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Abstract 

We study relative computabi l i ty  for processes and  process t ransformat ions ,  in general, and  in 
par t icular  the non-determinis t ic  and  concurrent  processes which can be specified in terms of 
var ious fair merge constructs.  The main  result is a normal  form theorem for these (relatively) 
computable process functions which implies tha t  a l though they can be very complex when 
viewed as classical set-functions, they are all "loosely implementable"  in the sense of Park  
(1980). The  precise results are abou t  the player model of concurrency in t roduced in Mos-  
chovakis  (1991), which supports  bo th  fairness constructs  and  full recursion. 

Consider the nondeterministic process 1 C defined recursively by the equation 

C = ( 0  or 1 ) ; C ,  (1) 

where 0 and 1 stand for the acts of printing the corresponding digits, " ;"  denotes 
sequential execution and "or" stands for unrestricted (random, autonomous) choice. 

Intuitively, an execution of C prints a 0 or a 1, at random, and then calls itself to repeat 
this, so "in the end" the trace of C produced by this sequence of random choices is 
(essentially) some infinite, binary sequence. We would like to call C a computable 

process, since it is defined by such an elementary recursion from the simple or 

construct, but this brings up a question: the traces of C are arbitrary binary sequences, 
most of them not individually computable. 

~A preliminary version of these results was announced in the 1990 POPL meeting [12]. The POPL 
announcement contained some additional material on the semantics of concurrent languages, whose proofs 
have been written up in I-13]. During the preparation of this paper the author was partially supported by an 
NSF Grant. 
1 Terms like "process," "execution," "trace," "fairness", etc. are used intuitively and vaguely in these 
introductory remarks. One of the main aims of "concurrency theory" is to supply rigorous definitions of 
these notions within a specific model, and we will review how this is done for our model in Section 1. 
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The same question arises more dramatically when we combine non-determinacy 
with interaction, as in the following classical example of Park [15]: set 

P = X : =  0; Y:= O;while(X=O){X:= 1 II Y:= Y+I},  (2) 

where the parallel construct II is meant to be understood fairly, so that both of its 
process arguments will get as many chances to execute as they need. In fact, the simple 
assignment X := 1 needs only one chance, which must be given to it "at some point", 
after which there is nothing more to be done and the process terminates. Thus - Park 
argues - the traces of P are all finite sequences of acts of the form 

( X : =  0, Y:=0,  Y:= Y+I  . . . . .  Y:= Y + I , X : =  1~, 
k J -g 

n - - I  

and any satisfactory semantics for such concurrent processes should entail this basic 
fact about P. Using Park's fair-merge construct, we can also set 

M = ( 0  II 1), (3) 

where 0 = (0, 0 . . . . .  ) and 1 = ( 1, 1 . . . . .  ) are the constant infinite sequences. The traces 
of M are exactly the "fair" binary sequences, those with infinitely many O's and 
infinitely many l's, most of them, again, not individually computable. Still, we are 
tempted to say that M is a computable process, relative to the fair merge construct. 

Park [15] was responding to Dijkstra [5], who advocated banning definitions like 
(2) and (3) from programming because they involve unbounded non-determinism 

- which "cannot be implemented" - and he argued that in discussing implementability 
issues we should understand nondeterministic and concurrent definitions of this type 
loosely: 

No-one requires of a correct implementation for parallelism that there be an 
appropriate sense in which all scheduling algorithms be possible in it, only that 
there be one such scheduling algorithm, and if fairness be required that the 
scheduler be fair. 

So we can claim that C and M are implementable since the computable, alternating 
sequence of O's and l's is a trace of both of them. Now the existence of implementa- 
tions is obviously important, but it will hardly do as a sole criterion for computability: 
no-one would call an arbitrary set of infinite binary sequences computable simply 
because it may happen to have a computable member. If there is a natural concept of 
computable process, then it must involve more than the mere existence of a computable 
trace. 

At the same time, we cannot profitably interpret the definitions of C or M so that 
they only have computable traces, we truly need all their traces, if we are to gain 
anything from allowing unrestricted choice or fair merging among our primitive 
programming constructs. When we call M from within some program E, we are 
simply specifying that a fair, binary sequence should be produced; and in proving 
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properties of E, all we can assume is that the sequence produced will be fair, not that it 
is also computable, as it may well be that some piece of hardware is doing the merging, 
noncomputably. In fact, we tend to call nondeterministic processes like C, P and 
M "computable" primarily because they are defined in terms of simple and intuitive 
programming constructs. The fact that they have computable traces should be 
a formal consequence of such definitions (however trivial for these examples) and not 
the basic reason for thinking them computable. 

The main aim of this paper is to define rigorously and establish some basic facts 
about computable processes and computable process functions, in the context of the 
game-theoretic modeling of concurrent, asynchronous systems introduced in [-13]. We 
will characterize these objects in the cases where we take as given unrestricted choice, 
the full (unfair) merge, the fair merge in the sense of Park (as above) and the richer 
state-dependent fair meroe which is most natural in the context of our concurrency 
theory. The main result is that the processes which are computable relative to these 
constructs are all "loosely implementable" in the sense of Park, although their sets of 
traces can be extremely complex; it is a corollary of a Normal Form Theorem for 
computable processes and process functions, which also implies that these notions are 
very robust and provides some considerable justification for our choice of definitions. 

There are two important notions in the player model of concurrency introduced in 
[13], the players which model concurrent processes and the implemented player 
functions (ipfs) which represent process transformations. After a brief review of these 
notions in Section 1 and a briefer comparison of the player model with other 
modelings of concurrency, we will define process computability and state rigorously 
our results in Section 2. These sections can be read with only a fair acquaintance of 
Sections 1-4 and 6 of [13], but the proofs, in the remaining two sections, depend 
heavily on the technical machinery developed in [13]. 

1. The player and other models of concurrency 

A useful tool for defining the player model and comparing it with other modelings 
of concurrency is the following, simple formal language. 2 

1.1. The expressions (terms) of FLRo(z) are defined inductively by 

E ::=x[ f(E1 . . . . .  E . ) l r o o ( x l  . . . . .  x.)[Eo . . . . .  E.] ,  

where x is any variable (from a fixed, infinite set), f is any function symbol (from a fixed 
vocabulary r of function symbols, each with an assigned, nonnegative arity) and 

2 This was called .La in [13]. FLR0 is the equational (or "propositional") part of FLR, the formal language of 
recursion introduced in [11]. There is also an intermediate language FLR1, which comes from FLR by 
dropping the conditional but retaining value passing and functional recursion, and which plays for 
recursion the role that the first-order predicate calculus plays for explicit definability. 
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a more familiar notation for the mutual recursion construct is 

Eo w h e r e  {xl = Ea . . . . .  x,  = En}. 

FLRo is an abstract version of several languages which have been used to study 
concurrency, including Hoare's communicating sequential process (CSP) [7], Milner's 
calculus of communicating systems (CCS) [9], the metric approach of de Bakker and 
Zucker [4] and the reactive processes of Manna and Pnueli [-8]. The idea is that 
a particular model can be made precise and compared to other models by giving 
rigorous semantics for FLRo(z), with some specific vocabulary z. Most of these 
languages include some or all of the following function symbols, in common, infix 
notation and with their intended, intuitive meaning: 

skip skip, or idle, 

a act execution, 

ax act prefixing, 

x; y sequential execution, 

if R then x else y conditional execution, 

x or y autonomous choice, 

x If Y merge .  

The act symbols are from some fixed set A (sometimes endowed with additional 
structure) and the conditionals are often described by an auxiliary language of 
"conditions" (on some assumed "state"). When included, the merge operation is 
sometimes interpreted by the full (unfair) rather than the fair merge. In addition, most 
theories include special functions to model the interaction (or synchronization) of 
processes, which is the heart of the problem of modeling concurrency. There is no 
single, special construct for interaction in the player model, the ability to interact is, in 
some sense, built into the very definition of "process", and it is controlled by a typing 
mechanism for interaction. 

In [13] we defined three kinds of FLRo(T) semantics, for structures of the form 

= (Se, J )  = (States, ~, Acts, skip, exec, J ) ,  (4) 

where 5e=(States,  t, Acts,  skip, exec) is the state structure of ~ and d ¢ is a set of 
"functions" which distinguishes the semantics. About 5 c we assume the following: 
States is an arbitrary set of states containing the initial state t; Acts is an arbitrary set 
of atomic acts containing the "delay" act skip; every act a induces a function 
s~-*sa=exec(s, a) on the states, such that s skip=s; and every state s is accessible by 
a sequence of acts al . . . . .  a, from z, i.e. s =ala2 -.. a,t. A state structure 5c is trivial if its 
only member is z, in which case we can identify it with the set of its acts. We summarize 
briefly and comment on each of these interpretations. 
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1.2. Input-dependent, deterministic processes 

A procedure (or input-dependent stream, [13,2.4-2.8]) on 5 ° is a function ~: 
States-->Streams(Aets) which assigns to each state a stream of acts. These are the 
natural denotations of programs which read the state just once (presumably to get 
input) and then execute a stream of acts in total isolation from the environment. The 
set H = / / ( S e )  of procedures over 5 a is a directed, complete poset (dcpo) and in 
a procedure structure (6P, J )  for FLRo(z), J assigns to each n-ary function symbol f o f  
the vocabulary z a continuous, n-ary function J ( f )  : I I " ~ I I .  To interpret FLRo(z) on 
(5¢,J) ,  we let the variables range over procedures and we use composition and 
least-fixed-point recursion to associate with each expression E and each sequence x of 
n variables (which includes all the free variables of E) an n-ary procedure function 

procedure(~I, x)E = dp~ : 11"--+17. 

Two expressions E and M are procedure equivalent if for all procedure structures, 
4bE = qSM- There are obvious, procedure interpretations of act execution, act prefixing 
and sequential and conditional execution [13, 2.7]. 

In a trivial state structure, procedures stand for totally isolated programs which 
cannot interact at all with one another. If the state is nontrivial, then the sequential 
execution ~;fl affords some minimal communication at the entry and exit stages, 
because if ~(s) terminates after executing the acts a~ . . . . .  a,, then (after these acts) 
(~;fl)(s) executes the stream fl(ala2 ... a.s) which may depend on ai . . . . .  a.. 

1.3. Interactive, deterministic processes 

A behavior (or state-dependent stream of acts) is a partial strategy for II in the 
interaction game pictured in Fig. 1, formally a partial function 

a: States* ~ A c t s  x {~, t}  (5) 

on nonempty sequences of states, except that we identify behaviors which agree on all 
partial runs of the game [13, Section 3]. Player II represents in this game the 
denotation of some deterministic, interactive program, which responds (if defined) to 
each states s. played by I with an act a. and either the indicator 0, meaning that more 
moves are needed, or t, signifying successful termination; player I represents "the rest 
of the world", the collective action of all the other agents operating in the same 

I So S1 S2 " " " S n  

II (a0,0) (ao,8) (a2, tg) ... (a. , t)  

State: ~ Soao slat  s 2 a 2  . . .  n3a3 

Fig. 1. The interaction game; a terminating run. 
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environment. The set B = B (6 p) of behaviors is a dcpo. An n-ary behavior function is 
any continuous F : B"~  B, and a behavior structure 9,1 = (~ ,  J )  is one where J assigns 
behavior functions (of the appropriate arity) to the function symbols. The behavior 
semantics of such a structure interpret recursion by the taking of least fixed points, and 
they associate with each expression E and each list of n variables x which includes all 
the free variables of E, a behavior function 

behavior (9.1, x)E = F~ : B " ~  B, 

the behavior denotation of E. Two expressions E and M are behavior equivalent if 
FE = Fu on every behavior structure. 

Behaviors are the natural denotations of deterministic, interactive programs and 
several examples of them are worked out in [13, Section 3], including act execution 
and prefixing, sequential and conditional execution and the handling of interrupts. It 
is also claimed in [13, Theorem 3.7] that procedure equivalence coincides with behavior 
equivalence for FLRo expressions; the proof of this is quite simple. 

1.4. Interaction through the state vs. message passing 

Among actual, interactive systems, there is an important difference between those 
with a common, central memory which can be accessed by all the processes, and those 
in which communication can only take place by the passing of messages through 
private channels. Our notion of behavior might suggest that the player model can only 
handle efficiently central-memory interaction, but this is not true. Suppose, for 
example, that the process x can only execute acts in some set K ~ Acts, the process 
y can only "see" changes in the state which are produced by the execution of acts in K, 
and no other process can either execute acts in K or discern changes in the state 
produced by the execution of acts in K; we might then reasonably call K a private, 
one-way channel of communication from x to y. There is a natural notion of behavior 
type for processes which provides a flexible mechanism for introducing and keeping 
track of such restrictions and by which we can easily represent in the player model a 
local state interaction through message-passing [13, 4.3-4.7, 8.2]. See also [13, 3.6] for 
some remarks on the representation of concurrent systems by the game of interaction. 

1.5. Traces of behaviors 

If to is a ( total)  strategy for player I and ae  B, then 

t o * a = a o , a l  . . . .  (6) 

is the stream of acts "executed" (by player II) in the run of the game where I plays by 
to and II responds by a - terminated with t if II ever plays (a,, t). The trace of a is the 
set of all these streams, 

trace(a)= {to* a l to  is a strategy for I}. (7) 
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If, for example, 

a ( (So)  ) = (a, d), (8) 

a( ( So, s 1 ) ) = if R (So) then (b, t) else (c, t), 

then trace(o)= { (a ,  b, t ) ,  (a ,  c, t ) }  is a doubleton and an "observer" who is simply 
recording the acts executed by a (in repeated experiments) without knowing the state 
structure or the relation R may well consider a a nondeterministic process. 

1.6. Concurrent processes 

A player on a state structure 5 ~ is any nonempty set of behaviors, and we set 

~ ( 5 g ) = ~ =  {x[0 ~ x  c_ B(5¢)}; (9) 

this is the set by which we model the nondeterministic, interactive processes on 5 a. 
Intuitively, a player x can "play" (interact with the world, be implemented by) any of 
its "behaviors", i.e. any aex .  A player x is deterministic if it is a singleton x = {a} and 
total if every a e x  is a totally defined strategy. For example, for each act a. 

a ' =  {2((So . . . . .  s , ) ) (a ,  t)} (10) 

is the total, deterministic player who (confronted by any state) executes a and quits. 
The trace of a player is the union of the traces of its behaviors, 

trace(x) = U {trace(a) l a e x }  (11) 

={o~*alaex, o~ is a strategy for I}. 

Now ~ is not a dcpo in any natural way, so it is not immediate how to model 
process transformations by functions which have fixed points. Before dealing with 
this, notice that each behavior function F:  B " + B  induces naturally a (set) function 

F~: ~ " ~  by "distribution", 

FJ(xl . . . . .  x . ) =  {F(ax . . . . .  a.)[ aa ex l  . . . . .  a .~x .  }; (112) 

for example (and skipping the j) ,  

x ; y = { a ; z l a e x ,  z~y} ,  

if R then x else y =  {if R then a else * l a e x , * ~ y }  

= {FR(a, *)I aex ,  *~y},  

where for each a and ,, 

FR(a, z )=2((So . . . . .  s . ) )  if R(so) then a((So . . . . .  s . ) )  else z((So . . . . .  s.)).  

These liftups are deterministic player functions, in the sense that when applied 
to deterministic arguments (singletons) they yield deterministic values. Typical 
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nondeterministic functions on ~ include 

x or y = x u y ,  

x + y = ( / f  R then tr else z l a e x ,  z s y ,  R c_ States}, 
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(13) 

(14) 

which represent two distinct ways of modeling choice. Notice here that for all players 

x, y, easily, 

trace(x + y) = trace(x or y)  = trace(s) u trace(y),  

but in general, (x or y ) ¢ ( x + y ) ,  in fact 

a j or b J ¢ a J + b  j 

if a and b are distinct acts and the state structure is nontrivial: because if R(s) is true 
for some state and false for some other, then the state-dependent strategy 

tr(so)=/f  R(so) then (a,t) else (b,t) 

is a behavior of a j + b J but not of a J or b j. For  the same reason, 

aJ;(bJ +&)v~aJ;bJ +aJ; & (15) 

for distinct acts in a nontrivial state structure, although these two players have the 
same traces. Thus, a non-deterministic player is not determined by its trace. 

1.7. Modeling process transformations 

One of the basic premises of [13] is that a function f : ~  models a process 

transformation if it is determined by its "implementations", and one is tempted (at first) 
to consider only the linear implementations of f, i.e. the continuous F : B--* B such that 

a e x  ~ F( t r )e f ( x ) .  

But if the recursive definition (with a parameter) 

y = x ; y  (16) 

makes sense (as it should), we would expect it to define the process transformation 

y(x)= {~o ;~1 ;""  I ~o,~1 . . . .  ex} 

and the most natural implementation of y(x)  is the "infinitary" continuous operation 

Y(tr o, trl, tr 2 . . . .  ) =tro; trx; tr2 ... .  

In general, a (infinitary) behavior function (of n arguments) is any continuous opera- 
tion 

F : (N--* B)"~B (N={0,  1 . . . .  }), 

and we call F an abstract implementation of a function 

f :  ~" - -*~  
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if for every n-tuple of players x = Xl . . . . .  Xn and sequences of behaviors p = Pl, -.., P., 

Pl :N--*xl . . . . .  p. : N-~x .  ~ F ( p ) e f ( x ) .  

A function f :  ~ " - - , ~  is implementable if there exists some set I of abstract implemen- 

tations which determines its values, i.e. 

f ( x ) =  {F(P)I Pl : N--*xx . . . . .  p. : N ~ x . ,  F e l } .  (17) 

The second basic premise of [13] is that the correct way to model process 
transformations is to forget the extensional "implementable" and use the intensional 
"implemented" [13, Section 7]: an n-ary implemented player function (ipf) is 3 any set 
f of n-ary abstract implementations which is closed under a suitable reducibility 

relation [13, 7.2-7.4]; and the (player) value of f is given by 

f ( x ) =  {F(p) Ip, : U--*xx . . . . .  p. : N--.x. ,  F e f  }. 

A set I ~_f generates an i p f f  if 

f =  [ I ]  = { F I F  is reducible to some Gel} ,  (18) 

i.e. if f is the closure of I under reducibility. It can be verified that every set I which 
generates f determines the values of f by (17) [13, 7.3]. Most often, we define ipfs by 
specifying a simple generating set for them. For example, for each behavior function 

F: B"~B, we let 

VJ=[V  *] with F*(pl  . . . . .  p.)=F(p~(O) . . . . .  p.(0)), (19) 

the notation chosen because this F j indeed satisfies (12). Similarly, 

or=[F~,F,] with Fz(p,q)=p(O), F,(p,q)=q(O), (20) 

is the ipf version of autonomous choice, easily satisfying 

x or y={Fl(p ,q)  l p :N- -*x ,q :N~y}u{Fr (p ,q ) [p :U- -*x ,q :U- -*y} .  

A similar modeling can be given for x + y  as an ipf, but now we need an infinite 
generating set, all the conditionals. An ipf is deterministic if it is generated by a single 

behavior function Fo, as each F j is but or is not. 

1.8. Merge operations 

A merger on a process structure 9I is any (total) function /~: S ta tes*~{0,  1} on 
nonempty sequences of states to {0, 1}. Given behaviors go, ax in od,/~[ao, as]  is the 
(conjunctive) merged behavior of go, a l ,  defined (roughly) by decreasing that in 
a certain stage of the game it calls go or a l  accordingly as/~ gives the value 0 or 1. 

3 An ipf "is" a set of abstract implementations in the same sense that a function "is" a set of ordered pairs 
- i.e. this is the way by which we represent these objects within set theory. 
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Rather than give the formal definition which is somewhat technical, we indicate in 
Fig. 2 the first few moves of the play by #[ao, aa] for given values of It; see also 
[13, 3.3]. (The picture does not indicate that if some al first plays some (a., t) when it is 
called, then from that stage on #[ao, aa ] calls the other behavior a l -  i independently 
of the value of #.) A merger It is state independent if its values depend only on the stage 
of the game and not what has been played, i.e. for some v: N~{0,  l} and all sequences 
of states, 

I t ( (So  . . . . .  s . ) )  = v(n); 

a merger It is fair if for every ao, al  and every infinite run of the game by It[ao, aa], 
each ai either plays some (a., t) at some stage when it is called, or is called infinitely 
often. 

We define the (full, unfair) merge, the parkmerge and the fairmerge operations by the 
equations 

merge(x, y)=  {it [p(O), q(O)] [p: N--*x, q: N--*y, It any merger}, 

parkmerge(x, y)=  { It [p(O), q(O)] I p:N--*x, q:N--*y, 

It any fair, state-independent merger}, 

fairmerge(x, y)=  {it [p(O), q(O)] I P: N ~ x ,  q : N ~ y ,  It any fair merger}. 

Of course, we read these equations as definitions of ipfs (sets of abstract implementa- 
tions), so that (for example) merge is the ipf generated by all 

F,(p,q)=it[p(O),q(O)] (It any merger), 

and its abstract implementations are precisely all functions of the form 

Fu, k,~(p,q)=it[p(k),q(l)] (k, leN, It any merger). 

We use the name parkmerge for Park's fairmerge, his terminology being more 
appropriate in our context for the full, state-dependent fair merge operation. 

In concrete modelings of concurrency closer to applications, the state structure is 
taken to be quite specific (typically determined by variables, stacks and buffers), and it 
is possible to define a large variety of "fair merge operations", see [6, 8]. It should be 
clear from this discussion that these operations can all be "represented faithfully" by 
ipfs: this is what we mean when we say that the player model supports fairness. 

I S O S 1 S 2 S 3 $4 

#: 1 0 1 1 0 

I t [ao,al] :  II trl(so) Oo(S0 al(So, S2) ax(So, S2,S3) ao(Sa,S4) 

Fig. 2. Action of binary merger. 
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1.9. The player model 

We represent processes over a state structure 5 ~ by players and process functions 
by ipfs, and to keep the language less stilted we will use the more  familiar terms from 

now on: 

process = player, process t ransformat ion = ipf, 

except where we need to emphasize the special properties of  the player model. 

A process structure for FLRo(z)  is a pair @I=(5 e, J ) ,  where the interpretation J as- 

signs ipfs to the function symbols in z. 
The most  substantial contr ibut ion of [13, Section 8] is a method for solving 

recursion equations of the form 

x = f  (x), ( * ) 

y=g(x ,y ) ,  (**) 

where f and g are given process functions; the solution o f ( * )  is a process, that  o f (** )  

a process function, and the method  also solves similar systems of mutual  recursion. 

Using this ipf recursion to interpret the rec construct  and a a natural not ion of ipf 
composition, we assign to each FLR0(v) expression E and each list of  n variables 

x which includes all the free variables of  E, a process function fe;  closed expressions 

are assigned processes. We call E and M process equivalent if fe  =fM on every process 

structure. 
The main result of  [13, Sections 8-10-1 is that  for FLRo  expressions, process 

equivalence coincides with behavior equivalence, and hence also with procedure equiva- 

lence. In effect, with this modeling of interaction and concurrency,  the logic of 
concurrent recursion is the same as the logic of deterministic, interactive recursion, or 
even deterministic, non-interactive recursion:* this is what  we mean when we say that 

the player model supports full recursion. 

1.10. Other modelings 

The main - and characteristic - feature of the player model  is that  it supports  both 

fairness and full recursion. Modelings like Hoare 's  CSP  and Milner's CCS, whose 
pr imary semantics are operat ional  do not  support  fairness, and the same is true of 

axiomatic and algebraic approaches;  where fairness is included, on the other hand, as 

in M a n n a  and Pnueli I-8], full recursion is weakened to iteration ("while" looping), 

4 In fact the FLR0-identities which are valid in process structures are exactly those which are valid in all 
domain structures (D, .8"), where D is a dcpo, J interprets the function symbols by continuous functions on 
D and the recursion constructs is interpreted by the taking of least-fixed-points. This is a joint result with 
Tonny Hurkens, based on a simple axiomatization of the logic of recursive equations, which also proves the 
decidability and substantial robustness of this class of identities and relates this work to earlier results on 
recursive program schemes, trees and networks, see [3]. 
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and Park  [15] already gives a simple model which supports  both fairness and 
iteration. M a n y  models have also been proposed which do not  support  either fairness 

or  full recursion, e.g. the "metric space" models of de Backer and Zucker  [4]. 5 

In the joint paper  [14] with Glen Whitney, we generalize the construct ion of  [13] to 

define a player model  ipf(D) over an arbitrary dcpo D, we define an abstract  not ion of  

powerstructure which covers many  models of  concurrency and makes it possible to 

compare  them, and we show that  i f  D is a profinite dcpo, then the PIotkin [17] 

powerdomain over D together with the set-monotone continuous functions on it is 

a quotient o f  a substructure o f  ipf(D). Whitney has obtained similar "embedding" 
results for the Hoare  and Smyth powerdomains  [22]. 

1.11. lntensionality in the player model 

The fact that  a player is not  determined by its traces in 1.6 exhibits some inten- 

sionality in our  modeling of  processes. This is quite c o m m o n  in many  modelings of  

concurrency,  e.g. both  the strong and the weak bisimulation models of  Milner's CCS 
[9] yield a not ion of  process (agent) which is not  determined by its traces. What  may  

be peculiar to the player model, is that  process t ransformations are also modeled by 

intensional functions which are not  completely determined by their values. It appears 

that  this is necessary, 6 but it also adds some unexpected "expressibility" to the model. 

The following example may  help illustrate some of  the subtleties involved. 

Suppose that the structure 91=(5  ¢, J )  has a countable number  of  states which we 

identify with the integers, and consider the following two (infinitary) behavior  func- 
tions F and G on 9.1: 

~(skip, ~), if n = 0 ,  
F(p) ( (So  . . . . .  s . ) )  ~- (p (O)( ( s l  . . . . .  s . ) )  otherwise, 

, , , .  ((skip, ~), if n =0 ,  
G(p)( (So . . . . .  s , ? ) _  ~p(so)( (sa . . . . .  s , ) )  otherwise. 

Let f = [ F ]  and 9 = [ G ]  be the process functions generated by F and G. It is quite 
obvious that  these are extensionally equal, in factor for all processes x, 

a(x) = f ( x )  = skip; x. 

S,,Guarded,, recursion in the de Bakker and Zucker model obeys the laws of least-fixed-point recursion 
[21], but this is apparently not true for unguarded (continuous) recursion. The suggestion in [4, 3.5] that (in 
effect) every recursion be made guarded "by definition" is not serious: in our notation, it assigns to x = a; x 
the solution (skip, a, skip, a ... ), which does not satisfy the equation it is supposed to solve! 
6 In his Ph.D. thesis [221, Whitney has answered Question [13, 9.7] by constructing an example of two 
extensionally equal, unary ipfs with distinct ipf fixed points; he has constructed an extensional model which 
supports fairness and satisfies the "minimum conditions" for a model of concurrency listed in of [13, 6.1 ] 

- and quite a bit more; and he has shown that there is no extensional model which further satisfies some 
simple, natural properties of the player model. 
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Viewed intensionally as sets of implementations, however, f c g but f # g, because 
G(p) ((So, s 1 ) )  depends on So while F (p) does not, and it is easy to see that "reducibil- 
ity preserves state independence". Now what is the difference between the (intuitively 
understood) "process transformations" modeled by these two distinct mathematical 
objects? It appears that the best we can describe them is as follows: 

f(x): Given x, call some behavior a e x  and then: to the first state So respond by skip 

and after that follow a. 
g(x): Given x: to the first state So respond by skip, then call some behavior trex and 

after that follow tr. 
We have used "infinitary" behavior functions to capture the fact that implementa- 

tions may "get access" to distinct behaviors on different "calls" to nondeterministic 
arguments, and we have imposed closure under reducibility to insure that process 
functions treat their arguments as sets rather than sequences of behaviors. The 
example makes it clear, however, that the modeling forces the incorporation of some 
aspects of the "timing" of "calls" (and their consequent, possible dependence on the 
state) into the modeling. It is not clear now just what role this distinction f # g  plays in 
the modeling, but we will see in Section 3 that it is quite important. 

2. Definitions and results 

Definition 2.1. A process function f on a structure 9.[ is computable, if it is definable on 
9.I by some expression E of FLRo, i.e. f=fE in the sense of the process semantics of 
9.I to which we alluded above. 

Since we are interested in characterizing the computability of "true" (nondetermin- 
istic) process functions like the fair merge, we will factor out the mundanely comput- 
able behavior functions by means of the following definition. 

Definition 2.2. A behavior structure 9.1 as in (4) is manageable, complete if there exist 
fixed, nonrepetitive enumerations of its (countably) infinite set of states and (possibly 

finite) set of acts 

S ta t e s=  {So, $1 . . . .  }, Ac t s=  {Ao, A1 . . . .  }, 

so that the following conditions hold. 
(1) There is a fixed recursive partial function exec : N x N ~ N  such that exec(i,j ) is 

defined when A~ is an act and 

s i a j  ,~ Sexec(i" j )" 

(2) For  each state s, there are infinitely many distinct states which are accessible 
from s. 

(3) Every (classical) recursive behavior function is computable in ~.  
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The first two of these hypotheses certainly hold in the standard example where the 
state is a finite (or effectively enumerable) store of variables. They allow us to 
"identify" (code) states and acts with integers, but also (using standard recursive 
codings) to identify finite sequences of states with integers, behaviors with (special) 

partial functions on N to N, etc. Thus, we can talk about recursive behavior functions 
in the third hypothesis, meaning recursive functionals which take partial functions as 
arguments and values, and these certainly include act execution, sequential execution, 
conditions based on recursive conditions on the state, etc. Precise definitions will be 
given in Section 3. 7 

We will characterize computability in expanded structures of the form (91, ~-*),  
obtained by adding to a manageable complete behavior structure 9.1 some set ~ * of 
process functions, e.g. the various merges. Formally, we should write (91J, ~-*),  where 
91J is the process structure obtained by replacing each behavior function F in 9.I by its 
liftup F j defined in (19), but [13, Theorem 8.9] implies that the distinction is only 
notational. 

If  F is a monotone, continuous operation of the type 

F : ( N ~  B)" x (N--*N)~ B, (21) 

then for each (5e(N--.N), the (5-section F ~ : ( N - B ) " ~ B  of F is the infinitary behavior 
function of n arguments defined by fixing (5 in F, 

Fo(p~ . . . . .  p.) = F (Pl . . . . .  p., (5). (22) 

Definition 2.3. A process function f is defined recursively from a set 0 of total, 
number-theoretic functions, if there exists a recursive function F as in (21) such that 
f is generated by the (5-sections of F with (5~0, i.e. f=[{Fol(5~O}]. 

Notice that if f is defined recursively from O via the recursive function F, then its 
values are given by 

f ( x ) =  {F(p, (5) [ Pl : N ~ X l  . . . . .  p. : N ~ x . ,  (seO}, 

i.e. intuitively, we can compute a value of f ( x )  if we are "given" arbitrary calls to 
behaviors in the process arguments and an "oracle" (5 e O. The definition makes sense 
for functions with 0 arguments, i.e. processes: a process x is defined recursively from 
the set of oracles O if there is a recursive F : ( N ~ N ) - - . B  such that 

x=  { F ((5) l (seO }. (23) 

Theorem 2.4 (Main result). Fix a manageable, complete behavior structure 9I. 
(1) The computable process functions of (91, merge) are the same as the computable 

process functions of (9.I, or); they are the same as the computable process functions of 

7 We want to avoid technical issues of abstract recursion and language design here. It is quite routine to 
turn the third hypothesis into a theorem, by enriching the language with a few simple, natural constructs. 
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(91, + ); and they are precisely the process functions defined recursively from the Cantor 
set C=(N--*{0, 1}). 

(2) A process function f is computable in the expansion (91, parkmerge) if and only if 
f is defined recursively from the full Baire space N = ( N ~ N ) .  

(3) A process function f is computable in the expansion (91,fairmerge) if and only if 
it is defined recursively from the set of (codes of) well-founded trees 

WF = {a~ c I (vo~: N-, .N) (~  n) [a(~(n)) = 1] }, (24) 

where ~(n) is the integer code of the finite sequence (~(0) . . . . .  ct(n-1)). 
(4) In each of these cases the set of computable process functions does not change if 

we further expand the structure by functions which are defined recursively from the 
specified set of oracles. 

(5) For each of the structures in (1)-(3), every computable process function has 
a recursive abstract implementation and every computable process contains a recursive 
behavior. 

It is easiest to read off some of the consequences of this theorem for the case of total 
processes, which may be identified with subsets of the Baire space N since all their 
members are totally defined behaviors. Recall the logical classification of analytical 
subsets of Baire space by how many and what kind of quantifiers we need to define 
them beginning with a recursive relation R, cf. [19, 10]. In this summary table of 
definitions, i varies over N and Greek letters vary over the Baire space N: 

n +, 6~x .¢~ (gi)R(&i), 

6ex  ,~  (3ct)(Vi)R(6, ct, i), 

6 ex  ¢~ (3~)(Vfl)(3i)R(6, or, fl, i). 

The dual classes to these are defined by taking the negations of these forms and they 
are denoted by interchanging Z and/-/, e.g. the class of complements of H ° sets is Z °. 
It is known that each of these classes is proper, i.e. none of them is included in its dual. 

We will characterize the total processes computable in the full (unfair) merge in 
terms of a natural notion of "observables" of processes. 

Definition 2.5. A direct observable of a behavior tr is a finite sequence 

obs = So, tr( ( So ) ), sl, tr( ( So, st ) )  . . . . .  s,, a( (So . . . . .  s. )), (25) 

which is a legal initial part of the game of interaction, i.e. all the terms of the sequence 
are defined and I's partial play (So . . . . .  s . )  satisfies the condition of accessibility. An 
ideal observable of tr is any finite set of its direct observables. 

The direct and ideal observables of a process x are the direct and ideal observables 
of the behaviors of x. 
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2.6. Observability and initial nondeterminism. 

The direct observables of  a player x are the "finite" facts about  x that we can learn 

by direct "experimentation" or  "testing", assuming that we have full control  of  the 

state: we adopt  the role of player I in the interaction game, start with some So, x 

(perhaps) responds with some (a0, 9), we choose some sl, etc. If  the game goes on for 

n + 1 turns, we have at the end an observable of x as in (25), where a is the behavior 

followed by x in this run; this is because by our  understanding of"initial nondetermin-  

ism", x "chose" a fixed behavior a at the start of  this run and he will follow it until the 

game ends (a((So . . . . .  s, ) ) =  (a,, t)) or hangs ((a((So . . . . .  s, ) ) =  ±). The ideal observ- 
ables may also be viewed as facts about  x which can be learned by testing, but we must  

be allowed some questionable "backtracking" (or "undoing")  moves in the game, 

where (playing as I) we can "change our  mind", take back a state si and replace it by 

s'i after recording x's response to sl - while x is not  allowed to switch behaviors. We will 

not analyze here any further the various notions of observational equivalence between 

players and their relation to the extensive literature on this notion in process theory. 

Each ideal observable of  a behavior  a is (essentially) the restriction a r A of a to 

a finite set A of sequences of  states which is closed under initial segments (a tree) and 

such that a is defined on every member  of A. For  each process x and finite tree of state 

sequences A, we let 

idobsx(A )= {a [ A l aex ,  (V(So . . . . .  s . ) e A ) a (  ( So . . . . .  s,))~,} (26) 

be the set of ideal observables of  x on A. 

Definition 2.7. A process x is effectively dense in itself if from (a canonical listing of) 

each ideal observable 6~ = a I A of  x, we can effectively find a recursive behavior  o ' s  x 

which realizes 6~ in the sense that ~9=a '  IA. 

Park  (adapted to the present context) would call a process x implementable if it has 

a recursive behavior, so we can think of  effective self-density as a very strong form of 
implementability. 

Theorem 2.8. Let 9.I be a fixed, manageable, complete behavior structure. A total 
process x is computable in (9.I, merge) if and only if it is closed as a subset of  Baire space 
and for each finite tree of  state sequences A, the set of  ideal observables idobsx(A) is 

a finite set which we can effectively list from a canonical listing of  A. 
As a subset of  Baire space, each total process x computable in (9A, merge) is 17 o, 

compact and effectively dense in itself. 

2.9. Initial vs. persistent nondeterminism. A plausible modeling of a (total) process ~ is 
that  it is a function 

: States*--*power (Acts x { c~, t }) \ {0 } (27) 
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on n o n e m p t y  sequences of  states to n o n e m p t y  sets of  acts (paired with indicators), 

which acts as a multiple-valued strategy in the interact ion game: to I 's move  So, 
responds by choosing some (ao, Wo)e~((So)) ,  to I 's next move  sl ,  ~ responds by 

choosing some (al ,  W l ) ~ ( ( S o ,  Sl )),  etc. For  each world strategy co, the responses of  

form a closed set 

w * Y = {ao, ax, .. . ,  I (Vn)(3w.)[(a. ,  w.)~Y((So . . . . .  s. ))3 }, (28) 

the appropr ia te  analog of co* a defined for a single-valued a in (6). The (stream) 
members  of  this to * :~ are the (observable) responses of  Y to to. This is the "persistent" 
variety of  nondeterminism,  and versions of  it occur  in several models  of concurrency,  

somet imes  with the added restriction that  ~((So . . . . .  s . ) )  is always a finite set; it is 
different f rom Park ' s  "initial nonde te rmin i sm"  we have adopted,  by which a player  
x chooses at  the beginning of the game a single (deterministic) s t rategy a m o n g  those 
available to him, and then sticks with it no ma t t e r  what.  The persistent nondetermin-  
ism picture of  a process is quite attractive,  but  it cannot  accomoda te  fairness, because 
if x =fairmerge(O, 1 ) (for example),  then the set to * x is not  closed. For  structures with 
only the full (unfair) merge to which Theorem 2.8 applies, however,  if a player  x is 

computab le ,  then the set 

to* x = {to* a I a e x }  (29) 

is closed, in fact compact .  Second, each computab le  player  x determines a comput -  

able, mult iple-valued strategy 

ff((So . . . . .  s . ) )  = {(a., w.)l(3u)[u * ((a., w.))~idobsx(A)}, 

where A = { (So) ,  (So, s i ) . . . . .  (So . . . . .  s. ) } is the tree of sequence states determined by 

(So . . . . .  s. ). Finally, 

to* .~ =-to * X; 

in fact ~ determines x completely.  Thus,  in the absence of fairness, our  picture of  initial 
nonde te rmin ism is reconciled with the persistent nonde te rmin ism picture, at least for 

the computab le  players in which we are ul t imately interested. 
We do not  have a complete  character izat ion of the total, computab le  processes for 

the more  complex merges, in terms of classical notions,  but  we can say something  

abou t  them. 

Theorem 2.10. Let 9.I be a fixed manageable, complete behavior structure. 
(1) I f  a total process x is computable in the expansion (~,  parkmerge), then x is 

effectively dense in itself and for each finite tree of states A, the set of ideal observables 
idobsx(A) is recursively enumerable; as a subset of Baire space, x is S,~, possibly in 

 l\nl 
(2) I f  a total process x is computable in the expansion (9.I, fairmerge), then x is 

effectively dense in itself and for each finite tree of states A the set of its ideal 
observables idobsx(A) is recursively enumerable; as a subset of Baire space x is Z~, 
possibly in 1 1 Z2\ / - /2 .  
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The upshot  of  these results  is that  to ta l  processes which are c ompu ta b l e  in ei ther  of  

the fair merges are very effective in the " loose"  sense of  Park;  a t  the same time, they 

can be ter r ib ly  complex  when we view them "extensional ly"  (as subsets  of  Baire space), 

even p rope r  _r~ sets in the case of  the full, s ta te -dependent  fairmerge. 

3. Proof of the main result 

Let 

PF =(N--~N) ,  N = ( N - , N )  

be the sets of  all par t ia l  and  to ta l  functions on N to N, respectively. We will assume as 

given the no t ion  of  a (part ial)  recursive functional with par t ia l  function and  integer  
a rguments ,  

F : PF ~ x N k - - ' N ,  

and the basic  proper t ies  satisfied by that  not ion,  s A funct ional  F : X ~  PF with values 

in PF is recursive if there  is a recursive (partial)  func t iona l  F *  : X  x N - - - N  such that  

F ( x ) = 2 ( n ) F * ( x ,  n). 

It  is somet imes  i m p o r t a n t  that  a recursive funct ional  takes  to ta l  (number- theoret ic)  

functions to to ta l  functions; we will abbrev ia te  this by wri t ing 

F : Nn x Nk--.N. 

In general ,  the no t a t i on  F : X ~  W means  that  F (which m a y  have been defined as 

a par t ia l  function on some superset  of  X)  is in fact to ta l ly  defined on X and  takes  

values in W. 

Fix ing  some na tu ra l  recursive i somorph i sm of the set of infinite sequences of  par t ia l  

funct ions (N--* PF)  with PF, we will also app ly  recursive funct ionals  to a rguments  in 

( N - * P F ) .  We also use the cor respondence  i~-*Si and  jv--~A i suppl ied  with a manage-  

able, comple te  s t ructure  ~ to identify the set of  states with N and  the set of  acts with 

a Actually, there are at least three competing notions in the literature, so that (for example) the partial 
functional 

F(ct, fl)---/f (a(0)~ or fl(0)~) then 1 else _L 

is recursive by one of them but not the others. We will only use properties of recursive functionals which are 
true for all three notions, but for definiteness we adopt the most natural definition via Turning machines 
with oracle calls. A partial functional F : PF" x N ~ N  is recursive, if there is a deterministic Turning 
machine M equipped with an extra oracle tape and special states Oi, for i= 1 ..... n, which computes 
F(~q ..... ~t.,Jt, .-.,Jz)for all unary partial function arguments st ..... a. in the usual way, as if it were 
a partial function of its integer arguments only, but with the following rule for the computation in the oracle 
states: if M is in state O~ and the oracle tape has the number k on it (however we code numbers, unary or 
binary), then the computation stops if cq(k) is undefined or proceeds with k replaced by a~(k) on the oracle 
tape if ~i(k) is defined. 
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either N or a finite initial segment of N. From that, the set Statss* of nonempty 
sequences of states is also identified with N, by some canonical, recursive coding of 
sequences. If we further identify the indices 8 and t with 0 and l, respectively, and then 
N x {0, 1) with N using another recursive bijection, we can code the behaviors of 

92 with (suitably restricted) partial functions a: N - ~ N ,  i.e. 

B ___ PF. 

Finally, infinite sequences of behaviors will also be viewed as partial functions on N 

to N, 

( N ~ B )  __ PF. 

We will also use in the proofs several convenient notational conventions from [13], 

including 

~(n) = ( S o  . . . . .  s .  ). 

Finite sequences of integers will often be confused with their codes, and then concat- 
enation is understood appropriately. We will sometimes indicate whether an object or 
one of its various codes is used, but in most cases it is clear from the context what is 
meant and the introduction of explicit, coding functions would add little. 

Suppose now that O _ N is a set of total, number-theoretic functions which we take 
as the "oracles" and suppose f is a binary (for example) process function which is 
defined recursively from 0 via a recursive functional F as in Definition 2.3. In our 
intensional approach we identify f with the collection of all its abstract implementa- 
tions, which (by closure under reducibility) are exactly all behavior functions of the 
form 

F~,p.a(p, q)= F (p~,q p, 6), (30) 

with n, p : N ~ N  and 6~O. We will abbreviate this situation by writing 

f (x ,y)={F(p~,qP,  6) l n , p : N ~ N , 6 E O } .  (31) 

The main result of the paper characterizes the process functions computable in 
various expansions (92J, #" *) of a manageable, complete structure 92 as precisely the 
process functions which are representable by (31) with a suitably chosen O. 

We will need a lemma about the peculiar behavior function G already discussed in 

Section 1. 

Lemma 3.1. I f  92 is manageable, complete and g is the process function generated by the 
recursive behavior function 

G(p) =),(So,...,  s,) ~(skip, 3) /f n = O, (32) 
(p(so)((So .. . . .  s , ) )  otherwise, 

then g is computable in 92L 
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Proof. Here, of course, the expression p(so) makes sense because we are identifying 
the states of the structure with the integers. Notice that we cannot get a trivial proof 
by showing that g is the lift-up Cd 1 of some recursive behavior function on 9.I, among 
the ~J given by the hypothesis that 9.1 is manageable, complete. This is because every 
abstract implementation of such a G~ satisfies 

G'(p)=Gl(p( io))  

with a fixed io, easily, so G cannot be reducible to such a G'. It is also not hard to check 
that g is not a composition of process functions which are lift-ups of behavior 
functions, which means that we must use process recursion in the proof. 

Consider first the behavior function 

f 
(skip, t3), if n =0,  

H(tr, z)=2((So . . . . .  sn~) t r ( ( s0 -1 ,  sl . . . . .  sn~) if n > 0  & So>0, 

z((So . . . . .  sn~) if n > 0  & So=0. 

This is recursive, hence computable in 9.1, so let h = H j be the process function which is 
the lift-up of H in 9.F and let y(x) be defined by the ipf recursion 

y(x) = h(y(x), x). 

We will show that y is precisely the process function g generated by G in (32). The 
argument is basically a direct computation, but we include it primarily as an example 
of how these computations go. 

Notice first that the typical abstract implementation of h is of the form 

H'(q, p )=  H(q(io), P(Jo)) (33) 

with arbitrary io, Jo. By the definition of recursion, each abstract implementation of 
y is defined by a system { H u l u e N * }  of such abstract implementations of h, specifi- 
cally by setting 

Y(p) = tr0, (34) 

where (keeping p fixed) the system {tru ]u ~N*} of behaviors is defined by the simulta- 
neous recursion 

au = Hu(2(i)tru. <i>, p). 

Fix the particular system of representations of h, 

Hu(q, p)= H (q(O ), p(lh(u) ) ), 

where lh(u) is the length of the sequence u. Now the behaviors 

(7 u ~ (~lh(u) 

depend only on the length of u and they are determined by the recursion 

tr~= H (trn+ l, p(n) ), 
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from which it follows quite easily that 

~(skip, 0) if n =0, 
a°((So . . . . .  s . ) )~- [p(s0) ( ( s0 , . . . , s . ) )  if n>0 ,  

i.e. Y(p)=a°=G(p) .  This proves that the process function 9 generated by G is 
a subprocess function of y. 

To prove the converse inclusion, consider an arbitrary implementation system for 
h which must be of the form 

H.(q, p)= H (q(~(u) ), p(p(u) ) ) 

for suitable n, p : N * ~ N .  The behaviors assigned to this system (for each fixed p) are 
determined by the recursion 

au = H.(2(i)a,.<i>, p) = H (a,. <,~,~>, p(p(u))), (35) 

and the abstract implementation of y determined by the system is given by (34) with 
these a.. It follows immediately from (35) and the definition of H that 

ao( (So > )~-(skip, t?)"~- G(p')( < So > ) 

with any p'. For sequences of length greater than 1, check again from (35) and the 
definition of H that 

a.(<0> * g(n) )'~-p( p(u) )(§(n) ), 

a,(<i + 1 > *g(n))"~tr,.<,~,)>(<i> * g(n))), 

so that by a simple induction on i, for each i and each u there is some number p*(i, u) 
such that 

tru( ( i ) * g(n) )~- p(p*(i, u) )(g(n) ); 

setting u = 0  in this, we get the required reduction of Y(p) to G(p) via 2(i)p*(i, 0). [] 

The main result follows from the next two simple lemmas, one for each direction of 
the claimed equivalence. 

Lemma 3.2. I f  9.U is the lift-up of a manageable, complete behavior structure 9.I, 
F : ( N ~ B ) " ~ B  is a recursive behavior function and f is the n-ary process function 
generated by F, then f is computable in 9.U. 

Proof. We will prove the result for n =  l, the general case being similar, so fix 
a recursive functional F : ( N ~  B)--,B and let f be the unary process function gener- 
ated by it. The abstract implementations of f are all functions of the form 

F ~(p) = F (p~)= F (2(i)p(~(i))), (36) 
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where n : N ~ N  is arbitrary. Set 

F * (tr) = F(2(i)2(g(n))a(( i ) * g(n))), 

so that F * is the recursive behavior function, and it is quite easy to check (by a direct 
computation) that we can recover F from F * using the G of Lemma 3.1, 

F(p)=F*(G(p) ) .  (37) 

Since F* is recursive, it is computable in ~,  so let 

f * = F * J  

be its lift-up to the process structure 9,1J; we will finish off the proof by varifying that 
the process function f 9enerated by F is the composition of 9 and f * ,  i.e. 

f ( x )  = pro¢ f *  (9(x)). (38) 

Notice here that we are required to prove the intensional identity (38), i.e. we must 
show that as process functions of x, the two sides of(38) have exactly the same abstract 
implementations, [13, 7.6]. Now f *  is generated by the single abstract implementation 

F * (q) = F * (q(0)), 

and by (37), F (p) = F ~ (2(0 G(p)), so F is an abstract implementation of 2(x)f*(9(x)) ,  
hence f~_2(x) f*(9(x)) ,  since F generates f For  the other direction, the typical 
abstract implementation of the composition on the right-hand side of (38) is of the 
form 

2(p)F'~((2(i)G~'(p))°)=2(p)F*(G(p)~,o,)) 

=2(p)F(p") ,  with n=np~o), 

i.e. it is irreducible to F, which completes the proof. [] 

This lemma will be used to show that the lift-up 9.U of a manageable, complete 
structure and its expansions have a rich collection of computable process functions. 
To show that they do not have too many, we will use the next result, which assumes 
a minimal regularity property of sets of oracles. 

Definition 3.3. An infinite sequence codin9 for a set of oracles O _ N is any recursive 
functional 

proj : N x N ~ N  

such that 
(1) /~eO ~ (Vi)[proj (g,i)eO], 
(2) (Vi)[6,eO] ~ (3kteO)[(Vi)proj(l~,O=6,]. 

For example, if O is the full Baire space N or the Cantor set C = ( N ~ { 0 ,  1}), we can 
take 

proj (/t, i) = 2(n)/~(< i, n >). 
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If O is the set WF of well-founded trees, we can take 

proj (tx, i) = 2(u)ix((i ) * u), 

where * here stands for concatenation of sequence codes, since a tree is well-founded 
precisely when all the subtrees starting from the nodes of length 1 are well-founded. It 
will be convenient to use the same classical, Kleene notation for all sequence codings, 

(ix)i = def proj (IX, i). 

Lemma 3.4. I f  0 ~ 0 ~ N is a set of oracles which admits an infinite sequence coding, 
9.I is a process structure, and every given process function of 9,1 is defined recursively 
from O, then every 9A-computable process function is also defined recursively from O. 

Proof. We use induction on the expression which defines the given process function, 
beginning with the obvious case of the projection function 

f (X l . . . . .  Xn) = Xi 

on the variable x~. This is defined recursively by the functional 

F(p, 5) = p,(O), 

which makes no use of the argument in O. It is clearly enough to show that the class of 
process functions defined recursively from 0 is closed under composition and process 
recursion. 

Composition. Suppose, for simplicity, that 

f ( x )=g(h (x ) ) ,  

with g, h defined recursively from O via the recursive functionals G, H, the general case 
being similar. A typical abstract implementation of f is given by 

F1 (p) = G'(Ho (p), HI (p) . . . . .  ) 

= G'(H(p '~°, 6o), H(p  "1, 51) . . . . .  

= G(2(i)H(p",  6i) p, e) 

= G(2(i)H(p','", 6p(o), e). 

(G' ~g, Hi~h) 

(6ieO) 

(~eO) 

If we choose IX~O (depending on the given parameters) so that 

(ix)o = ~, (ix)~ + 1 = (6 ) , , ,  

we then see that the typical abstract implementation of f satisfies 

F1 (p) = G(2(i ) n  (p =p', (ix)i+ 1 ), (ix)o) 

with some IxeO and some p, r q : N ~ N .  

(39) 
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Define now the following recursive functional F, where we think of It as a variable 
over Baire space: 

F (p, It)= G(2(i)H(A(j )p( (i, j )), (it)i+ 1 ), (it)o)- 

For each It~ O, F, = 2(p)F (p, It) is certainly an abstract implementation of f, since it is 
a special case of (39) with p(i)=i and r q ( j ) = ( i , j ) .  To verify that all abstract 
implementations of f are of this form, it is enough to show that with ItEO so that (39) 
holds and some a:N--*N we have 

Fl (p)= V (p ~, It); 

so take any a which satisfies 

a ( ( i , j  ))=7~o(i)(j ), 

i.e. without caring what the values of ~ are on noncodes of pairs, and compute 

F (p ¢, It)= G(A(i)H(A(j )p~( ( i, j )), (It)i+ 1 ), (it)o) 

= G(A(i)H(2(j)p(~p¢i)(j )), (it)i+ a), (it)o) 

= F1 (p).  

Recursion. To keep the notation simple again, we will consider only the case of 
a single fixed point process Y, defined by the equation 

x=f(x) ,  

where f is assumed defined recursively from O. By the basic representation lemma 8.2 
of [13], every behavior of 2 is given by 

cr = rec(i, p) [p(0), Fx (i, p)], 

where Fx is an arbitrary representation of f The hypothesis is that 

F1 (i, p)= V(p ~', 60 

holds, with a fixed recursive functional F and suitable n~: N ~ N  and 6~0 .  Thus, the 
typical behavior in ~ is given by 

=p(0), 

where/~ is the least-fixed point of the fixpoint equation 

p(i) = F (J.( j ) p(~( j )), 65). (40) 

If we put together all the ~j into one, 

7z( ~ i,j ) )=Iti( j ), 

then equation (40) which we must solve becomes 

p(i)=F(R(j )p(~(<i,j ))), 6~). (41) 
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Next define a function p(w) on sequence codes of integers to integers by recursion 
on the length of the sequence (coded by) w, 

p((a))=a, 

p(u • (a))= ~(p(u), a )) ,  

and using this p, define the behavior ~ from/5 by 

gt(w)= O(p(w) ). (42) 

We compute the equation satisfied by t]: 

~(w)=/5(p(w)) 

= F ( 2 ( j  )/5(r~((p(w),j ))), 6oo~ )) by (41) 

=V(2(j)/5(p(w*(j ))),6otw ~) by def. o fp  

=F(2(j)~t(w*(j )),6p~w)) by def. of~. 

Thus, 0 is a solution of the equation 

q(w) = F(2(j  )q(w, ( j  )), 6p(w)), (43) 

and if 0 is the least solution of this equation we have 

0..<~. (44) 

We also need to show that ~< 0 and and to do this we will check by induction on 
n that 

where 

#(")(w)= /5("'(p(w) ) 
and/5(") is the nth stage in the recursion which define/5. The basis case is similar to the 
induction step, so we compute for this: 

0 ("+ ll(w)=/5("+ ~)(p(w)) 
=F(2(j)/5(")(n((p(w),j))),fp(~)) by def. 

=F(2(j)/5(")(p(w,(j ))), 6o(~) ) by def. o fp  

= F ( 2 ( j  )~(")(w, ( j ) ) ,  5o(~)) by def. of ~("). 

~< F0. ( j  )0(w * ( j )), 5p(w)) by ind. hyp. 

=0(w). 

Here the monotonicity of the functional F is used in the application of the induction 
hypothesis and the last step uses the fact that 0 satisfies the fixed-point equation which 
defined it. Thus, we now have that 

t] is the least-fixed point of (43). (45) 
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Since each 6ptw~EO, we can find a single/~eO such that for all w 

(/~)w = ~0~w), (46) 

and with this/~, t1 is the least-fixed point of 

q(w)= F O.( j )q(w * ( j >),(/~)w). (47) 

If we now consider/t as a variable and let 

H(w,/~)--~(w) relative to/~ 

= the least-fixed point of (47), 

then this functional H is recursive, since it is the least-fixed point of a recursive 
equation; 9 the proof will be completed if we can show that 

Y={H(<0>,#)I#~0}.  

We have already verified that the typical behavior of Y is given by 

a=p(0)=p(p(<0>))  (p(<0>)=0) 

=q(<0>) 

=H(<0>,~), 

with the ~t chosen above. On the other hand, we can show that for a rb i t ra ry /~O,  
H(<0>,#) defines a behavior in )~ by choosing ~( ( i , j  >)=rq(j)=j, so p(u* <a>)=a 
and then tracing the definitions 

H(< 0>,/J) =/5(p((0>)) =/~(0)z~. [] 

To prove the main result using Lemmas 3.2 and 3.4, we will appeal repeatedly to the 
trivial fact that the "merging functional" 

(/z,~,z)~-*p[tT, z] (# : States* ~ {0, 1},~,z~B) 

is recursive. Here we identify (States*-* {0, 1 }) with the Cantor set C = (N--* {0, 1 } ) by 
the obvious recursive isomorphism, i.e. we think of the set of all mergers as identical 
with C. We check parts (1)-(5) in turn. 

Proof of Theorem 2.4 (1). Directly from the definitions, merge, or and + are defined 
recursively from the Cantor set C, so that by Lemma 3.4 all the computable functions 
in the expansions ofg.I by merge or or are also defined recursively from C. To check the 
converse, identify some two distinct acts with the numbers 0 and 1, let 

O=rec(x)[x,O;x], i =ree(x)[x, 1;x] 

9 We are appealing here to the fundamental first recursion theorem of Kleene, which holds of all, natural 
notions of "recursive functional", see e.g. [19, XII]. 
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be the (deterministic) processes with sole behaviors the indefinite iterations of 0 or 1, 
and let 

c = merge(O, 1 ) = rec(x) [x, (0 or 1); x] 

be the (nondeterministic, state-independent) process whose behaviors are all binary 
sequences, so that (with our identifications, as a set), c = C. The definition exhibits that 
c is computable in both expansions of 9,I by merge or or, so it is enough to check that 
every process function which is defined recursively from C is computable in the 
simpler expansion (~J, c). For  example, if 

f (x ,  y )=  {F(p, q, 6)]p:U--*x, q:U--*y, l e G }  

with F recursive, let g be the process function defined by 

g(x, y, z)= {F(p, q, r(0)) ] p : N-4x,  q : N ~ y ,  r:N--*z} 

and check immediately that f (x ,  y) = proc g(x, y, c). The argument for + is similar. 

Proof of Theorem 2,4 (2). There is a well-known recursive correspondence between 
the fair binary sequence and N which goes as follows. If c~(0) = 2n is even, we associate 
with ~ the binary sequence n(~) which gives n + l  consecutive O's, then ct(1)+l 
consecutive l's, then ~(2) + 1 consecutive O's, etc. If ¢t(0) = 2n + 1 is odd, we define n(~) 
similarly, but starting this time with n + 1 consecutive l's. The inverse of rt is also 
recursive, easily. From this correspondence, it is immediate that parkmerge is defined 
recursively from the Baire space N, so that by Lemma 3.4, every process function in 
(9.I 1, parkmerge) is defined recursively from N. The converse is proved as above, taking 
this time the constant 

p =fairmerge(O, 1 ), 

which is computable in (9,1J, fairmerge) and checking using rt, rt-1 that every process 
function defined recursively from N can be obtained by the substitution of p in 
a process function which is generated by a recursive functional. 

Proof of Theorem 2.4 (3). To check first that fairmerge is defined recursively from the 
set WF of well-founded trees, consider the following map which assigns to each 
sequence of well-founded trees 

T=  T(O), T(1) . . . .  

a fair merger #r. We will use T(0) only to decide whether the merger should start 
giving O's or l's: say "give O's" if (0,0)eT(0), else "give l's". For  this definition, let 
(So,. . . ,  s . )  be the integer code of the sequence g(n)=(go . . . . .  s.) (which is never 0), the 
states being identified with integers again, suppose T(0) told us to start with 0, and to 
I's play of So, sx . . . .  have the merger give 0 until the finite sequence g(n)¢ T((O)); next 
start using the tree T((g(n))  and to I's play s. + 1, s. + z,-.- have the merger give 1 until 
the sequence (s.+ 1, s.+2 .. . . .  s,.)¢ T((so, . . . ,  s.)); and so on, using for the next stage 
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the tree T((s ,+ 1 . . . . .  sin)). It is quite easy to verify that we get all fair (state dependent) 
mergers in this way. Moreover, with each well-founded tree T we can associate such 
a sequence by the obvious map 

Ti= {u l(i)*u~ T }, 

and combining these two operations we have a map from the set of well-founded trees 
onto the set of all fair mergers. Moreover, the map is represented by a recursive 
functional (say) F on the subset WF of Baire space which codes the well-founded trees, 
so that we get the representation 

fairmer#e(x, y )=  {F(b)(p(0), q(0)) I p : N ~ x ,  q I N ~ y ,  ~$~WF } 

which shows that fairmer#e is recursively defined from WF. By Lemma 3.4 then, every 
process function computable in (9.1J, fairmerge) is recursively defined from WF. 

The converse is verified exactly as above replacing c and p by 

fo =fairmer#e(O, 1). 

This is a process whose behaviors are precisely all binary functions on (N~Sta tos )  
(the plays of I) which take at least once the value 1, i.e. precisely the set of (codes of) 
well-founded trees. 

The proof of the main result is now completed by noticing that Theorem 2.4 (4) is an 
immediate consequence of Lemma 3.4 and Theorem 2.4 (5) follows trivially from the 
fact that each of the oracle sets C, N and WF has a recursive member. 

4. Total computable processes 

Let us assume throughout this section that 9.I is a fixed, manageable, complete 
behavior structure. The proofs of Theorems 2.8 and 2.10 will follow from some simple 
lemmas, which combine the main result with a few elementary computations and 
applications of K6nig's lemma. We restate here for easy reference the definition of the 
ideal observables of a total process x on a finite tree of state sequences A, 

idobsx(A)={a r~ la~x}, 

where 

I A = ((g(n), a(g(n))> I g(n)~A }. 

Notice that each a rA is a finite object which can be represented by an integer, via 
some canonical coding. 

Lemma 4.1. I f  x is a total process, recursively defined from the Cantor set C, then x is 
compact (as a subset of Baire space) and for each finite tree of state sequences A, the set 
idobsx(d) is finite and can be effectively listed from a listing of A. 
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Proof. By definition, we know that there exists a recursive (hence continuous) func- 

tion F : C ~ B such that 

x = F [ C ] =  {F(6)] 6eC} ~_ N, (48) 

so x is certainly compact. For  each finite tree of state sequences A, set 

Gd (6)= F(6) IA 

and notice that Ga is a continuous function, total on the Cantor  set C and with 

discrete values (essentially) in N. By K6nig's lemma there is a fixed integer m such that 

Gj(fi) depends only on the first m values of 6. It follows that the image 
G~ [C] = idobsx(A) is finite, we can find one such bound m by a dumb search and we 

then use it to give a listing of idobsx(A). [] 

Lemma 4.2. I f  x is a total process, closed as a subset of Baire space and such that for 
each finite tree of state sequences A, the set idobsx(A) is finite and can be effectively 
listed from a listing of A, then x is recursively defined from the Cantor set C. 

Proof. Recall that we have identified the states with integers and for each i, let d i be 
the finite tree of all state sequences which have length at most i and involve only the first 
i+ 1 states. Notice that 

do ~_dl ~_ ..., 

so for any behavior a, 

arAo ~_arA1 ~_.... 

Consider now the tree Y- of all finite sequences of the form 

(Oo, @a . . . . .  O,), (49) 

so that the following conditions hold. 
(1) For  each i<~n, there is some a ~ x  such that 

O i = ~ [ A , ,  

i.e. O~ is an ideal observable of x on A~. 

(2) Oo ~- O 1 --q"" - O,. 
We can think of a coded version of f f  as a tree on integers, since its nodes are finite 

objects which can be listed, and as such, quite obviously from the hypothesis on x, 
3" is a recursive, finitely branching tree. Moreover,  every sequence in 3- has a proper 
extension in ~ ,  because its last term is an ideal observable of some behavior of x, 
which is total and therefore has a "fuller" observable on the next, larger tree of state 
sequences. Each O~ which occurs in a sequences of Y" determines some partial 
behavior ~(O~) defined on the sequences in A~, such that 

O,=a(Oi)  tA~ 
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and a(O~) has a total extension in x. Moreover, for every sequence in 3-  as in (49), we 
have 

a(Oo) __ o(01)  -= .-. __c_ ~(0, ) ,  

so that we can map each infinite branch 

0 = ( 0 o _ 0 1 _ _  .. .) 

of Y- onto a behavior 

ix(O) = lim tr(O,). 
n 

The hypothesis that x is closed implies that tr(O)ex, so the construction gives an 
effective map from f onto x. The proof is completed by composing this map with 
some canonical, recursive surjection of the Cantor  set onto the infinite branches in Y-, 
which exists because J is a finitely branching, recursive tree. [] 

Lemma 4.3. Every total process computable from C is/70, as a subset of N. 

Proof. The player x = F [C] is the continuous image of a compact set, hence compact, 

hence closed, and every closed subset of N is " H  ° in some parameter", so we are 
almost there - but we need to check that the parameter  is not needed, i.e. give a direct 
/70 definition of x. By the basic representation (48) for x we have 

~¢x ~ (V6~C)[F(6)v~a]; 
v 

for a fixed a, the condition on 6 above the brace is open and by another simple 
application of K6nig's lemma and the recursiveness of F we have a semi-effective 

procedure for verifying that it is true of all 6eC. This proves that the complement of 
x is L "°, so x is H °, as required. [] 

Lemma 4.4. Every total process, recursively defined from C, N or WF is effectively 
dense in itself. 

Proof. Suppose that x = F [O]  with F recursive and the relevant O and let O be an 
ideal observable of x, so that for some 6~0, we have 

(3A)EF(6) IA = O].  (50) 

This is an open condition on 6, so if satisfiable it holds for all 6 (in O or outside O) 
which extend some finite sequence of values w, and we can certainly find such a w by 
a dumb search. The (trivial) key fact is that every w has recursive extensions 6~0 for 
the Os in which we are interested, and any such 6 satisfies (50). [] 

With the main result, these lemmas imply immediately Theorem 2.8 and some of 
Theorem 2.10. The remaining claims of Theorem 2.10 are trivial consequences of the 
main result and known properties of the analytical classes of relations. 
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