criteria included acute or recent myocardial infarction (MI), left ventricular ejection fraction <30%, left main or ostial location, major bifurcation disease, chronic total occlusion, and target vessel thrombus. Routine angiographic follow-up was not performed. Planned clinical follow-up was at 1, 6, 12, and 18 months, and annually to 5 years.

Results: Patients were predominantly male (62.7%), and 30.6% presented with medically treated diabetes. At baseline, target lesion length was 23.48 ± 8.21mm and reference vessel diameter was 2.66 ± 0.40mm. The study met its primary endpoint of 12-month target lesion failure (composite of target vessel related cardiac death/MI and ischemia-driven target lesion revascularization) with a rate of 3.2%, which was not significantly different (p=0.001) than a prespecified performance goal of 19.4% (based on historical outcomes with 32mm paclitaxel-eluting stents, the only long drug-eluting stent approved in the US when PLATINUM II was initiated). At 1-year follow-up, there were 3 instances of target lesion revascularization (3.1%), 1 non-cardiac death, and no cardiac deaths, MIs, or stent thromboses. Two-year clinical follow-up will be reported.

Conclusions: The 1-year results of the PLATINUM II study support the use of the PROMUS Element 32mm and 38mm stents in the treatment of long coronary lesions. Two-year results will be available for presentation for the first time at TCT in October 2012.

TCT-614

A Prospective Randomized Multi-Center Trial to Assess the Everolimus-Eluting Stent System (Promus Element) for Coronary Revascularization in a Population of Unrestricted Patients

Methods: Methods: The design was a non-inferiority single blind randomized 2:1 trial (Promus G1/XienceG2 that recruited 2985 consecutive, all-comer patients in 48 European centers. The primary endpoint was TVF at 1 year.

Results: Results: Population consisted of 79% of males, mean age: 65 yrs ± 9 yrs. Indicators were 42% stable angina, 31.2% ACS and 10.2% silent ischemia. Risk factors were well balanced between the 2 populations as follows: hypertension (65.8% vs. 68.1%), hypercholesterolemia (66.08% vs. 65.5%), diabetes I (3.5% vs. 4.07%), diabetes II (24.8% vs. 22.4%), insulin-treated diabetes (7.4% vs. 6.8%), family history (32.4% vs. 23.3%), current smoker (20.4% vs. 19.9%). Procedural success was 98.4% in recipients of Promus and 97.8% for Xience prime. Mean number of stents implanted per patient was 1.7 ± 0.8. In-hospital complications included death N=3 and N=1 (0.12% vs. 0.10%) for Promus and Xience, respectively. MI N=7 (0.36%) vs. N=2 (0.19%), emergency CABG N=1 and N=0 (0.05%) vs. 0%, respectively PCI (N=4 and N=1). The observed differences were statistically not significant.

Conclusions: Conclusion: No differences in acute results were observed between the 2 stents; the 30-day outcome will be available for the meeting.

TCT-614

Remote ischemic preconditioning improves outcome in 6-years following elective percutaneous coronary intervention: the CRISP-Stent trial.

Background: Remote ischemic preconditioning (rIPc) ameliorates MI4a in humans undergoing elective percutaneous coronary intervention (PCI). However the long-term impact of rIPc on clinical outcomes after PCI is unknown. We hypothesized that rIPc attenuation of MI4a would improve clinical outcome at 6-years.

Methods: A randomized 215 patients with normal cardiac troponin-I (rtCrD < 0.04ng/mL) undergoing elective PCI to either rIPc (n = 110): three 5-minute blood pressure cuff inflations to 200mmHg around the upper arm with 5-minutes of cuff deflation between, or control (n = 105): a deflated cuff throughout. Baseline characteristics were similar except for a trend towards a higher incidence of hypertension in the rIPc group (44.5% vs. 37.5%, p=0.05). All patients had a normal cardiac troponin-I (CrD) level before PCI and were followed to 6 years.

Results: Baseline characteristics were well balanced between the rIPc and control group. In-hospital complications included death (n=3), MI (n=7), and emergency CABG (n=1) vs. death (n=2), MI (n=1) and CABG (n=1) in the control group (p=0.45). Freedom from TVF at 6-years was 87.6% vs. 84.6% (p=0.16) and freedom from MI4a at 6-years was 92.0% vs. 90.6% (p=0.14). rIPc showed a trend towards a lower risk of composite MI4a and TVF at 6-years (p=0.15).

Conclusions: Remote ischemic preconditioning attenuates MI4a in humans undergoing PCI and may improve clinical outcomes at 6-years. Further investigations are warranted to understand the potential benefit of remote ischemic preconditioning for PCI patients.