ l,r2)

/ / l "\"- /] " . .
// t /-~..~.\ (8,6) ~-~

i / 2 ~ . ~ (L~,/2
I t ~ " ~ ,s,3,
\ \ ~ ' , .b /

- - - 2 2 : ~) (o,,
FIG. 3. HIGHPT and SNUMBER values (in parentheses) for the graph in Fig. 2. A reduc-

tion order is A, D, E, H, B, C, G, J, F, I, K.

CONCLUSIONS

This paper has presented an algorithm with an almost-linear time bound for
determining whether a flow graph is reducible. The algorithm may be used to determine
a way to reduce the graph if such a way exists. The method uses depth-first search
and a good algorithm for computing disjoint set unions, and it improves upon a

364 R. ENDRE TARJAN

previously published algorithm for determining reducibility. The algorithm may be
used as a basic subroutine for various code optimization procedures [1-8]. Many of
these procedures use nonlinear algorithms, some of which may be improvable using
the methods applied here.

ACKNOWLEDGMENT

The author wishes to thank Professor Jeffrey Ullman for his helpful suggestions, which
simplified the proof of the algorithm considerably.

KeF~m~NC~S

I. A. V. Auo, J. E. HOVCROFT, AND J. D. ULLMAN, On finding lowest common ancestors in
trees, in "Proe. 5th Annual ACM Symposium on Theory of Computing," May 1972,
pp. 253-263.

2. J. COCKE, Global common subexpression elimination, SIGPLAN Notices 5 (1970), 20-24.
3. J. D. ULLMAN, Fast algorithms for the elimination of common subexpressions, Acta

Informatica 2 (1974), 191-213.
4. R. KENNEDY, A global flow analysis algorithm, Internat.]. Comput. Math. 3 (1971), 5-16.
5. M. SHarvyga, "A Mathematical Theory of Global Program Optimization," Prentice-Hall,

Englewood Cliffs, N J, 1973.
6. A. V. AHO AND J. D. ULLMAN, "The theory of parsing, translation and compiling, Vol. II:

Compiling," Prentice-Hall, Englewood Cliffs, NJ, 1973.
7. F. E. ALLEN, Control flow analysis, SIGPLAN Notices 5 (1970), 1-19.
8. F. E. ALLEN, Program optimization, in "Annual Review in Automatic Programming,"

Vol. 5, Pergammon Press, New York, 1969.
9. M. S. HECHT AND J. D. ULLMAN, Flow graph reducibility, S I A M J. Comput. 1 (1972),

188-202.
I0. J. CocKs AND R. E. MILLEa, Some analysis techniques for optimizing computer programs,

in "Proc. 2nd International Conf. on System Sciences," Honolulu, Hawaii, 1969, pp. 143-146.
11. M. S. H~enT AND J. D. ULLM~, "Characterizations of Reducible Flow Graphs," TR-118,

Computer Science Laboratory Department of Electrical Engineering, Princeton University,
NJ, 1973.

12. J. E. HoPcaorr AND J. D. ULLMAN, An n log n algorithm for detecting reducible graphs, in
"Proe. 6th Annual Princeton Conf. on Inf. Sciences and Systems," Princeton, NJ, 1972,
pp. 119-122.

13. R. E. TARJAN, Depth-first search and linear graph algorithms, S I A M J. Comput. 1 (1972),
146-160.

14. R. E. TAaJAN, Finding dominators in directed graphs, S I A M J. Comput., in press.
15. M. FlscH~a, Efficiency of equivalence algorithms, in "Complexity of Computer Computa-

tions" (R. E. Miller and J. W. Thatcher, Eds.), pp. 153-168, Plenum Press, New York,
1972.

16. J. E. HOPCROFT AND J. D. ULLMAN, Set merging algorithms, S I A M J. Comput. 2 (1973),
294-304.

FLOW GRAPH REDUCIBILITY 365

17. R. TARJAN, "On the efficiency of a good but not linear disjoint set union algorithm,"
TR 72-148, Department of Computer Science, Cornell University, Ithaca, NY, 1972.

18. D. KNuTr~, "The Art of Computer Programming, Vol. 1: Fundamental Algorithms,"
pp. 315-347. Addison-Wesley, Reading, MA, 1968.

19. D. KNuTn, "The Art of Computer Programming, Vol. 3: Sorting and Searching," pp. 170-
180, Addison-Wesley, Reading, MA, 1973.

