
E L S E V I E R Theoretical Computer Science 139 (1995) 243-273

Theoretical
Computer Science

Computable concurrent processes"

Yiannis N. Moschovak i s

Department of Mathematics, University of Cal([brnia, Los Angeles, CA 90024, USA

Received July 1992; revised April 1994
Communicated by G. J~iger

Abstract

We study relative computabi l i ty for processes and process t ransformat ions , in general, and in
par t icular the non-determinis t ic and concurrent processes which can be specified in terms of
var ious fair merge constructs. The main result is a normal form theorem for these (relatively)
computable process functions which implies tha t a l though they can be very complex when
viewed as classical set-functions, they are all "loosely implementable" in the sense of Park
(1980). The precise results are abou t the player model of concurrency in t roduced in Mos-
chovakis (1991), which supports bo th fairness constructs and full recursion.

Consider the nondeterministic process 1 C defined recursively by the equation

C = (0 or 1) ; C , (1)

where 0 and 1 stand for the acts of printing the corresponding digits, " ;" denotes
sequential execution and "or" stands for unrestricted (random, autonomous) choice.

Intuitively, an execution of C prints a 0 or a 1, at random, and then calls itself to repeat
this, so "in the end" the trace of C produced by this sequence of random choices is
(essentially) some infinite, binary sequence. We would like to call C a computable

process, since it is defined by such an elementary recursion from the simple or

construct, but this brings up a question: the traces of C are arbitrary binary sequences,
most of them not individually computable.

~A preliminary version of these results was announced in the 1990 POPL meeting [12]. The POPL
announcement contained some additional material on the semantics of concurrent languages, whose proofs
have been written up in I-13]. During the preparation of this paper the author was partially supported by an
NSF Grant.
1 Terms like "process," "execution," "trace," "fairness", etc. are used intuitively and vaguely in these
introductory remarks. One of the main aims of "concurrency theory" is to supply rigorous definitions of
these notions within a specific model, and we will review how this is done for our model in Section 1.

0304-3975/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0 3 0 4 - 3 9 7 5 (9 4) 0 0 1 17-2

244 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

The same question arises more dramatically when we combine non-determinacy
with interaction, as in the following classical example of Park [15]: set

P = X : = 0; Y:= O;while(X=O){X:= 1 II Y:= Y+I}, (2)

where the parallel construct II is meant to be understood fairly, so that both of its
process arguments will get as many chances to execute as they need. In fact, the simple
assignment X := 1 needs only one chance, which must be given to it "at some point",
after which there is nothing more to be done and the process terminates. Thus - Park
argues - the traces of P are all finite sequences of acts of the form

(X : = 0, Y:=0, Y:= Y+I Y:= Y + I , X : = 1~,
k J -g

n - - I

and any satisfactory semantics for such concurrent processes should entail this basic
fact about P. Using Park's fair-merge construct, we can also set

M = (0 II 1), (3)

where 0 = (0, 0) and 1 = (1, 1) are the constant infinite sequences. The traces
of M are exactly the "fair" binary sequences, those with infinitely many O's and
infinitely many l's, most of them, again, not individually computable. Still, we are
tempted to say that M is a computable process, relative to the fair merge construct.

Park [15] was responding to Dijkstra [5], who advocated banning definitions like
(2) and (3) from programming because they involve unbounded non-determinism

- which "cannot be implemented" - and he argued that in discussing implementability
issues we should understand nondeterministic and concurrent definitions of this type
loosely:

No-one requires of a correct implementation for parallelism that there be an
appropriate sense in which all scheduling algorithms be possible in it, only that
there be one such scheduling algorithm, and if fairness be required that the
scheduler be fair.

So we can claim that C and M are implementable since the computable, alternating
sequence of O's and l's is a trace of both of them. Now the existence of implementa-
tions is obviously important, but it will hardly do as a sole criterion for computability:
no-one would call an arbitrary set of infinite binary sequences computable simply
because it may happen to have a computable member. If there is a natural concept of
computable process, then it must involve more than the mere existence of a computable
trace.

At the same time, we cannot profitably interpret the definitions of C or M so that
they only have computable traces, we truly need all their traces, if we are to gain
anything from allowing unrestricted choice or fair merging among our primitive
programming constructs. When we call M from within some program E, we are
simply specifying that a fair, binary sequence should be produced; and in proving

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 245

properties of E, all we can assume is that the sequence produced will be fair, not that it
is also computable, as it may well be that some piece of hardware is doing the merging,
noncomputably. In fact, we tend to call nondeterministic processes like C, P and
M "computable" primarily because they are defined in terms of simple and intuitive
programming constructs. The fact that they have computable traces should be
a formal consequence of such definitions (however trivial for these examples) and not
the basic reason for thinking them computable.

The main aim of this paper is to define rigorously and establish some basic facts
about computable processes and computable process functions, in the context of the
game-theoretic modeling of concurrent, asynchronous systems introduced in [-13]. We
will characterize these objects in the cases where we take as given unrestricted choice,
the full (unfair) merge, the fair merge in the sense of Park (as above) and the richer
state-dependent fair meroe which is most natural in the context of our concurrency
theory. The main result is that the processes which are computable relative to these
constructs are all "loosely implementable" in the sense of Park, although their sets of
traces can be extremely complex; it is a corollary of a Normal Form Theorem for
computable processes and process functions, which also implies that these notions are
very robust and provides some considerable justification for our choice of definitions.

There are two important notions in the player model of concurrency introduced in
[13], the players which model concurrent processes and the implemented player
functions (ipfs) which represent process transformations. After a brief review of these
notions in Section 1 and a briefer comparison of the player model with other
modelings of concurrency, we will define process computability and state rigorously
our results in Section 2. These sections can be read with only a fair acquaintance of
Sections 1-4 and 6 of [13], but the proofs, in the remaining two sections, depend
heavily on the technical machinery developed in [13].

1. The player and other models of concurrency

A useful tool for defining the player model and comparing it with other modelings
of concurrency is the following, simple formal language. 2

1.1. The expressions (terms) of FLRo(z) are defined inductively by

E ::=x[f(E1 E .) l r o o (x l x.)[Eo E.] ,

where x is any variable (from a fixed, infinite set), f is any function symbol (from a fixed
vocabulary r of function symbols, each with an assigned, nonnegative arity) and

2 This was called .La in [13]. FLR0 is the equational (or "propositional") part of FLR, the formal language of
recursion introduced in [11]. There is also an intermediate language FLR1, which comes from FLR by
dropping the conditional but retaining value passing and functional recursion, and which plays for
recursion the role that the first-order predicate calculus plays for explicit definability.

246 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

a more familiar notation for the mutual recursion construct is

Eo w h e r e {xl = Ea x, = En}.

FLRo is an abstract version of several languages which have been used to study
concurrency, including Hoare's communicating sequential process (CSP) [7], Milner's
calculus of communicating systems (CCS) [9], the metric approach of de Bakker and
Zucker [4] and the reactive processes of Manna and Pnueli [-8]. The idea is that
a particular model can be made precise and compared to other models by giving
rigorous semantics for FLRo(z), with some specific vocabulary z. Most of these
languages include some or all of the following function symbols, in common, infix
notation and with their intended, intuitive meaning:

skip skip, or idle,

a act execution,

ax act prefixing,

x; y sequential execution,

if R then x else y conditional execution,

x or y autonomous choice,

x If Y merge .

The act symbols are from some fixed set A (sometimes endowed with additional
structure) and the conditionals are often described by an auxiliary language of
"conditions" (on some assumed "state"). When included, the merge operation is
sometimes interpreted by the full (unfair) rather than the fair merge. In addition, most
theories include special functions to model the interaction (or synchronization) of
processes, which is the heart of the problem of modeling concurrency. There is no
single, special construct for interaction in the player model, the ability to interact is, in
some sense, built into the very definition of "process", and it is controlled by a typing
mechanism for interaction.

In [13] we defined three kinds of FLRo(T) semantics, for structures of the form

= (Se, J) = (States, ~, Acts, skip, exec, J) , (4)

where 5e=(States, t, Acts, skip, exec) is the state structure of ~ and d ¢ is a set of
"functions" which distinguishes the semantics. About 5 c we assume the following:
States is an arbitrary set of states containing the initial state t; Acts is an arbitrary set
of atomic acts containing the "delay" act skip; every act a induces a function
s~-*sa=exec(s, a) on the states, such that s skip=s; and every state s is accessible by
a sequence of acts al a, from z, i.e. s =ala2 -.. a,t. A state structure 5c is trivial if its
only member is z, in which case we can identify it with the set of its acts. We summarize
briefly and comment on each of these interpretations.

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 247

1.2. Input-dependent, deterministic processes

A procedure (or input-dependent stream, [13,2.4-2.8]) on 5 ° is a function ~:
States-->Streams(Aets) which assigns to each state a stream of acts. These are the
natural denotations of programs which read the state just once (presumably to get
input) and then execute a stream of acts in total isolation from the environment. The
set H = / / (S e) of procedures over 5 a is a directed, complete poset (dcpo) and in
a procedure structure (6P, J) for FLRo(z), J assigns to each n-ary function symbol f o f
the vocabulary z a continuous, n-ary function J (f) : I I " ~ I I . To interpret FLRo(z) on
(5¢,J) , we let the variables range over procedures and we use composition and
least-fixed-point recursion to associate with each expression E and each sequence x of
n variables (which includes all the free variables of E) an n-ary procedure function

procedure(~I, x)E = dp~ : 11"--+17.

Two expressions E and M are procedure equivalent if for all procedure structures,
4bE = qSM- There are obvious, procedure interpretations of act execution, act prefixing
and sequential and conditional execution [13, 2.7].

In a trivial state structure, procedures stand for totally isolated programs which
cannot interact at all with one another. If the state is nontrivial, then the sequential
execution ~;fl affords some minimal communication at the entry and exit stages,
because if ~(s) terminates after executing the acts a~ a,, then (after these acts)
(~;fl)(s) executes the stream fl(ala2 ... a.s) which may depend on ai a..

1.3. Interactive, deterministic processes

A behavior (or state-dependent stream of acts) is a partial strategy for II in the
interaction game pictured in Fig. 1, formally a partial function

a: States* ~ A c t s x {~, t} (5)

on nonempty sequences of states, except that we identify behaviors which agree on all
partial runs of the game [13, Section 3]. Player II represents in this game the
denotation of some deterministic, interactive program, which responds (if defined) to
each states s. played by I with an act a. and either the indicator 0, meaning that more
moves are needed, or t, signifying successful termination; player I represents "the rest
of the world", the collective action of all the other agents operating in the same

I So S1 S2 " " " S n

II (a0,0) (ao,8) (a2, tg) ... (a. , t)

State: ~ Soao slat s 2 a 2 . . . n3a3

Fig. 1. The interaction game; a terminating run.

248 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

environment. The set B = B (6 p) of behaviors is a dcpo. An n-ary behavior function is
any continuous F : B"~ B, and a behavior structure 9,1 = (~ , J) is one where J assigns
behavior functions (of the appropriate arity) to the function symbols. The behavior
semantics of such a structure interpret recursion by the taking of least fixed points, and
they associate with each expression E and each list of n variables x which includes all
the free variables of E, a behavior function

behavior (9.1, x)E = F~ : B " ~ B,

the behavior denotation of E. Two expressions E and M are behavior equivalent if
FE = Fu on every behavior structure.

Behaviors are the natural denotations of deterministic, interactive programs and
several examples of them are worked out in [13, Section 3], including act execution
and prefixing, sequential and conditional execution and the handling of interrupts. It
is also claimed in [13, Theorem 3.7] that procedure equivalence coincides with behavior
equivalence for FLRo expressions; the proof of this is quite simple.

1.4. Interaction through the state vs. message passing

Among actual, interactive systems, there is an important difference between those
with a common, central memory which can be accessed by all the processes, and those
in which communication can only take place by the passing of messages through
private channels. Our notion of behavior might suggest that the player model can only
handle efficiently central-memory interaction, but this is not true. Suppose, for
example, that the process x can only execute acts in some set K ~ Acts, the process
y can only "see" changes in the state which are produced by the execution of acts in K,
and no other process can either execute acts in K or discern changes in the state
produced by the execution of acts in K; we might then reasonably call K a private,
one-way channel of communication from x to y. There is a natural notion of behavior
type for processes which provides a flexible mechanism for introducing and keeping
track of such restrictions and by which we can easily represent in the player model a
local state interaction through message-passing [13, 4.3-4.7, 8.2]. See also [13, 3.6] for
some remarks on the representation of concurrent systems by the game of interaction.

1.5. Traces of behaviors

If to is a (total) strategy for player I and ae B, then

t o * a = a o , a l (6)

is the stream of acts "executed" (by player II) in the run of the game where I plays by
to and II responds by a - terminated with t if II ever plays (a,, t). The trace of a is the
set of all these streams,

trace(a)= {to* a l to is a strategy for I}. (7)

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 249

If, for example,

a ((So)) = (a, d), (8)

a((So, s 1)) = if R (So) then (b, t) else (c, t),

then trace(o)= { (a , b, t) , (a , c, t) } is a doubleton and an "observer" who is simply
recording the acts executed by a (in repeated experiments) without knowing the state
structure or the relation R may well consider a a nondeterministic process.

1.6. Concurrent processes

A player on a state structure 5 ~ is any nonempty set of behaviors, and we set

~ (5 g) = ~ = {x[0 ~ x c_ B(5¢)}; (9)

this is the set by which we model the nondeterministic, interactive processes on 5 a.
Intuitively, a player x can "play" (interact with the world, be implemented by) any of
its "behaviors", i.e. any aex . A player x is deterministic if it is a singleton x = {a} and
total if every a e x is a totally defined strategy. For example, for each act a.

a ' = {2((So s ,)) (a , t)} (10)

is the total, deterministic player who (confronted by any state) executes a and quits.
The trace of a player is the union of the traces of its behaviors,

trace(x) = U {trace(a) l a e x } (11)

={o~*alaex, o~ is a strategy for I}.

Now ~ is not a dcpo in any natural way, so it is not immediate how to model
process transformations by functions which have fixed points. Before dealing with
this, notice that each behavior function F: B " + B induces naturally a (set) function

F~: ~ " ~ by "distribution",

FJ(xl x .) = {F(ax a.)[aa ex l a .~x . }; (112)

for example (and skipping the j) ,

x ; y = { a ; z l a e x , z~y} ,

if R then x else y = {if R then a else * l a e x , * ~ y }

= {FR(a, *)I aex , *~y},

where for each a and ,,

FR(a, z)=2((So s .)) if R(so) then a((So s .)) else z((So s.)).

These liftups are deterministic player functions, in the sense that when applied
to deterministic arguments (singletons) they yield deterministic values. Typical

25O

nondeterministic functions on ~ include

x or y = x u y ,

x + y = (/ f R then tr else z l a e x , z s y , R c_ States},

Y.N. Mosehovakis / Theoretical Computer Science 139 (1995) 243-273

(13)

(14)

which represent two distinct ways of modeling choice. Notice here that for all players

x, y, easily,

trace(x + y) = trace(x or y) = trace(s) u trace(y),

but in general, (x or y) ¢ (x + y) , in fact

a j or b J ¢ a J + b j

if a and b are distinct acts and the state structure is nontrivial: because if R(s) is true
for some state and false for some other, then the state-dependent strategy

tr(so)=/f R(so) then (a,t) else (b,t)

is a behavior of a j + b J but not of a J or b j. For the same reason,

aJ;(bJ +&)v~aJ;bJ +aJ; & (15)

for distinct acts in a nontrivial state structure, although these two players have the
same traces. Thus, a non-deterministic player is not determined by its trace.

1.7. Modeling process transformations

One of the basic premises of [13] is that a function f : ~ models a process

transformation if it is determined by its "implementations", and one is tempted (at first)
to consider only the linear implementations of f, i.e. the continuous F : B--* B such that

a e x ~ F(t r)e f (x) .

But if the recursive definition (with a parameter)

y = x ; y (16)

makes sense (as it should), we would expect it to define the process transformation

y(x)= {~o ;~1 ;"" I ~o,~1 ex}

and the most natural implementation of y(x) is the "infinitary" continuous operation

Y(tr o, trl, tr 2) =tro; trx; tr2

In general, a (infinitary) behavior function (of n arguments) is any continuous opera-
tion

F : (N--* B)"~B (N={0, 1 }),

and we call F an abstract implementation of a function

f : ~" - -*~

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 251

if for every n-tuple of players x = Xl Xn and sequences of behaviors p = Pl, -.., P.,

Pl :N--*xl p. : N-~x . ~ F (p) e f (x) .

A function f : ~ " - - , ~ is implementable if there exists some set I of abstract implemen-

tations which determines its values, i.e.

f (x) = {F(P)I Pl : N--*xx p. : N ~ x . , F e l } . (17)

The second basic premise of [13] is that the correct way to model process
transformations is to forget the extensional "implementable" and use the intensional
"implemented" [13, Section 7]: an n-ary implemented player function (ipf) is 3 any set
f of n-ary abstract implementations which is closed under a suitable reducibility

relation [13, 7.2-7.4]; and the (player) value of f is given by

f (x) = {F(p) Ip, : U--*xx p. : N--.x. , F e f }.

A set I ~_f generates an i p f f if

f = [I] = { F I F is reducible to some Gel} , (18)

i.e. if f is the closure of I under reducibility. It can be verified that every set I which
generates f determines the values of f by (17) [13, 7.3]. Most often, we define ipfs by
specifying a simple generating set for them. For example, for each behavior function

F: B"~B, we let

VJ=[V *] with F*(pl p.)=F(p~(O) p.(0)), (19)

the notation chosen because this F j indeed satisfies (12). Similarly,

or=[F~,F,] with Fz(p,q)=p(O), F,(p,q)=q(O), (20)

is the ipf version of autonomous choice, easily satisfying

x or y={Fl(p ,q) l p :N- -*x ,q :N~y}u{Fr (p ,q) [p :U- -*x ,q :U- -*y} .

A similar modeling can be given for x + y as an ipf, but now we need an infinite
generating set, all the conditionals. An ipf is deterministic if it is generated by a single

behavior function Fo, as each F j is but or is not.

1.8. Merge operations

A merger on a process structure 9I is any (total) function /~: S ta tes*~{0, 1} on
nonempty sequences of states to {0, 1}. Given behaviors go, ax in od,/~[ao, as] is the
(conjunctive) merged behavior of go, a l , defined (roughly) by decreasing that in
a certain stage of the game it calls go or a l accordingly as/~ gives the value 0 or 1.

3 An ipf "is" a set of abstract implementations in the same sense that a function "is" a set of ordered pairs
- i.e. this is the way by which we represent these objects within set theory.

252 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

Rather than give the formal definition which is somewhat technical, we indicate in
Fig. 2 the first few moves of the play by #[ao, aa] for given values of It; see also
[13, 3.3]. (The picture does not indicate that if some al first plays some (a., t) when it is
called, then from that stage on #[ao, aa] calls the other behavior a l - i independently
of the value of #.) A merger It is state independent if its values depend only on the stage
of the game and not what has been played, i.e. for some v: N~{0, l} and all sequences
of states,

I t ((So s .)) = v(n);

a merger It is fair if for every ao, al and every infinite run of the game by It[ao, aa],
each ai either plays some (a., t) at some stage when it is called, or is called infinitely
often.

We define the (full, unfair) merge, the parkmerge and the fairmerge operations by the
equations

merge(x, y)= {it [p(O), q(O)] [p: N--*x, q: N--*y, It any merger},

parkmerge(x, y)= { It [p(O), q(O)] I p:N--*x, q:N--*y,

It any fair, state-independent merger},

fairmerge(x, y)= {it [p(O), q(O)] I P: N ~ x , q : N ~ y , It any fair merger}.

Of course, we read these equations as definitions of ipfs (sets of abstract implementa-
tions), so that (for example) merge is the ipf generated by all

F,(p,q)=it[p(O),q(O)] (It any merger),

and its abstract implementations are precisely all functions of the form

Fu, k,~(p,q)=it[p(k),q(l)] (k, leN, It any merger).

We use the name parkmerge for Park's fairmerge, his terminology being more
appropriate in our context for the full, state-dependent fair merge operation.

In concrete modelings of concurrency closer to applications, the state structure is
taken to be quite specific (typically determined by variables, stacks and buffers), and it
is possible to define a large variety of "fair merge operations", see [6, 8]. It should be
clear from this discussion that these operations can all be "represented faithfully" by
ipfs: this is what we mean when we say that the player model supports fairness.

I S O S 1 S 2 S 3 $4

#: 1 0 1 1 0

I t [ao,al] : II trl(so) Oo(S0 al(So, S2) ax(So, S2,S3) ao(Sa,S4)

Fig. 2. Action of binary merger.

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 253

1.9. The player model

We represent processes over a state structure 5 ~ by players and process functions
by ipfs, and to keep the language less stilted we will use the more familiar terms from

now on:

process = player, process t ransformat ion = ipf,

except where we need to emphasize the special properties of the player model.

A process structure for FLRo(z) is a pair @I=(5 e, J) , where the interpretation J as-

signs ipfs to the function symbols in z.
The most substantial contr ibut ion of [13, Section 8] is a method for solving

recursion equations of the form

x = f (x), (*)

y=g(x ,y) , (**)

where f and g are given process functions; the solution o f (*) is a process, that o f (**)

a process function, and the method also solves similar systems of mutual recursion.

Using this ipf recursion to interpret the rec construct and a a natural not ion of ipf
composition, we assign to each FLR0(v) expression E and each list of n variables

x which includes all the free variables of E, a process function fe; closed expressions

are assigned processes. We call E and M process equivalent if fe =fM on every process

structure.
The main result of [13, Sections 8-10-1 is that for FLRo expressions, process

equivalence coincides with behavior equivalence, and hence also with procedure equiva-

lence. In effect, with this modeling of interaction and concurrency, the logic of
concurrent recursion is the same as the logic of deterministic, interactive recursion, or
even deterministic, non-interactive recursion:* this is what we mean when we say that

the player model supports full recursion.

1.10. Other modelings

The main - and characteristic - feature of the player model is that it supports both

fairness and full recursion. Modelings like Hoare 's CSP and Milner's CCS, whose
pr imary semantics are operat ional do not support fairness, and the same is true of

axiomatic and algebraic approaches; where fairness is included, on the other hand, as

in M a n n a and Pnueli I-8], full recursion is weakened to iteration ("while" looping),

4 In fact the FLR0-identities which are valid in process structures are exactly those which are valid in all
domain structures (D, .8"), where D is a dcpo, J interprets the function symbols by continuous functions on
D and the recursion constructs is interpreted by the taking of least-fixed-points. This is a joint result with
Tonny Hurkens, based on a simple axiomatization of the logic of recursive equations, which also proves the
decidability and substantial robustness of this class of identities and relates this work to earlier results on
recursive program schemes, trees and networks, see [3].

254 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

and Park [15] already gives a simple model which supports both fairness and
iteration. M a n y models have also been proposed which do not support either fairness

or full recursion, e.g. the "metric space" models of de Backer and Zucker [4]. 5

In the joint paper [14] with Glen Whitney, we generalize the construct ion of [13] to

define a player model ipf(D) over an arbitrary dcpo D, we define an abstract not ion of

powerstructure which covers many models of concurrency and makes it possible to

compare them, and we show that i f D is a profinite dcpo, then the PIotkin [17]

powerdomain over D together with the set-monotone continuous functions on it is

a quotient o f a substructure o f ipf(D). Whitney has obtained similar "embedding"
results for the Hoare and Smyth powerdomains [22].

1.11. lntensionality in the player model

The fact that a player is not determined by its traces in 1.6 exhibits some inten-

sionality in our modeling of processes. This is quite c o m m o n in many modelings of

concurrency, e.g. both the strong and the weak bisimulation models of Milner's CCS
[9] yield a not ion of process (agent) which is not determined by its traces. What may

be peculiar to the player model, is that process t ransformations are also modeled by

intensional functions which are not completely determined by their values. It appears

that this is necessary, 6 but it also adds some unexpected "expressibility" to the model.

The following example may help illustrate some of the subtleties involved.

Suppose that the structure 91=(5 ¢, J) has a countable number of states which we

identify with the integers, and consider the following two (infinitary) behavior func-
tions F and G on 9.1:

~(skip, ~), if n = 0 ,
F(p) ((So s .)) ~- (p (O)((s l s .)) otherwise,

, , , . ((skip, ~), if n =0 ,
G(p)((So s , ?) _ ~p(so)((sa s ,)) otherwise.

Let f = [F] and 9 = [G] be the process functions generated by F and G. It is quite
obvious that these are extensionally equal, in factor for all processes x,

a(x) = f (x) = skip; x.

S,,Guarded,, recursion in the de Bakker and Zucker model obeys the laws of least-fixed-point recursion
[21], but this is apparently not true for unguarded (continuous) recursion. The suggestion in [4, 3.5] that (in
effect) every recursion be made guarded "by definition" is not serious: in our notation, it assigns to x = a; x
the solution (skip, a, skip, a ...), which does not satisfy the equation it is supposed to solve!
6 In his Ph.D. thesis [221, Whitney has answered Question [13, 9.7] by constructing an example of two
extensionally equal, unary ipfs with distinct ipf fixed points; he has constructed an extensional model which
supports fairness and satisfies the "minimum conditions" for a model of concurrency listed in of [13, 6.1]

- and quite a bit more; and he has shown that there is no extensional model which further satisfies some
simple, natural properties of the player model.

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 255

Viewed intensionally as sets of implementations, however, f c g but f # g, because
G(p) ((So, s 1)) depends on So while F (p) does not, and it is easy to see that "reducibil-
ity preserves state independence". Now what is the difference between the (intuitively
understood) "process transformations" modeled by these two distinct mathematical
objects? It appears that the best we can describe them is as follows:

f(x): Given x, call some behavior a e x and then: to the first state So respond by skip

and after that follow a.
g(x): Given x: to the first state So respond by skip, then call some behavior trex and

after that follow tr.
We have used "infinitary" behavior functions to capture the fact that implementa-

tions may "get access" to distinct behaviors on different "calls" to nondeterministic
arguments, and we have imposed closure under reducibility to insure that process
functions treat their arguments as sets rather than sequences of behaviors. The
example makes it clear, however, that the modeling forces the incorporation of some
aspects of the "timing" of "calls" (and their consequent, possible dependence on the
state) into the modeling. It is not clear now just what role this distinction f # g plays in
the modeling, but we will see in Section 3 that it is quite important.

2. Definitions and results

Definition 2.1. A process function f on a structure 9.[is computable, if it is definable on
9.I by some expression E of FLRo, i.e. f=fE in the sense of the process semantics of
9.I to which we alluded above.

Since we are interested in characterizing the computability of "true" (nondetermin-
istic) process functions like the fair merge, we will factor out the mundanely comput-
able behavior functions by means of the following definition.

Definition 2.2. A behavior structure 9.1 as in (4) is manageable, complete if there exist
fixed, nonrepetitive enumerations of its (countably) infinite set of states and (possibly

finite) set of acts

S ta t e s= {So, $1 }, Ac t s= {Ao, A1 },

so that the following conditions hold.
(1) There is a fixed recursive partial function exec : N x N ~ N such that exec(i,j) is

defined when A~ is an act and

s i a j ,~ Sexec(i" j)"

(2) For each state s, there are infinitely many distinct states which are accessible
from s.

(3) Every (classical) recursive behavior function is computable in ~.

256 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

The first two of these hypotheses certainly hold in the standard example where the
state is a finite (or effectively enumerable) store of variables. They allow us to
"identify" (code) states and acts with integers, but also (using standard recursive
codings) to identify finite sequences of states with integers, behaviors with (special)

partial functions on N to N, etc. Thus, we can talk about recursive behavior functions
in the third hypothesis, meaning recursive functionals which take partial functions as
arguments and values, and these certainly include act execution, sequential execution,
conditions based on recursive conditions on the state, etc. Precise definitions will be
given in Section 3. 7

We will characterize computability in expanded structures of the form (91, ~-*),
obtained by adding to a manageable complete behavior structure 9.1 some set ~ * of
process functions, e.g. the various merges. Formally, we should write (91J, ~-*), where
91J is the process structure obtained by replacing each behavior function F in 9.I by its
liftup F j defined in (19), but [13, Theorem 8.9] implies that the distinction is only
notational.

If F is a monotone, continuous operation of the type

F : (N ~ B)" x (N--*N)~ B, (21)

then for each (5e(N--.N), the (5-section F ~ : (N - B) " ~ B of F is the infinitary behavior
function of n arguments defined by fixing (5 in F,

Fo(p~ p.) = F (Pl p., (5). (22)

Definition 2.3. A process function f is defined recursively from a set 0 of total,
number-theoretic functions, if there exists a recursive function F as in (21) such that
f is generated by the (5-sections of F with (5~0, i.e. f=[{Fol(5~O}].

Notice that if f is defined recursively from O via the recursive function F, then its
values are given by

f (x) = {F(p, (5) [Pl : N ~ X l p. : N ~ x . , (seO},

i.e. intuitively, we can compute a value of f (x) if we are "given" arbitrary calls to
behaviors in the process arguments and an "oracle" (5 e O. The definition makes sense
for functions with 0 arguments, i.e. processes: a process x is defined recursively from
the set of oracles O if there is a recursive F : (N ~ N) - - . B such that

x= { F ((5) l (seO }. (23)

Theorem 2.4 (Main result). Fix a manageable, complete behavior structure 9I.
(1) The computable process functions of (91, merge) are the same as the computable

process functions of (9.I, or); they are the same as the computable process functions of

7 We want to avoid technical issues of abstract recursion and language design here. It is quite routine to
turn the third hypothesis into a theorem, by enriching the language with a few simple, natural constructs.

Y.N. Moschovakis /Theoretical Computer Science 139 (1995) 243-273 257

(91, +); and they are precisely the process functions defined recursively from the Cantor
set C=(N--*{0, 1}).

(2) A process function f is computable in the expansion (91, parkmerge) if and only if
f is defined recursively from the full Baire space N = (N ~ N) .

(3) A process function f is computable in the expansion (91,fairmerge) if and only if
it is defined recursively from the set of (codes of) well-founded trees

WF = {a~ c I (vo~: N-, .N) (~ n) [a(~(n)) = 1] }, (24)

where ~(n) is the integer code of the finite sequence (~(0) ct(n-1)).
(4) In each of these cases the set of computable process functions does not change if

we further expand the structure by functions which are defined recursively from the
specified set of oracles.

(5) For each of the structures in (1)-(3), every computable process function has
a recursive abstract implementation and every computable process contains a recursive
behavior.

It is easiest to read off some of the consequences of this theorem for the case of total
processes, which may be identified with subsets of the Baire space N since all their
members are totally defined behaviors. Recall the logical classification of analytical
subsets of Baire space by how many and what kind of quantifiers we need to define
them beginning with a recursive relation R, cf. [19, 10]. In this summary table of
definitions, i varies over N and Greek letters vary over the Baire space N:

n +, 6~x .¢~ (gi)R(&i),

6ex ,~ (3ct)(Vi)R(6, ct, i),

6 ex ¢~ (3~)(Vfl)(3i)R(6, or, fl, i).

The dual classes to these are defined by taking the negations of these forms and they
are denoted by interchanging Z and/-/, e.g. the class of complements of H ° sets is Z °.
It is known that each of these classes is proper, i.e. none of them is included in its dual.

We will characterize the total processes computable in the full (unfair) merge in
terms of a natural notion of "observables" of processes.

Definition 2.5. A direct observable of a behavior tr is a finite sequence

obs = So, tr((So)), sl, tr((So, st)) s,, a((So s.)), (25)

which is a legal initial part of the game of interaction, i.e. all the terms of the sequence
are defined and I's partial play (So s .) satisfies the condition of accessibility. An
ideal observable of tr is any finite set of its direct observables.

The direct and ideal observables of a process x are the direct and ideal observables
of the behaviors of x.

258 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

2.6. Observability and initial nondeterminism.

The direct observables of a player x are the "finite" facts about x that we can learn

by direct "experimentation" or "testing", assuming that we have full control of the

state: we adopt the role of player I in the interaction game, start with some So, x

(perhaps) responds with some (a0, 9), we choose some sl, etc. If the game goes on for

n + 1 turns, we have at the end an observable of x as in (25), where a is the behavior

followed by x in this run; this is because by our understanding of"initial nondetermin-

ism", x "chose" a fixed behavior a at the start of this run and he will follow it until the

game ends (a((So s,)) = (a,, t)) or hangs ((a((So s,)) = ±). The ideal observ-
ables may also be viewed as facts about x which can be learned by testing, but we must

be allowed some questionable "backtracking" (or "undoing") moves in the game,

where (playing as I) we can "change our mind", take back a state si and replace it by

s'i after recording x's response to sl - while x is not allowed to switch behaviors. We will

not analyze here any further the various notions of observational equivalence between

players and their relation to the extensive literature on this notion in process theory.

Each ideal observable of a behavior a is (essentially) the restriction a r A of a to

a finite set A of sequences of states which is closed under initial segments (a tree) and

such that a is defined on every member of A. For each process x and finite tree of state

sequences A, we let

idobsx(A)= {a [A l aex , (V(So s .) e A) a ((So s,))~,} (26)

be the set of ideal observables of x on A.

Definition 2.7. A process x is effectively dense in itself if from (a canonical listing of)

each ideal observable 6~ = a I A of x, we can effectively find a recursive behavior o ' s x

which realizes 6~ in the sense that ~9=a ' IA.

Park (adapted to the present context) would call a process x implementable if it has

a recursive behavior, so we can think of effective self-density as a very strong form of
implementability.

Theorem 2.8. Let 9.I be a fixed, manageable, complete behavior structure. A total
process x is computable in (9.I, merge) if and only if it is closed as a subset of Baire space
and for each finite tree of state sequences A, the set of ideal observables idobsx(A) is

a finite set which we can effectively list from a canonical listing of A.
As a subset of Baire space, each total process x computable in (9A, merge) is 17 o,

compact and effectively dense in itself.

2.9. Initial vs. persistent nondeterminism. A plausible modeling of a (total) process ~ is
that it is a function

: States*--*power (Acts x { c~, t }) \ {0 } (27)

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 259

on n o n e m p t y sequences of states to n o n e m p t y sets of acts (paired with indicators),

which acts as a multiple-valued strategy in the interact ion game: to I 's move So,
responds by choosing some (ao, Wo)e~((So)) , to I 's next move sl , ~ responds by

choosing some (al , W l) ~ ((S o , Sl)), etc. For each world strategy co, the responses of

form a closed set

w * Y = {ao, ax, .. . , I (Vn)(3w.)[(a. , w.)~Y((So s.))3 }, (28)

the appropr ia te analog of co* a defined for a single-valued a in (6). The (stream)
members of this to * :~ are the (observable) responses of Y to to. This is the "persistent"
variety of nondeterminism, and versions of it occur in several models of concurrency,

somet imes with the added restriction that ~((So s .)) is always a finite set; it is
different f rom Park ' s "initial nonde te rmin i sm" we have adopted, by which a player
x chooses at the beginning of the game a single (deterministic) s t rategy a m o n g those
available to him, and then sticks with it no ma t t e r what. The persistent nondetermin-
ism picture of a process is quite attractive, but it cannot accomoda te fairness, because
if x =fairmerge(O, 1) (for example), then the set to * x is not closed. For structures with
only the full (unfair) merge to which Theorem 2.8 applies, however, if a player x is

computab le , then the set

to* x = {to* a I a e x } (29)

is closed, in fact compact . Second, each computab le player x determines a comput -

able, mult iple-valued strategy

ff((So s .)) = {(a., w.)l(3u)[u * ((a., w.))~idobsx(A)},

where A = { (So) , (So, s i) (So s.) } is the tree of sequence states determined by

(So s.). Finally,

to* .~ =-to * X;

in fact ~ determines x completely. Thus, in the absence of fairness, our picture of initial
nonde te rmin ism is reconciled with the persistent nonde te rmin ism picture, at least for

the computab le players in which we are ul t imately interested.
We do not have a complete character izat ion of the total, computab le processes for

the more complex merges, in terms of classical notions, but we can say something

abou t them.

Theorem 2.10. Let 9.I be a fixed manageable, complete behavior structure.
(1) I f a total process x is computable in the expansion (~, parkmerge), then x is

effectively dense in itself and for each finite tree of states A, the set of ideal observables
idobsx(A) is recursively enumerable; as a subset of Baire space, x is S,~, possibly in

 l\nl
(2) I f a total process x is computable in the expansion (9.I, fairmerge), then x is

effectively dense in itself and for each finite tree of states A the set of its ideal
observables idobsx(A) is recursively enumerable; as a subset of Baire space x is Z~,
possibly in 1 1 Z2\ / - /2 .

260 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

The upshot of these results is that to ta l processes which are c ompu ta b l e in ei ther of

the fair merges are very effective in the " loose" sense of Park; a t the same time, they

can be ter r ib ly complex when we view them "extensional ly" (as subsets of Baire space),

even p rope r _r~ sets in the case of the full, s ta te -dependent fairmerge.

3. Proof of the main result

Let

PF =(N--~N) , N = (N - , N)

be the sets of all par t ia l and to ta l functions on N to N, respectively. We will assume as

given the no t ion of a (part ial) recursive functional with par t ia l function and integer
a rguments ,

F : PF ~ x N k - - ' N ,

and the basic proper t ies satisfied by that not ion, s A funct ional F : X ~ PF with values

in PF is recursive if there is a recursive (partial) func t iona l F * : X x N - - - N such that

F (x) = 2 (n) F * (x , n).

It is somet imes i m p o r t a n t that a recursive funct ional takes to ta l (number- theoret ic)

functions to to ta l functions; we will abbrev ia te this by wri t ing

F : Nn x Nk--.N.

In general , the no t a t i on F : X ~ W means that F (which m a y have been defined as

a par t ia l function on some superset of X) is in fact to ta l ly defined on X and takes

values in W.

Fix ing some na tu ra l recursive i somorph i sm of the set of infinite sequences of par t ia l

funct ions (N--* PF) with PF, we will also app ly recursive funct ionals to a rguments in

(N - * P F) . We also use the cor respondence i~-*Si and jv--~A i suppl ied with a manage-

able, comple te s t ructure ~ to identify the set of states with N and the set of acts with

a Actually, there are at least three competing notions in the literature, so that (for example) the partial
functional

F(ct, fl)---/f (a(0)~ or fl(0)~) then 1 else _L

is recursive by one of them but not the others. We will only use properties of recursive functionals which are
true for all three notions, but for definiteness we adopt the most natural definition via Turning machines
with oracle calls. A partial functional F : PF" x N ~ N is recursive, if there is a deterministic Turning
machine M equipped with an extra oracle tape and special states Oi, for i= 1 n, which computes
F(~q ~t.,Jt, .-.,Jz)for all unary partial function arguments st a. in the usual way, as if it were
a partial function of its integer arguments only, but with the following rule for the computation in the oracle
states: if M is in state O~ and the oracle tape has the number k on it (however we code numbers, unary or
binary), then the computation stops if cq(k) is undefined or proceeds with k replaced by a~(k) on the oracle
tape if ~i(k) is defined.

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 261

either N or a finite initial segment of N. From that, the set Statss* of nonempty
sequences of states is also identified with N, by some canonical, recursive coding of
sequences. If we further identify the indices 8 and t with 0 and l, respectively, and then
N x {0, 1) with N using another recursive bijection, we can code the behaviors of

92 with (suitably restricted) partial functions a: N - ~ N , i.e.

B ___ PF.

Finally, infinite sequences of behaviors will also be viewed as partial functions on N

to N,

(N ~ B) __ PF.

We will also use in the proofs several convenient notational conventions from [13],

including

~(n) = (S o s .).

Finite sequences of integers will often be confused with their codes, and then concat-
enation is understood appropriately. We will sometimes indicate whether an object or
one of its various codes is used, but in most cases it is clear from the context what is
meant and the introduction of explicit, coding functions would add little.

Suppose now that O _ N is a set of total, number-theoretic functions which we take
as the "oracles" and suppose f is a binary (for example) process function which is
defined recursively from 0 via a recursive functional F as in Definition 2.3. In our
intensional approach we identify f with the collection of all its abstract implementa-
tions, which (by closure under reducibility) are exactly all behavior functions of the
form

F~,p.a(p, q)= F (p~,q p, 6), (30)

with n, p : N ~ N and 6~O. We will abbreviate this situation by writing

f (x ,y)={F(p~,qP, 6) l n , p : N ~ N , 6 E O } . (31)

The main result of the paper characterizes the process functions computable in
various expansions (92J, #" *) of a manageable, complete structure 92 as precisely the
process functions which are representable by (31) with a suitably chosen O.

We will need a lemma about the peculiar behavior function G already discussed in

Section 1.

Lemma 3.1. I f 92 is manageable, complete and g is the process function generated by the
recursive behavior function

G(p) =),(So,..., s,) ~(skip, 3) /f n = O, (32)
(p(so)((So s ,)) otherwise,

then g is computable in 92L

262 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

Proof. Here, of course, the expression p(so) makes sense because we are identifying
the states of the structure with the integers. Notice that we cannot get a trivial proof
by showing that g is the lift-up Cd 1 of some recursive behavior function on 9.I, among
the ~J given by the hypothesis that 9.1 is manageable, complete. This is because every
abstract implementation of such a G~ satisfies

G'(p)=Gl(p(io))

with a fixed io, easily, so G cannot be reducible to such a G'. It is also not hard to check
that g is not a composition of process functions which are lift-ups of behavior
functions, which means that we must use process recursion in the proof.

Consider first the behavior function

f
(skip, t3), if n =0,

H(tr, z)=2((So sn~) t r ((s0 -1 , sl sn~) if n > 0 & So>0,

z((So sn~) if n > 0 & So=0.

This is recursive, hence computable in 9.1, so let h = H j be the process function which is
the lift-up of H in 9.F and let y(x) be defined by the ipf recursion

y(x) = h(y(x), x).

We will show that y is precisely the process function g generated by G in (32). The
argument is basically a direct computation, but we include it primarily as an example
of how these computations go.

Notice first that the typical abstract implementation of h is of the form

H'(q, p)= H(q(io), P(Jo)) (33)

with arbitrary io, Jo. By the definition of recursion, each abstract implementation of
y is defined by a system { H u l u e N * } of such abstract implementations of h, specifi-
cally by setting

Y(p) = tr0, (34)

where (keeping p fixed) the system {tru]u ~N*} of behaviors is defined by the simulta-
neous recursion

au = Hu(2(i)tru. <i>, p).

Fix the particular system of representations of h,

Hu(q, p)= H (q(O), p(lh(u))),

where lh(u) is the length of the sequence u. Now the behaviors

(7 u ~ (~lh(u)

depend only on the length of u and they are determined by the recursion

tr~= H (trn+ l, p(n)),

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 263

from which it follows quite easily that

~(skip, 0) if n =0,
a°((So s .))~- [p(s0) ((s0 , . . . , s .)) if n>0 ,

i.e. Y(p)=a°=G(p) . This proves that the process function 9 generated by G is
a subprocess function of y.

To prove the converse inclusion, consider an arbitrary implementation system for
h which must be of the form

H.(q, p)= H (q(~(u)), p(p(u)))

for suitable n, p : N * ~ N . The behaviors assigned to this system (for each fixed p) are
determined by the recursion

au = H.(2(i)a,.<i>, p) = H (a,. <,~,~>, p(p(u))), (35)

and the abstract implementation of y determined by the system is given by (34) with
these a.. It follows immediately from (35) and the definition of H that

ao((So >)~-(skip, t?)"~- G(p')(< So >)

with any p'. For sequences of length greater than 1, check again from (35) and the
definition of H that

a.(<0> * g(n))'~-p(p(u))(§(n)),

a,(<i + 1 > *g(n))"~tr,.<,~,)>(<i> * g(n))),

so that by a simple induction on i, for each i and each u there is some number p*(i, u)
such that

tru((i) * g(n))~- p(p*(i, u))(g(n));

setting u = 0 in this, we get the required reduction of Y(p) to G(p) via 2(i)p*(i, 0). []

The main result follows from the next two simple lemmas, one for each direction of
the claimed equivalence.

Lemma 3.2. I f 9.U is the lift-up of a manageable, complete behavior structure 9.I,
F : (N ~ B) " ~ B is a recursive behavior function and f is the n-ary process function
generated by F, then f is computable in 9.U.

Proof. We will prove the result for n = l, the general case being similar, so fix
a recursive functional F : (N ~ B)--,B and let f be the unary process function gener-
ated by it. The abstract implementations of f are all functions of the form

F ~(p) = F (p~)= F (2(i)p(~(i))), (36)

264 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

where n : N ~ N is arbitrary. Set

F * (tr) = F(2(i)2(g(n))a((i) * g(n))),

so that F * is the recursive behavior function, and it is quite easy to check (by a direct
computation) that we can recover F from F * using the G of Lemma 3.1,

F(p)=F*(G(p)) . (37)

Since F* is recursive, it is computable in ~, so let

f * = F * J

be its lift-up to the process structure 9,1J; we will finish off the proof by varifying that
the process function f 9enerated by F is the composition of 9 and f * , i.e.

f (x) = pro¢ f * (9(x)). (38)

Notice here that we are required to prove the intensional identity (38), i.e. we must
show that as process functions of x, the two sides of(38) have exactly the same abstract
implementations, [13, 7.6]. Now f * is generated by the single abstract implementation

F * (q) = F * (q(0)),

and by (37), F (p) = F ~ (2(0 G(p)), so F is an abstract implementation of 2(x)f*(9(x)) ,
hence f~_2(x) f*(9(x)) , since F generates f For the other direction, the typical
abstract implementation of the composition on the right-hand side of (38) is of the
form

2(p)F'~((2(i)G~'(p))°)=2(p)F*(G(p)~,o,))

=2(p)F(p") , with n=np~o),

i.e. it is irreducible to F, which completes the proof. []

This lemma will be used to show that the lift-up 9.U of a manageable, complete
structure and its expansions have a rich collection of computable process functions.
To show that they do not have too many, we will use the next result, which assumes
a minimal regularity property of sets of oracles.

Definition 3.3. An infinite sequence codin9 for a set of oracles O _ N is any recursive
functional

proj : N x N ~ N

such that
(1) /~eO ~ (Vi)[proj (g,i)eO],
(2) (Vi)[6,eO] ~ (3kteO)[(Vi)proj(l~,O=6,].

For example, if O is the full Baire space N or the Cantor set C = (N ~ { 0 , 1}), we can
take

proj (/t, i) = 2(n)/~(< i, n >).

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 265

If O is the set WF of well-founded trees, we can take

proj (tx, i) = 2(u)ix((i) * u),

where * here stands for concatenation of sequence codes, since a tree is well-founded
precisely when all the subtrees starting from the nodes of length 1 are well-founded. It
will be convenient to use the same classical, Kleene notation for all sequence codings,

(ix)i = def proj (IX, i).

Lemma 3.4. I f 0 ~ 0 ~ N is a set of oracles which admits an infinite sequence coding,
9.I is a process structure, and every given process function of 9,1 is defined recursively
from O, then every 9A-computable process function is also defined recursively from O.

Proof. We use induction on the expression which defines the given process function,
beginning with the obvious case of the projection function

f (X l Xn) = Xi

on the variable x~. This is defined recursively by the functional

F(p, 5) = p,(O),

which makes no use of the argument in O. It is clearly enough to show that the class of
process functions defined recursively from 0 is closed under composition and process
recursion.

Composition. Suppose, for simplicity, that

f (x)=g(h (x)) ,

with g, h defined recursively from O via the recursive functionals G, H, the general case
being similar. A typical abstract implementation of f is given by

F1 (p) = G'(Ho (p), HI (p))

= G'(H(p '~°, 6o), H(p "1, 51)

= G(2(i)H(p", 6i) p, e)

= G(2(i)H(p','", 6p(o), e).

(G' ~g, Hi~h)

(6ieO)

(~eO)

If we choose IX~O (depending on the given parameters) so that

(ix)o = ~, (ix)~ + 1 = (6) , , ,

we then see that the typical abstract implementation of f satisfies

F1 (p) = G(2(i) n (p =p', (ix)i+ 1), (ix)o)

with some IxeO and some p, r q : N ~ N .

(39)

266 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

Define now the following recursive functional F, where we think of It as a variable
over Baire space:

F (p, It)= G(2(i)H(A(j)p((i, j)), (it)i+ 1), (it)o)-

For each It~ O, F, = 2(p)F (p, It) is certainly an abstract implementation of f, since it is
a special case of (39) with p(i)=i and r q (j) = (i , j) . To verify that all abstract
implementations of f are of this form, it is enough to show that with ItEO so that (39)
holds and some a:N--*N we have

Fl (p)= V (p ~, It);

so take any a which satisfies

a ((i , j))=7~o(i)(j),

i.e. without caring what the values of ~ are on noncodes of pairs, and compute

F (p ¢, It)= G(A(i)H(A(j)p~((i, j)), (It)i+ 1), (it)o)

= G(A(i)H(2(j)p(~p¢i)(j)), (it)i+ a), (it)o)

= F1 (p).

Recursion. To keep the notation simple again, we will consider only the case of
a single fixed point process Y, defined by the equation

x=f(x) ,

where f is assumed defined recursively from O. By the basic representation lemma 8.2
of [13], every behavior of 2 is given by

cr = rec(i, p) [p(0), Fx (i, p)],

where Fx is an arbitrary representation of f The hypothesis is that

F1 (i, p)= V(p ~', 60

holds, with a fixed recursive functional F and suitable n~: N ~ N and 6~0 . Thus, the
typical behavior in ~ is given by

=p(0),

where/~ is the least-fixed point of the fixpoint equation

p(i) = F (J.(j) p(~(j)), 65). (40)

If we put together all the ~j into one,

7z(~ i,j))=Iti(j),

then equation (40) which we must solve becomes

p(i)=F(R(j)p(~(<i,j))), 6~). (41)

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 267

Next define a function p(w) on sequence codes of integers to integers by recursion
on the length of the sequence (coded by) w,

p((a))=a,

p(u • (a))= ~(p(u), a)) ,

and using this p, define the behavior ~ from/5 by

gt(w)= O(p(w)). (42)

We compute the equation satisfied by t]:

~(w)=/5(p(w))

= F (2 (j)/5(r~((p(w),j))), 6oo~)) by (41)

=V(2(j)/5(p(w*(j))),6otw ~) by def. o fp

=F(2(j)~t(w*(j)),6p~w)) by def. of~.

Thus, 0 is a solution of the equation

q(w) = F(2(j)q(w, (j)), 6p(w)), (43)

and if 0 is the least solution of this equation we have

0..<~. (44)

We also need to show that ~< 0 and and to do this we will check by induction on
n that

where

#(")(w)= /5("'(p(w))
and/5(") is the nth stage in the recursion which define/5. The basis case is similar to the
induction step, so we compute for this:

0 ("+ ll(w)=/5("+ ~)(p(w))
=F(2(j)/5(")(n((p(w),j))),fp(~)) by def.

=F(2(j)/5(")(p(w,(j))), 6o(~)) by def. o fp

= F (2 (j)~(")(w, (j)) , 5o(~)) by def. of ~(").

~< F0. (j)0(w * (j)), 5p(w)) by ind. hyp.

=0(w).

Here the monotonicity of the functional F is used in the application of the induction
hypothesis and the last step uses the fact that 0 satisfies the fixed-point equation which
defined it. Thus, we now have that

t] is the least-fixed point of (43). (45)

268 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

Since each 6ptw~EO, we can find a single/~eO such that for all w

(/~)w = ~0~w), (46)

and with this/~, t1 is the least-fixed point of

q(w)= F O.(j)q(w * (j >),(/~)w). (47)

If we now consider/t as a variable and let

H(w,/~)--~(w) relative to/~

= the least-fixed point of (47),

then this functional H is recursive, since it is the least-fixed point of a recursive
equation; 9 the proof will be completed if we can show that

Y={H(<0>,#)I#~0}.

We have already verified that the typical behavior of Y is given by

a=p(0)=p(p(<0>)) (p(<0>)=0)

=q(<0>)

=H(<0>,~),

with the ~t chosen above. On the other hand, we can show that for a rb i t ra ry /~O,
H(<0>,#) defines a behavior in)~ by choosing ~((i , j >)=rq(j)=j, so p(u* <a>)=a
and then tracing the definitions

H(< 0>,/J) =/5(p((0>)) =/~(0)z~. []

To prove the main result using Lemmas 3.2 and 3.4, we will appeal repeatedly to the
trivial fact that the "merging functional"

(/z,~,z)~-*p[tT, z] (# : States* ~ {0, 1},~,z~B)

is recursive. Here we identify (States*-* {0, 1 }) with the Cantor set C = (N--* {0, 1 }) by
the obvious recursive isomorphism, i.e. we think of the set of all mergers as identical
with C. We check parts (1)-(5) in turn.

Proof of Theorem 2.4 (1). Directly from the definitions, merge, or and + are defined
recursively from the Cantor set C, so that by Lemma 3.4 all the computable functions
in the expansions ofg.I by merge or or are also defined recursively from C. To check the
converse, identify some two distinct acts with the numbers 0 and 1, let

O=rec(x)[x,O;x], i =ree(x)[x, 1;x]

9 We are appealing here to the fundamental first recursion theorem of Kleene, which holds of all, natural
notions of "recursive functional", see e.g. [19, XII].

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 269

be the (deterministic) processes with sole behaviors the indefinite iterations of 0 or 1,
and let

c = merge(O, 1) = rec(x) [x, (0 or 1); x]

be the (nondeterministic, state-independent) process whose behaviors are all binary
sequences, so that (with our identifications, as a set), c = C. The definition exhibits that
c is computable in both expansions of 9,I by merge or or, so it is enough to check that
every process function which is defined recursively from C is computable in the
simpler expansion (~J, c). For example, if

f (x , y)= {F(p, q, 6)]p:U--*x, q:U--*y, l e G }

with F recursive, let g be the process function defined by

g(x, y, z)= {F(p, q, r(0))] p : N-4x, q : N ~ y , r:N--*z}

and check immediately that f (x , y) = proc g(x, y, c). The argument for + is similar.

Proof of Theorem 2,4 (2). There is a well-known recursive correspondence between
the fair binary sequence and N which goes as follows. If c~(0) = 2n is even, we associate
with ~ the binary sequence n(~) which gives n + l consecutive O's, then ct(1)+l
consecutive l's, then ~(2) + 1 consecutive O's, etc. If ¢t(0) = 2n + 1 is odd, we define n(~)
similarly, but starting this time with n + 1 consecutive l's. The inverse of rt is also
recursive, easily. From this correspondence, it is immediate that parkmerge is defined
recursively from the Baire space N, so that by Lemma 3.4, every process function in
(9.I 1, parkmerge) is defined recursively from N. The converse is proved as above, taking
this time the constant

p =fairmerge(O, 1),

which is computable in (9,1J, fairmerge) and checking using rt, rt-1 that every process
function defined recursively from N can be obtained by the substitution of p in
a process function which is generated by a recursive functional.

Proof of Theorem 2.4 (3). To check first that fairmerge is defined recursively from the
set WF of well-founded trees, consider the following map which assigns to each
sequence of well-founded trees

T= T(O), T(1)

a fair merger #r. We will use T(0) only to decide whether the merger should start
giving O's or l's: say "give O's" if (0,0)eT(0), else "give l's". For this definition, let
(So,. . . , s .) be the integer code of the sequence g(n)=(go s.) (which is never 0), the
states being identified with integers again, suppose T(0) told us to start with 0, and to
I's play of So, sx have the merger give 0 until the finite sequence g(n)¢ T((O)); next
start using the tree T((g(n)) and to I's play s. + 1, s. + z,-.- have the merger give 1 until
the sequence (s.+ 1, s.+2 s,.)¢ T((so, . . . , s.)); and so on, using for the next stage

270 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

the tree T((s ,+ 1 sin)). It is quite easy to verify that we get all fair (state dependent)
mergers in this way. Moreover, with each well-founded tree T we can associate such
a sequence by the obvious map

Ti= {u l(i)*u~ T },

and combining these two operations we have a map from the set of well-founded trees
onto the set of all fair mergers. Moreover, the map is represented by a recursive
functional (say) F on the subset WF of Baire space which codes the well-founded trees,
so that we get the representation

fairmer#e(x, y)= {F(b)(p(0), q(0)) I p : N ~ x , q I N ~ y , ~$~WF }

which shows that fairmer#e is recursively defined from WF. By Lemma 3.4 then, every
process function computable in (9.1J, fairmerge) is recursively defined from WF.

The converse is verified exactly as above replacing c and p by

fo =fairmer#e(O, 1).

This is a process whose behaviors are precisely all binary functions on (N~Sta tos)
(the plays of I) which take at least once the value 1, i.e. precisely the set of (codes of)
well-founded trees.

The proof of the main result is now completed by noticing that Theorem 2.4 (4) is an
immediate consequence of Lemma 3.4 and Theorem 2.4 (5) follows trivially from the
fact that each of the oracle sets C, N and WF has a recursive member.

4. Total computable processes

Let us assume throughout this section that 9.I is a fixed, manageable, complete
behavior structure. The proofs of Theorems 2.8 and 2.10 will follow from some simple
lemmas, which combine the main result with a few elementary computations and
applications of K6nig's lemma. We restate here for easy reference the definition of the
ideal observables of a total process x on a finite tree of state sequences A,

idobsx(A)={a r~ la~x},

where

I A = ((g(n), a(g(n))> I g(n)~A }.

Notice that each a rA is a finite object which can be represented by an integer, via
some canonical coding.

Lemma 4.1. I f x is a total process, recursively defined from the Cantor set C, then x is
compact (as a subset of Baire space) and for each finite tree of state sequences A, the set
idobsx(d) is finite and can be effectively listed from a listing of A.

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 271

Proof. By definition, we know that there exists a recursive (hence continuous) func-

tion F : C ~ B such that

x = F [C] = {F(6)] 6eC} ~_ N, (48)

so x is certainly compact. For each finite tree of state sequences A, set

Gd (6)= F(6) IA

and notice that Ga is a continuous function, total on the Cantor set C and with

discrete values (essentially) in N. By K6nig's lemma there is a fixed integer m such that

Gj(fi) depends only on the first m values of 6. It follows that the image
G~ [C] = idobsx(A) is finite, we can find one such bound m by a dumb search and we

then use it to give a listing of idobsx(A). []

Lemma 4.2. I f x is a total process, closed as a subset of Baire space and such that for
each finite tree of state sequences A, the set idobsx(A) is finite and can be effectively
listed from a listing of A, then x is recursively defined from the Cantor set C.

Proof. Recall that we have identified the states with integers and for each i, let d i be
the finite tree of all state sequences which have length at most i and involve only the first
i+ 1 states. Notice that

do ~_dl ~_ ...,

so for any behavior a,

arAo ~_arA1 ~_....

Consider now the tree Y- of all finite sequences of the form

(Oo, @a O,), (49)

so that the following conditions hold.
(1) For each i<~n, there is some a ~ x such that

O i = ~ [A , ,

i.e. O~ is an ideal observable of x on A~.

(2) Oo ~- O 1 --q"" - O,.
We can think of a coded version of f f as a tree on integers, since its nodes are finite

objects which can be listed, and as such, quite obviously from the hypothesis on x,
3" is a recursive, finitely branching tree. Moreover, every sequence in 3- has a proper
extension in ~ , because its last term is an ideal observable of some behavior of x,
which is total and therefore has a "fuller" observable on the next, larger tree of state
sequences. Each O~ which occurs in a sequences of Y" determines some partial
behavior ~(O~) defined on the sequences in A~, such that

O,=a(Oi) tA~

272 Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273

and a(O~) has a total extension in x. Moreover, for every sequence in 3- as in (49), we
have

a(Oo) __ o(01) -= .-. __c_ ~(0,) ,

so that we can map each infinite branch

0 = (0 o _ 0 1 _ _ .. .)

of Y- onto a behavior

ix(O) = lim tr(O,).
n

The hypothesis that x is closed implies that tr(O)ex, so the construction gives an
effective map from f onto x. The proof is completed by composing this map with
some canonical, recursive surjection of the Cantor set onto the infinite branches in Y-,
which exists because J is a finitely branching, recursive tree. []

Lemma 4.3. Every total process computable from C is/70, as a subset of N.

Proof. The player x = F [C] is the continuous image of a compact set, hence compact,

hence closed, and every closed subset of N is " H ° in some parameter", so we are
almost there - but we need to check that the parameter is not needed, i.e. give a direct
/70 definition of x. By the basic representation (48) for x we have

~¢x ~ (V6~C)[F(6)v~a];
v

for a fixed a, the condition on 6 above the brace is open and by another simple
application of K6nig's lemma and the recursiveness of F we have a semi-effective

procedure for verifying that it is true of all 6eC. This proves that the complement of
x is L "°, so x is H °, as required. []

Lemma 4.4. Every total process, recursively defined from C, N or WF is effectively
dense in itself.

Proof. Suppose that x = F [O] with F recursive and the relevant O and let O be an
ideal observable of x, so that for some 6~0, we have

(3A)EF(6) IA = O]. (50)

This is an open condition on 6, so if satisfiable it holds for all 6 (in O or outside O)
which extend some finite sequence of values w, and we can certainly find such a w by
a dumb search. The (trivial) key fact is that every w has recursive extensions 6~0 for
the Os in which we are interested, and any such 6 satisfies (50). []

With the main result, these lemmas imply immediately Theorem 2.8 and some of
Theorem 2.10. The remaining claims of Theorem 2.10 are trivial consequences of the
main result and known properties of the analytical classes of relations.

Y.N. Moschovakis / Theoretical Computer Science 139 (1995) 243-273 273

References

[1] M. Abadi, L. Lamport and P. Wolper, Realizable and unrealizable specifications of reactive systems,
in: Proc. 1989 ICALP, to appear.

[2] M. Broy, A theory for nondeterminism, parallelism, communication, and concurrency, Theoret.
Comput. Sci. 45 (1986) 1-61.

[3] B. Courcelle, Recursive applicative program schemes, in: J. van Leeuwen, ed., Handbook of Theoret-
ical Computer Science (Elsevier, Amsterdam, 1990), 461-492.

[4] J.W. de Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, reprinted in
Ten Years of Concurrency Semantics (World Scientific, Singapore, 1992).

[5] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, N J, 1976).
[6] N. Francez, Fairness (Springer, Berlin, 1986).
[7] C.A.R. Hoare, Communicating Sequential Processes (Prentice Hall, Englewood Cliffs, N J, 1985).
[8] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems (Springer, Berlin,

1992).
[9] R. Milner, Communication and Concurrency (Prentice Hall, Englewood Cliffs, NJ, 1989).

[10] Y.N. Moschovakis, Descriptive Set Theory, Studies in Logic (North-Holland, Amsterdam, 1980).
[11] Y.N. Moschovakis, The formal language of recursion, J. Symbol. Logic 54 (1989) 1216-1252.
[12] Y.N. Moschovakis, Computable processes, in: Proc. POPL Meeting, San Francisco, 1990.
[13] Y.N. Moschovakis, A model of concurrency with fair merge and full recursion, InJbrm. and Comput. 93

(1991) 114-171.
[14] Y.N. Moschovakis and G.T. Whitney, Powerdomains, powerstructures and fairness, presented at the

1994 Ann. Conf. of the European Association for Computer Science Logic; submitted.
[15] D. Park, On the semantics of fair parallelism, in: Proc. Copenhagen Winter School, Lecture Notes in

Computer Science, Vol. 104 (Springer, Berlin, 1980) 504-526.
[16] D. Park, The "fairness' problem and nondeterministic computing networks, in: Foundations of

Computer Science IV (Mathematisch Centrum, Amsterdam, 1983) 33 162.
[17] G.D. Plotkin, A powerdomain construction, SIAM J. Comput. 5 (1976) 452-487.
[18] A. Pnueli and R. Rosner, On the synthesis of a reactive module, in: Proc. 1989 ICALP, to appear.
[19] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York,

1967).
[20] M.B. Smyth, Modeling concurrency with partial orders, J. Comput. System Sci. 16 (1978) 23-36.
[21] V. Stoltenberg-Hansen and J.V. Tucker, Algebraic and fixed point equations over inverse limits of

algebras, Theoret. Comput. Sci. 87 (1991) 1-24.
[22] G.T. Whitney, Recursion structures for non-determinism and concurrency, Ph.D. Thesis, Department

of Mathematics, University of California, Los Angeles, 1994.

