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In this paper we introduce the multiresolution LU factorization of non-stan-
dard forms (NS-forms) and develop fast direct multiresolution methods for
solving systems of linear algebraic equations arising in elliptic problems.

The NS-form has been shown to provide a sparse representation for a wide
class of operators, including those arising in strictly elliptic problems. For
example, Green’s functions of such operators (which are ordinarily represented
by dense matrices, eg., of size N by N) may be represented by —log ¢- N
coefficients, where ¢ is the desired accuracy.

TheNS-formisnot an ordinary matrix representation and the usual operations
such as multiplication of avector by the NS-form are different from the standard
matrix—vector multiplication. We show that (up to a fixed but arbitrary accu-
racy) the sparsity of the LU factorization is maintained on any finite number
of scalesfor self-adjoint strictly elliptic operators and their inverses. Moreover,
the condition number of matrices for which we compute the usual LU factoriza-
tion at different scales is O(1). The direct multiresolution solver presents,
therefore, an alternative to a multigrid approach and may be interpreted as a
multigrid method with a single V-cycle.
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For self-adjoint strictly elliptic operators the multiresolution LU factorization
requires only O((—log €)?-N) operations. Combined with O(N) procedures
of multiresolution forward and back substitutions, it yields afast direct multires-
olution solver. We also describe direct methods for solving matrix equations
and demonstrate how to construct the inversein O(N) operations (up to afixed
but arbitrary accuracy). We present several numerical exampleswhich illustrate
the algorithms developed in the paper. Finally, we outline several directions for
generalization of our algorithms. In particular, we note that the multidimensional
versions of the multiresolution LU factorization maintain sparsity, unlike the
usual LU factorization. © 1998 Academic Press
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1. INTRODUCTION

In[1], anew agebraic multiresolution structure, the non-standard form (NS-form),
has been introduced to represent operators in wavelet bases. As is shown in [1], for
a large class of operators (which are ordinarily represented by dense matrices), the
NS-form is sparse for a finite, arbitrary precision. This observation alows one to
accelerate iterative methods for solving systems of linear algebraic equations which
involve such operators since the cost of application of the matrix to a vector is reduced
from O(N?) to O(N) operations.

Since operators from a wide class admit a sparse representation in wavelet bases,
it ispossibleto consider numerical calculus of operators[1-3], i.e., consider functions
of operators computed via fast algorithms. The product of two operators in the NS
form requires N - (—log €)?, where ¢ is the desired accuracy [4]. A fast multiplication
algorithm may then be used in an iterative algorithm for constructing the generalized
inverse [5—7]. For a wide class of operators it takes only O(N-(—log €) - (log «))
operations, where « is the condition number of the matrix, to compute the inverse
operator with accuracy e. Various numerical examples and applications may be found
in [2, 3] (athough the standard form was used in the multiplication algorithm in
these papers).

In this paper we introduce a direct method for solving systems of linear algebraic
equations and constructing the inverse using the NS-form for a class of matrices
outlined below. Although direct methods have been used extensively on sparse linear
systems, especialy for differential operators, such algorithms suffer aloss of efficiency
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if the factorized matrix does not admit the same sparse structure as the original matrix.
Technigues such as graph theory have been developed to minimize the generation of
so-caled fill-ins [ 8] . Here we demonstrate that the specialized structure of NS-forms
may be preserved during factorization, leading to efficient factorization algorithms
using sparse data structures.

We begin by describing afactorization procedure for the NS-form. The factorization
of the NS-form is superficially similar to the standard LU factorization but, in fact,
is distinct in several significant ways. First, it is an approximate factorization where
the accuracy, ¢, is finite but arbitrary. Second, the factorization of NS-forms requires
O(N- (—log €)?) operations for operators arising from strictly elliptic problems. Com-
bined with O(N- (—log €)) procedures of ‘‘multiscale’”’ forward and back substitu-
tions, it yields a direct multiresolution solver. Third, the actual LU factorization is
performed on well-conditioned matrices even if the original matrix (arising from a
gtrictly elliptic problem) has a large condition number. Using the multiresolution
solver, we also construct the inverse in O(N(—log €)?)) operations. We note that in
problems where the choice of the size of the matrix and of accuracy are connected,
typically e « N™¢, a > 0.

Our direct multiresolution solver presents an alternative to an iterative multigrid
approach. In fact, the algorithms of this paper may be viewed asa‘*direct multigrid,”’
without V and W cycles (or, more precisely within this terminology, with a single V
cycle). The absence of cycles of the usual full multigrid methods (for references see
[9]) is easy to explain since we generate (within computational accuracy) a linear
system for the exact projection of the solution on coarse scales. Once such a system
is solved, there is no need to revisit that scale again. Thus, the algorithms of this
paper provide a connection between multigrid methods and classical techniques of
Gaussian elimination and LU decomposition. In this role, our approach provides a
systematic algebraic structure to multiresol ution computations (what we call multireso-
lution linear algebra), and we go to some length to provide details of such algebraic
operations.

We recall that the non-standard form is not an ordinary matrix. The NS-form has
amultiresolution structure, and the usual operations such as multiplication of a vector
by the NS-form or multiplication of NS-forms are different from the standard matrix—
vector and matrix—matrix multiplications. The remarkable feature of the non-standard
form is the decoupling it achieves among the scales.

The outline of the paper is as follows: in Sections 2 and 3 we introduce multiresolu-
tion analysis and the notion of the non-standard form which serve as a foundation for
the algorithms presented in the paper. We do so without specific reference to the
properties of wavelets (e.g., number of vanishing moments, size of the support, etc).
This allows usto describe the algebrai ¢ structure of the algorithms without considering
specific bases. On the other hand, the sparsity of the non-standard form for a given
accuracy, and thus the operation count of the algorithms, does depend on the choice
of the basis. We discuss the issues of sparsity separately in Section 5.

In Section 4 we describe multiresolution LU factorization. In particular, we describe
in Section 4.2 the procedure for computing lower and upper NS-forms where the NS
form of an operator has been precomputed. In Section 4.3 we describe how to construct
the lower and upper NS-forms directly from the original operator, without precomput-
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ing the NS-form; such a procedure is computationaly more efficient. Finaly, in
Section 4.4, we present an aternative version of the factorization procedure which
may be useful during partial pivoting (although pivoting is needed for matrices outside
the class for which we prove that the multiresolution LU factorization is sparse. We
discuss partial pivoting in the Appendix).

In Section 6 we show how the factorization procedure may be incorporated into a
fast direct solver for linear systems of equations. Toward that end, we describe the
algorithms of multiresolution forward and backward substitution. We then describe
in Section 7 how the direct methods may be applied to solving matrix equations. The
forward and backward substitution algorithms for matrices may be used to construct
the inverse operator, which we describe separately in Section 7.5.

In Section 8 we describe the relationship between the non-standard and standard
forms, and demonstrate that factorization using S-forms leads to sparse matrices if
NS-forms are sparse.

In Section 9 we present various numerical examples which illustrate the algorithms
developed in the paper. The purpose of these tests is to show the behavior of such
agorithms as the size of matrices becomes large.

Finally, in Section 10 we make a number of observations concerning generalization
of our approach. In particular, we note that the multidimensiona versions of the
multiresolution LU factorization maintain sparsity, unlike the usual LU decomposition.
Thus, fast (adaptive) direct methods may be developed for elliptic problemsin multiple
dimensions, but we leave this subject matter for another paper.

2. PRELIMINARY CONSIDERATIONS

We start by reviewing notions of multiresolution analysis (see [10, 11]) and the
non-standard form [1] and describe algorithms for applying the NS-form to vectors.
We introduce the NS-form using projection operators without invoking wavelet bases
explicitly. This approach alows us to explain the algebraic structure of algorithms
separately from considerations of sparsity. The sparsity of structures that we develop
in this paper is critical in obtaining fast algorithms. We defer the discussion of sparsity
and its dependence on the choice of the wavelet basis to Section 5.

2.1. Multiresolution Analysis for Operators
Let us consider a multiresolution analysis of L 2(R),
V,C---CV,CV,;CVoCV_;CV,C -, (2.1)
and define subspaces W; as orthogonal complements of V;inV;_,, V-1 = V; ® W;,
so that L%(RY) = V,@;-.W,. If the number of scales is finite, then we set j = 0 to

be the finest scale and consider

V,C -+ CV,CV,CV,  VoC LR (2.2)
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instead of (2.1). In numerical realizations the subspace V, is dways of a finite
dimension.
Let T be an operator
T: L?(RY) - L?(RY). (2.3)
By defining projection operators on the subspace V;, j € Z,

P: L2(RY) ~V;, (2.4)

and expanding T in a ‘‘telescopic’’ series, we obtain

n

T = z (Q]TQJ + QjTPj + PJTQJ) + PnTPn, (25)
j:—w
where Q; = P,_; — P; is the projection operator on the subspace W;,
Q: L*RY - W;. (2.6)

If the scalej = O is the finest scale, then

To= % (QTQ + QTR + BTQ) + P,TP,, (2.7)

j=1

where T ~ Ty = PoTP, is a discretization of T on the finest scale. Expansions (2.5)
and (2.7) decompose T into a sum of contributions from different scales.

2.1.1. The Non-standard Form

The NS-form introduced in [1] is a representation of an operator T as a chain of
triplets T = {{A, B, G} _.cj=n, Tn}, Where operators A, B;, C; (as well as T;) are
defined as

B = QTR (2.8b)
Cj = PJ'TQ]', (28C)

and admit the recursive definition
-I—j = Aj+1 + Bj+l + Cj+l + -I—j+1- (29)

The operators A, B;, C; make up the blocks of the NS-form and operate on the
subspaces V; and W;,
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dy
5
3B 3 __@
i =
FIG. 1. Organization of the non-standard form of a matrix. The submatrices A, B;, and C;, j = 1, 2,
3, and T; are the only non-zero submatrices.
Aj-: Wj - Wj, (2.10a)
B:V; =W, (2.10b)
C:W, -V, (2.10c)
whereas operators T; operate on subspaces V;,
T:V,>V,. (2.11)

The wavelet transform recursively represents operators T; as

<Aj+1 Bj+1> (212)
Cj+1 Tj+1 ,
which is a mapping
Aj+ B'+
( F T WL @ Vi o Wi @ Vi, (213)
Cj+1 Tj+1

where V; = W,; @ V1. If the number of scales is finite, then we obtain T, =
{{A. B, C}i5=n, Tn}, and the blocks of the NS-form are organized as blocks of a
matrix shown in Fig. 1.

We note that for d = 2 the blocks of the NS-form have additiona structure. From
now on we will assume that d = 1, athough many considerations are essentially
the same for d = 2. We will defer additional remarks about dimensions d = 2 to
Section 10.

Remark 2.1. Since projection operators involve subsampling, equalities like that
in (2.9) may appear inconsistent if we compare sizes of blocksin Fig. 1. For example,
the size of blocks A;, B;, C;, and T3 is not the same as that of T,. The transition
from operator notation as in (2.9) to a matrix notation involves combining the blocks
Az, Bz, C3, and T; as in (2.12), and performing one step of the two-dimensional
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FIG. 2. Organization of the multiresolution product of T, and T, which is based on extended NS-
forms.

discrete wavelet transform (an orthogonal transformation). To obtain the blocks A,
B;, C;, and T;, for example, we compute the wavelet decomposition of T,_;,

A8 Cwr e
= WT,_,W~*, (2.14)
G T
where W is an orthogonal matrix representing one level of the discrete wavelet trans-
form. Similarly, the block T;_; may be reconstructed from A, B;, C;, and T, by
computing

7w (Y Bw
1= . (2.15)
G T

With a dight abuse of notation, we will use the same letters to denote operators and
matrices, and we will rely on the specific context for separating the two.

Remark 2.2 (Alternate Matrix Representations). Sincein this paper we work with
several matrix structures, we provide a brief summary:

An extended non-standard form is the NS-form which includes the blocks T;
a all scales and is denoted Ty = { A, B, Cj, Tj}1<j=n, @ shown in Fig. 2. This
representation is used for multiplying matrices or computing the matrix inverse, and
its full description is found in Section 3.3.

An intermediate non-standard form is used to hold intermediate values and is
denoted T, = {A, B, G, Tj}1-j-n (see Fig. 2). The symbol ( ") (pronounced
““brehv’’) is used throughout the paper to indicate that values are intermediate and
that additional projections are required. For a full description, see Section 3.3.

The matrix representation on V , is simply the ordinary matrix at the finest
scale, To: Vo — Vo.

The standard form is the representation of a discretized operator in the tensor-
product wavelet basis. See Section 8 for details.

2.2. Multiresolution Analysis for Functions

Using MRA with finite number of scales (2.2), we decompose a vector f, € V,
onto subspaces V; and W ; using projection operators P; and Q;,
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fo= 3 Qf + P.f, (2.16)

i=1

and obtain the wavelet expansion fo = {{d}1-j=n, S}, Where

d
§

Qf ew, (217a)
PfeV, (2.17b)

The terms in (2.17) admit the recursive definition

S.1=0 +5. (2.18)

Remark 2.3.  We note again that the transition from operator notation asin (2.18)
to a vector notation involves combining the vectors d; and s, and performing one step
of the one-dimensional discrete wavelet transform. The vectors d, and 5 may be
obtained by computing the decomposition of 5_;,

{d,s}" =Ws,, (2.19)

where W is an orthogonal matrix representing one level of the discrete wavelet trans-
form. Similarly, 5_; may be reconstructed from d, and 5 by computing

s1=W*{d,s}". (2.20)

Remark 2.4. If {fy, f,, ..., fy} represent N coefficients of a function f € V;,
then the coefficients { d;, 5} may be computed using (2.19) at a cost of O(N) viaa
pyramid scheme as described in, e.g., [1].

Remark 2.5 (Alternate Vector Representations). There are several representations
of vectors which we use throughout the paper:

An extended representation includes vectors § at al scales, fo = {d;, S} 1-j=n.
This representation is first described in Section 3.2.

The intermediate representation contains intermediate results and is denoted
fo = {d;, §}1=n. See Section 3.2 for details.

3. MULTIRESOLUTION LINEAR ALGEBRA

The approach we develop in this paper for solving systems of linear algebraic
equations alows us to introduce the notion of multiresolution linear algebra. By
this term we mean linear algebra applied to NS-forms, rather than standard matrix
representations. It turns out that in order to develop multiresolution linear algebraic
algorithms, al we need to do is interlace the operations of standard linear algebra
with projections. The linear algebraic operations (e.g. matrix—vector, matrix—matrix
multiplication) are confined to a given scale, whereas projections convey information
between scales. Before describing this approach in greater detail within specific algo-
rithms, let us describe matrix operations and projection procedures common to all
algorithms of this paper.
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3.1. Matrix Operations and Projections

The matrix operations at each scale involve blocks of the original NS-form and
blocks obtained via projections. As an example, in the matrix—matrix multi pllcatlon
of two NSforms, T, and T,, we compute A, = A + A, where A, = AA + BG is
computed from the original NS-forms, whereas A is a projection onto scale j, from
scale j — 1. Relations of this type show how projections and matrix operations are
combined at each scale. Such relations define the necessary algebraic operations for
a given agorithm, and we will refer to them as the governing equations for that
algorithm.

On each scale, the multiresolution algorithms produce intermediate matrices or
vectors, some of which are projected to other scales. To describe the projection
procedure, let us consider some intermediate vectors { §}1-j—-.. We need to project
all vectors § on subspaces Wy, k = j, ..., n. Instead of projecting each part of the
vector separately, we combine contributions on a given scale before applying the
projection operator. To illustrate, let us assume that projections have been completed
up to scale k — 1 and describe the procedure for scale k. We proceed in a recursive
manner,

S1+ S =0+ 5, (3.1)

where 5., is a projection from the previous scale, and

di = Qu(&-1 + Sc1), (3.2a)

S = Pu(Sc1 + S, (3.2b)

are computed via the wavel et transform described in Remark 23 Similarly, for opera-

tors, we compute projections of the intermediate variables { T;} ;. for k =j, ... ,n.
We have

kal + Tk,l = Kk + B_k + Ck + -rk, (33)

where T,_; is a projection from the previous scale, and

Ac= Qu(Tr + Tiea) Q (3.4a)
By = Qu(Tier + Tuet) Py, (3.4b)
Ci = P(Tier + Tie) Q, (3.4c)
Te = P(Ter + Tier) P, (3.4d)

are computed via the wavelet transform described in Remark 2.1. Relations such as
(3.1) and (3.3) will berefered to as the projection equations for a particular algorithm.

3.2. Application of NS-Formsto Vectors

Let us first describe multiresolution matrix—vector multiplication. Let us denote by
To={{A, Bj, C}12j=n, Tn} the NS-form of an operator T,, and let f, = {d;, §}1-j-n
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be an extended wavel et representation for f,. In what follows we define the multiresol u-
tion product of T, and f, as

go = To'fo, (35)

where g, is the same vector obtained using matrix—vector multiplication with the
usual representations of T, and f.

In order to derive the necessary matrix operations for (3.5), we write a telescopic
series,

Tofo - Tnfn = z (ijlTOPj—l)(ijlfO) - (PJTOPJ)(PJ fo)- (3-6)

-1
Since P,_; = P; + Q; we obtain
Tofo — Tofn = é (QToQ)(Qfo) + (QToP)(Pifo) + (RToQ)(Q o), (37)
or, using (2.8) and (2.17),
Tofo = i (Ad; + B§ + Cd)) + T, (3.8)
-1

For the termsin (3.8) we have

Ad, + Bs € W,, (3.9a)
Ccd, €V, (3.90)
forj=1,2,...,n,and
Tosh € V. (3.10)
Let us denote
d = Ad; + BS, (3.11a)
s = Cd;, (3.11b)
forj=1,2,...,n,and on the last scae,
s, =C.d, + T.5. (3.12)

The computationsin (3.11) and (3.12) are performed using the usual matrix operations
at each scale and may be organized as shown in Fig. 1.

In order to convert {d;, §}.-;_. to a wavelet representation {{d}.-j_n, S}, we
expand vectors § by settings; = d; = 0, and, for j = 1, 2, ..., n, computing the
projections
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Sa+S§a=4d+5, (3.13)
via (3.2), and by forming the sum
d=d +d. (3.14)
At the last scale we compute
S$S=% + 5. (3.15)

Equations (3.14) and (3.15) are the governing equations for multiresolution matrix
vector multiplication, while (3.13) is the corresponding projection equation. The fol-
lowing algorithm summarizes the process:

ALGorITHM 3.1 (Application of NS-Forms to Vectors). Given the NS-form T,
={{A, B, C}1=j=n, Tn}, and the extended wavelet representation fo = { d;, §}1-j-n,
we compute the multiresolution product To-fo = by where by = {{d;}1-j-n, S.} using
the following steps:

1. Initialization: setd; = 5, = 0.
2. Forj=1,2,...,n, compute
(a) d and § via (3.11),
(b) d and 5 (j # 1) via (3.13),
(c) d via(3.14).
3. At the last scale compute s, via (3.15).

Computational cost. For operators with sparse NS-forms (see [1] and Section 5)
Algorithm 3.1 requires O((—log €)N) operations, where ¢ is the desired accuracy,
and N X N is the dimension of T, in the ordinary matrix representation. The cost of
Step 2a is proportional to number of non-zero elements, Ns, in the blocks of the NS-
form, which is Ns = C(—log ¢)N, where C is a constant. Step 2b is computed in
O((—log €) N) operations using the pyramid scheme. Step 2c clearly requires O((—log
€)N) operations. The number of vanishing moments of the wavelet transform (and,
thus, its cost) is usualy chosen to be proportional to the number of accurate digits
—log ¢, see [1].

3.3. Multiplication of NS-Forms

In this section we describe an agorithm for the multiplication of NS-forms [4], in
order to derive the governing equations for multiresolution LU factorization. Let us
denote by T, = {A, B, G, T} and T, = {A, B, €, T;} the extended NS-forms of
operators T, and T,. In what follows we define the multiresolution product of T, and
Ty as

To'-ro = To, (316)

where T, is the same NS-form obtained from the usual product of T, and T, in Vo.
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In the following algorithm we use operators 'T', and 'T', We note that the algorithm
requires only aband around the diagonal of their matrices, even though these operators
are generally not sparse. Wewill consider sparsity of the blocks of NS-forms separately
and here present a formal derivation of the algorithm for multiplication of NS-forms

following [4].

In order to derive the necessary matrix operations, we again write a telescopic

series,

j=n

ToTo — Toln = 3 [(P1ToP_1) (P-1ToP-1) — (PToP) (P ToP)]. (3.17)
j=1
Using the relation P,_; = P; + Q; and Eq. (2.8) we obtain
ToTo — Tl
j=n
= > [(AA + BC) + (AB + BT) + (GA + T,C)) + CB]. (318)
i1
The operators in (3.18) are acting on following subspaces,
AjAj + BJCJ: Wj g Wj, (319a)
AB + BT;:V,~ W, (3.19b)
CA + T,C: W, >V, (3.19¢c)
forj=1,2,...,n,and
T.T.: Vo~ V,, (3.20)
Let us denote
A= AiAj + AJCJ' (3.21a)
B =AB + BT, (3.21b)
G = GA + TG, (3.21c)
T, = CB, (3.21d)
forj=1,2,...,n,and on the last scale
T, = C.B, + T.Tn. (3.22)

The computations in (3.21) and (3.22) require the usual matrix operations at each

scale and may be organized as shown in Fig. 2.
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In order to construct a non-standard form {{Aj Bi, C}1=j=n, Tn} from the blocks
{A, BJ, CJ, T}l<,<n, we expand the operamorsT by setting A, =B, =C, =T, = 0,
and, forj = 1, 2, ..., n, computing the projections

Ta+Ta=A+B+GC+T, (3.23)

via (3.4), and by forming the sums

A=A+ A, (3.24a)

C=¢C+¢C. (3.24c)
At the last scale we compute

T,.=T,+ T, (3.25)

Equations (3.24) and (3.25) are the governing equations for multiresolution matrix
multiplication, and (3.23) is the corresponding projection equation. We note that the
terms T; may also be obtained, if desired, by combining all operators which act on
the subspace V; — V;. From Egs. (3.19d), (3.20), and (3.21d) we have

ToTT AT

|

(3.26)

ALGORITHM 3.2 (Product of NSForms) Given the extended NS- forms T, = (A,
B, C, T}1<,<n, and T, = {A, B, C, Tj}1-;-n, we compute the multiresolution
product To-To = To, where Ty = {{A, B, G}i—j=n, T} is an NS-form, using the
following steps:

1. Initialization: set A, =B, =C, =T, = 0.
2. Forj=1,2,...,ncompute
(a) A, B, G, and T; via (3.21),
(b) A, B, C,and T, (j # 1) via (3.23),
(c) A, By, Cvia(3.24).
3. At the last scale compute T, via (3.25).

Computational cost. For operators whose NS-form admits a sparse structure, the
above algorithm may be shown to be of O((—log ¢)*N), where N x Nisthe dimension
of T, in the usua representation. It is shown in [4] that, for awide class of operators,
Step 2a involves multiplication of banded matrices, and only a band around the
diagonal of 'T'J and T, is needed. The number of operations is shown to be proportional
to (—log €)°N, since the bandwidth is proportional to —log e. Step 2b is done via
the pyramid algorithm and, since C;B,, j = 1, ..., n are banded, the total number of
operations at this step is also proportional to (—log ¢)N. Finaly, Step 2c requires
O(—log €)N) operations.
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FIG. 3. Organization of the multiresolution LU factorization.

4. MULTIRESOLUTION LU FACTORIZATION

We now describe the main tool in our approach, LU factorization with respect to
the multiresolution product (-) introduced in Section 3.3. Given an NS-form T, =
{{A. B, C}i-j=n, Tn}, our god is to compute the NS-forms T, and T,, such that

To = To'-ro, (41)

where T, and T, are analogous to lower and upper triangular matrices. In defining
lower and upper tnangular NS-forms, we require that B =C =0forj=12,.

n; that bIocks{{Aj}l<,<n, T .} arelower trlangular and that bIocks{{Aj}l<,<n, T }
are upper trlangular as shown in Fig. 3. We cal To = {{A1 C}l<J<n, T, o} and T, =
{{Aj, B}lSJSn, T.} lower and upper NS-forms, respectively. We note that if we
convert T, and T, to their corresponding S-forms (see Section 8), then these represen-
tations are the usual lower and upper triangular matrices in the wavelet system of
coordinates.

The purpose of factorizing NS-forms into lower and upper NS-forms is completely
analogous to that of ordinary LU factorization; namely, the goal is to obtain a direct
solver. Unlike with ordinary LU factorization, the NS-form blocks being factorized
are well conditioned for a class of operators associated with elliptic problems. We
illustrate this point in examples of Section 9.

We first consider the multiplication of lower and upper NS-forms To and T, to
obtain the governing equations, and then develop an algorithm for the reverse process
of obtaining T, and T, as factors of T,.

4.1. Multiplication of Lower and Upper NS-Forms

For lower and upper NS-forms, the matrix operations described in Section 3.3
simplify, since we require that B =0andC =0forj=1,2...,n. We combine
formulas (3.21) and (3.24), and eliminate the intermediate bIocks A, B, C, T, to
obtain

A =AA + A, (4.2a)
B = AB + B, (4.2b)
C-CA+G, (4.20)
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forj =1,2,...,n, and from (3.22) and (3.25),

T,=C.B,+ T.T, + T,. (4.3)

The operators A, B;, C; are computed by first setting A, = B, = C, = T, = 0, and
then, forj = 1, 2, ..., n, computing the projections asin (3.4),

CaBa+Ta=A+B+C+T,. (4.4)

4.2. Factorization

Let us now assume that T, is given and obtai n arecurrence relation that permits
us to compute the lower and upper Nngrms To and T,. According to (4.2) and
(4.3), the blocks of the NS-forms T, and T, satisfy the relations

AA = A - A, (452)
CA =G -C, (4.5¢)

onal scalesj =1, 2,...,n, and on the last scale,
TAn-lzn = Tn - Tn - CAnB~n- (46)

Equations (4.5) and (4.6) are the governing eguations for multiresolution LU
factorization, and (4.4) is the corresponding projection equation. Comparing (4.5)
and (4.6) to (4.2) and (4.3) we note that for the purposes of finding A, A, C;, and
Bj, the order of operations is reversed; namely, first projections are subtracted, and
then matrix operations are performed. To make the procedure clear, let us assume
that factorization has been completed up to scale k — 1, and describe the procedure
for scale k. Thus, let us assume Eqgs. (4.5) are satisfied for 1 = j = k — 1.

The first step is to compute projections of the matrix C_;B,_; + T,_; from scale
k — 1toobtain A, B, C, Ty, asin (4.4). Next, we compute the usual LU factorization,

A — A= LU, (4.7)
and set A, = L and A, = Uy. Given A, and A,, we obtain B, and C, by solving

AB = B — B, (4.8a)
CA= C — G, (4.8b)

using the usual forward and backward substitution. We have now satisfied (4.5) for
j = k. On the final scale, j = n, we use usual LU factorization to compute
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To — T — CiB, = LU, (4.9)

andset T, = L, and T,, = U,,. We summarize our results as

ALGORITHM 4.1 (Multiresolution LU Factorization). Given the NS-form To =
{{A, BJ, C }1<,<n, T.}, we performthe multiresolution LU factorization T, = TO To,
where T, = {{A, C}l<,<n, T}, and To = {{A,B,}15-n, T.} arelower and upper
NS- forms, using the following steps:

1. Initialization: set A, =B, =C, =T, = 0.
2. Forj=1,2,...,ncompute
(@ A, B, G,and T, (j # 1) via (44),
(b) A and A via (4.5a),
(c) B, via (4.5b),
(d) C, via (4.5¢).
3. At the last scale compute T, and T, via (4.6).

We consider the computational cost of Algorithm 4.1 in Section 5.5.

Remark 4.1. Although we have just described LU factorization, we may replace
it with Choleski factorization provided that the matrix is symmetric positive definite.
In fact, in some of the examples of Section 9 we used multiresolution Choleski
factorization of NS-forms.

4.3. Direct Construction of Factored NS-Forms

A variant of the algorithm described in Section 4.2 may be used to construct the
multiresolution LU factorization of the usual matrix representation in V,. Instead of
constructing the NS-form of T, first and then computing its LU factorization, it is
possible to combine decomposition and factorization.

First we recall that blocks of the NS-form are computed forj = 1, ..., nvia(2.9),

T1=A+B+C+T,. (4.10)

This recursive procedure may easily be incorporated into multiresolution LU factoriza-
tion by combining projection operations at each scale. Toillustrate, let us again assume
that computations are complete for scales 1 = j = k — 1 and show the necessary
steps for scale k.

We note that the projections of matrix T, ; from scale k — 1, as in (4.10), and
projections prescribed by the multiresolution LU factorization algorithm (Eq. (4.4)),
may be combined as

Ter — (Ckflékfl + Ti1)
=(A—A)+(B—B)+(C—C) + (T, — Ty), (411)

which is the projection equation for the direct construction of factored NS-forms.
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\
.

FIG. 4. The lower NS-form for Example 1 of Section 9. All entries whose absolute values are larger
than 10~7 are shown in black.

To proceed, we compute the LU factorization at scale k. We note that the governing
equations for this procedure are the same as those in Section (4.2), and thus, factoriza-
tion proceeds as in (4.7) and (4.8). We have:

ALGorITHM 4.2 (Direct Construction of Factored NS-Forms). Given an operator
To: Vo— Vo, we perform the simultaneous wavel et decomposition and multiresolution
LU factorization To = To- To, Where To = {{A, C}1-j=n, To}, and To = {{A,
Bi,}1oj=n, Tn} arelower and upper NS-forms, using the following steps:

1. Initialization: set Ay =B, = C, =T, = C; = B, = 0.
2. Forj=1,2,...,ncompute
() (A - A), (B - B), (G — ), and (T, — T)) using (4.11),
(b) A and A via (4.5a),
(c) B via (4.5b),
(d) € via (4.5c).
3. At the last scale compute T, and T, via (4.6).

Remark 4.2.  In Section 5 we demonstrate that the NS-forms of T, and T, are sparse
for awide class of operators. Under such conditions, the fast NS-form decomposition
algorithm described in [1] may be combined with sparse LU factorization. The result
is a fast algorithm for computing T, and T, (see Algorithm 5.3). To illustrate that
such operators may be sparse, we display in Fig. 4 the lower NS-form of Example 1
in Section 9. The origina matrix in this example is dense.

4.4. An Alternative Algorithm and the Reduced Operator

In Sections 4.2 and 4.3 we computed the terms A;, and A, using LU factorization,
whereas we computed B, and C, using forward and backward substitution. All of these
blocks may be computed in one step, using LU factorization. The approach also allows
us to introduce the notion of the reduced operator.
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Let us organize the blocks (A — A), (B — B), (C, — C), and (T; — T)), asin
(2.12)), and compute a partial LU factorization,

['5:1 0]{5& BJ':|:|:(A1'_'§) (BJ—E__%)]_ (4.12)
G 1JLO0 R (G-G) (,-T)

We halt factorization after eliminating the first N;/2 columns, where N;/2 is the
dimension of A;, and observethat (4.12) isequivalent to (4.5) (by direct examination).
We note that an additional term, R, satisfies

R=T (T +GB) (4.13)

and aready contains the matrices in (4.11) to be projected to the next scale. Thus,
equation (4.11) is satisfied by computing projections of R;. The operator R, is called
the reduced operator at scale j [12] . Using (4.5), R may also be written as the Schur’s
complement

In this context, multiresolution LU factorization may be viewed as a recursive ago-
rithm where the Schur’s complement is computed at each scale j and then projected
toscaej + 1.

5. COMPRESSION OF OPERATORS AND FAST ALGORITHMS

In this section we demonstrate that the algorithms described in this paper require
O(N) operations for a wide class of operators. We show that for strictly eliptic
operators al steps of the algorithms employ sparse (banded) matrices. However, the
actual class of operators for which these algorithms are fast is somewhat wider.

As was shown in [1], the NS-forms of a wide class of operators are sparse in
wavelet bases. In Section 5.2 we demonstrate that for a class of operators associated
with strictly eliptic problems, the lower and upper NS-forms introduced in Section
4 are compressible. Thus, the sparsity is maintained during factorization. Although
the usual LU factorization is an O(N?®) procedure, we show in Section 5.5 that
multiresolution LU factorization requires only O(N) operations if operators satisfy
the conditions in Sections 5.1 and 5.2. We also show in Section 6 that multiresolution
forward and backward substitutions require O(N) operations. Thus, we obtain an
O(N) procedure for solving linear systems of equations.

In Section 7 we demonstrate that when matrices satisfy the conditions in Sections
5.1 and 5.2, matrix equations may also be solved in O(N) steps. In particular, the
inverse of an operator may be obtained in O(N) steps.

The complexity estimates O(N) imply that the operation count is c- N, where c is
a constant. Typically, ¢ is proportional to the bandwidth w or w? of the matrices
involved. The bandwidth, in turn, is typically proportiona to the desired number of
accurate digits, —log €. In some applications (notably in numerical PDES) the size
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of the matrix and the selection of accuracy are connected and, thus, ¢ cannot be
considered a constant. We prefer not to mix the choices of size and accuracy in our
estimates so as to encompass a wider range of applications, and this remark should
be sufficient to avoid any confusion.

Finally, we note that in this paper we provide only an outline of the proofs and
refer to a companion paper [13] for additional details.

5.1. Compression of Operators

The compression of operators, or, in other words, the construction of their sparse
representations in orthonormal bases, has been proposed in [1] . The standard and non-
standard forms of operators described in [1] may be viewed as compression schemes
for a wide class of operators frequently encountered in analysis and applications,
namely, Calderon—Zygmund and pseudo-differential operators.

Let us briefly state the results of [1]. Although in what follows we consider matrix
representations of these operators, we note that any appropriate discretization proce-
dure may be used, such as the Nystrom method or the method of moments. In such
cases the wavelet transform is smply a linear algebra tool.

Given an NS-form T, the operators A;, B;, C;, T, are represented by the matrices
al, B, y!, s!, where

ahe = [ [ KOG m00p 0y, (5.12)
Bhe = [ [ Ko vy, (5.1b)
vhe = [ K000 By, (510)
she = [[[ K0 9)0u008 ()0, (510)
forj =1,2,...,n. The function ¢(x) is the scaling function and its translates and

dilates{ ¢;(X) = 27%¢p(2 7% — k) } ez form an orthonormal basisof V;. The function
#(x) isthe wavelet and { ¢« (X) = 27"2(277x — k) } ke forms an orthonormal basis
of W;. We will require that the function ¢(x) have M vanishing moments,

Jm p(x)x™dx = 0, (5.2)

fom=0,..., M- 1.

We label the coefficients al,, Biw, and v/, in (5.1) by theintervals | = |} and
I = 1. denoting the supports of the basis functions. If the kernel K = K(X, y) is
smooth on the square | X I’, then we have the estimate

law | + 1Bl + [ywl =CIHMT sup  (JOXK[ + [9yK]).  (53)

xy)elxl’
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The right-hand side of (5.3) is small whenever either | 1| or the derivatives involved

are small. The estimate in (5.3) allows us to obtain sparse representations of integral

operators by discarding the coefficients that are smaller than a chosen threshold.
Let us assume that the kernel K satisfies the conditions

|K(X1 y)| = CO| X — y|711 (54)
|OYK(X, Y)| + [0yK (X, y)| = Ci|x —y| ™1, (5.5)

and, in addition, assume that the kernel K defines a bounded operator on L2 or satisfies
a substantially weaker condition (the so-called ‘‘weak cancellation condition’”),

U K(x, y)dxdy| = C| 1], (5.6)

for @l dyadic intervals |. Under these assumptions we have

THeoreMm 5.1.  If the wavelet basis has M vanishing moments, then for any kernel
K satisfying the conditions (5.4), (5.5), and (5.6) the matrices !, 87, ! satisfy the
estimate

lads| + 1841+ [k =Cu(1+ [k—1)™, (5.7)

for all integer k, I.

In particular these considerations apply to pseudo-differential operators. Let T be
a pseudo-differential operator with symbol o(x, £) defined by the formula

()00 = [ eox, Oftrde = [ Kty (58

where K is the distributional kernel of T.
THeorem 5.2.  If the wavelet basis has M vanishing moments, then for any pseudo-
differential operator with symbol o of Tand o* of T* satisfying the standard conditions
|020% o(X, &) = Cap(1 + [EN)"7 (5.9)
0808 0* (X, €)| = Cap(l + [£]) 7, (5.10)

the matrices a’, 8!, v of the non-standard form satisfy the estimate
ladi | + 1B + [yl =2YCu(L + i —I)™ 1, (5.11)

for all integersi, I.

If we approximate the operator T by the operator Tj® obtained from T§ by setting
to zero all coefficients of matrices o/, 4/,, and v/, outside of bands of width B =
2M around their diagonals, then it is easy to see that
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r

FIG. 5. A matrix representing the NS-form of the matrix of Example 1. All entries whose absolute
values are larger than 107 are shown in black.

C
T8 — Toll = o 108N, (5.12)

where C is a constant determined by the kernel K. In most numerical applications,
the accuracy e of calculations is fixed, and the parameters of the algorithm (in our
case, the bandwidth B and order M) have to be chosen in such a manner that the
desired precision of calculations is achieved. If M is fixed, then B has to be such that
ITY® — TH|| = C/BMlog,N = ¢, or, equivalently, B = (C/e log,N)*™.

The estimate (5.12) is sufficient for practical purposes. It is possible, however, to
obtain

IT8"® — Toll = % (5.13)
instead of (5.12) (see[1]).

Finally we note that strictly elliptic operators and their Green’s functions are com-
pressible in the wavelet bases and the decay of the elements of the blocks of the non-
standard forms away from the diagonal may be controlled by choosing appropriate
number of vanishing moments of the wavelet.

As an illustration, we display in Fig. 5 the NS-form of the matrix in Example 1 of
Section 9. Using periodized wavelets with 6 vanishing moments and setting to zero
al entries whose absolute values are smaller than 107, we display the remaining
non-zero elements in black in Fig. 5. This matrix is dense in the usua representation.

Remark 5.1. Truncating all elements of the matrix below a certain threshold (re-
lated to the desired accuracy) involves the matrix norm. We have

= o2y my 192 (5.14)
x+ o4 i
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The condition number k = ||T~Y| ||T|| may be viewed as an amplification factor for
the relative error. Thus, (5.14) implies that if thresholding has been performed using
6T = €|[T||, then the relative error of the solution will not exceed ke.

Let us denote by T, and T, approximations to T and T obtained by setti ng al entries
that are less than e to zero, and assuming (without a loss of generality) |[T]| = |[T]| =
1. Weobtan [T — T = ¢ |T — T.| = ¢, and therefore, |[TT — (T.T).] = € + (1
+ €) + €(1 + €)2. Theright side is dominated by 3¢. Thus, for truncating the factors
T and T, we use a threshold which is one-third of the threshold used for T.

5.2. Compression of Lower and Upper NS-Forms

In Section 4.4 we introduced the recursively defined reduced operator
R =T~ (T +CB). (5.15)

Let us denote by Az, Bg, and Cg the blocks obtained from the projections of R.
These blocks have the same rate of decay as the blocks A, B, and C; of the NS-form
as shown in the following theorem from [13].

THeorem 5.3 (Preservation of Structure over Finitely Many Scales). Let us as-
sume that the operator T and the wavelet basis satisfy conditions of Theorem 5.1. In
addition, we assume that T is a self-adjoint, strictly elliptic operator.

Let R be the reduced operator on some scale j, where reduction started on subspace
Voand1 =j = n, and let Ar, Bg, and Cr be its blocks. Then the bi-infinite matrices
a™, g1, and y" representing these blocks satisfy

lail | + 18k + vl = Cu(1 + [k = 1)), (5.16)

for all integersk, I.
In order to prove Theorem 5.3 [13], it is necessary to consider bi-infinite matrices

{ my, }k,l cz such that
Imgl <C(@+ [k—1])~", (5.17)

wherer > 1 is a parameter. We note that matrices o/, 87, y! of the NS-form satisfy
this estimate (see Theorems 5.1 and 5.2) wherer = M + 1. Considering the algebra
of invertible matrices{ my, }«, <z, the following theorem (an enhancement of the result
presented in [14] following [15]) is used to prove Theorem 5.3.

THeEOREM 5.4. If the matrix { m, },, <z is invertible on |2, then
Imt| <C'(1+ |[k—=1])". (5.18)
The proof uses relations between commutators of unbounded operator X on |2

defined by X (y.) = {ky} and operators M = {m, }xjez and Mt = {m}iez.
The proof is quite elaborate and we refer to [14] for the details.
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From Theorem 5.3 it follows that entries of the blocks Az, Bg, and Cg have the
same rate of decay as blocks of the original NS-form. Similar to Theorem 5.1, Theorem
5.3 does not give sharp estimates for the constants. We provide numerical examples
in Section 9 to show that the constant in the decay estimate in Theorem 5.3 is not
significantly different from that in Theorem 5.1 since the sparsity (after applying
accuracy cutoff) of the multiresolution LU factors is amost the same as that of the
origina NS-form.

In order to prove that all multiresolution LU factors are sparse, we note that both
Ar and A;ej.l have a fast rate of decay away from the diagonal as stated in theorems
of this section. Let us now select an e, the desired accuracy, and truncate both Ag
and A;il independently so that the error (in the operator norm) is e. Using results in
[16] (i.e., Proposition 2.1 therein), we observe that the banded bi-infinite matrix A™*
has banded Choleski factors (or LU factors). Since computing B~Rj and CR’. involves
the product of two banded matrices, we conclude that all blocks of NS-forms in the
multiresolution LU factorization are banded for a given accuracy e.

We note that in actual computations truncation is performed by restricting computa-
tions to a band (which is selected to accommodate all the entries up to a certain size)
and that matrices are finite rather than bi-infinite.

Combining previous results, we obtain

THEOREM 5.5. Let us assume that the operator T and the wavelet basis satisfy
conditions of Theorems 5.1 and 5.3. Let T, be the projection of T on the subspace V,.

For such operators the NS-form of T,, 'T'o, the lower, and T, the upper NS-forms
(To = To- T,) have banded blocks for any accuracy e.

Although we demonstrate the sparsity of the lower and upper NS-forms only for
representations with bi-infinite blocks, we observe an excellent confirmation of such
behavior in finite-dimensional numerical experiments in Section 9.

5.3. Fast Decomposition of NS-Forms

As was observed in [1], an approximation (to arbitrary precision) of the NS-form
of a dense matrix may be constructed in O(N) operations provided that the location
of discontinuities of the kernel is known beforehand. A typical case is where the
blocks of NS-forms are banded and have O(N) non-zero entries. Following the deriva-
tion presented in [1], we present afast algorithm for construction of a banded approxi-
mation to the NS-form.

We recall that operators { A, B;, C;, T;} are constructed by recursively computing

T.=A+B+C+T, (5.19)

using one step of the discrete wavelet transform (see Remark 2.1). To construct
the fast algorithm, we limit use of the wavelet transform to computing entries inside
the bands.

We note that blocks T; do not have rapid decay away from the diagonal and may
not be truncated accurately. However, in regions outside these bands the kerndl is
smooth (well represented locally by polynomials of degree less or equal to M, where
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M is the number of vanishing moments of the wavelet basis). Thus, coefficients of
the scaling function at coarser scales may be computed without the wavel et transform
using a quadrature formula. The simplest (one-point) quadrature formula is obtained
if we require ¢(x) to have M — 1 (shifted) vanishing moments. Using such wavelets,
the coefficients 5, at any scale may be approximated by

Sly ~ 2S5 14r) - r+1200-147)— 741 (5.20)

where s° is the original matrix and  is the shift parameter,
T = f d(X)xdx. (5.21)

The shift parameter 7 may be chosen to be an integer. We note, however, that for
any wavelet basis a quadrature formula (with M terms) may be constructed and used
instead of (5.20) (see[1]).

We describe now how to use quadrature formulas in constructing the banded NS-
form. Let us begin by filling the matrix for T, within a band of width 2w. We then
compute the banded approximate operators A;, B;, C;, T, using the wavelet transform.
We note that A, B,, C,;, T, will have a bandwidth w, since the procedure of wavelet
decomposition down-samples the result by a factor of 2.

To proceed to the next scale, we use the quadrature formula (5.20) to extend the
bandwidth of T, to 2w. We then compute the banded approximate operators { A,, B,,
C,, T,} from T, using the wavelet transform. These operators will have a bandwidth
of w. The process is repeated at each scale, j = 1, 2, ..., n.

Remark 5.2. Let us provide an additional explanation on the use of the quadrature
formula in constructing approximations to T;, 0 = j = n within a band of width w.
On the first scale, the matrix for T, is constructed explicitly within a band of 2w.
Consequently, T, can be constructed explicitly only within a band of w (due to
subsampling) and in general, the operator T; can be constructed explicitly only within
the band of width w/2'~*. Obviously, we have to fill bands to the width w on all
scales.

In the algorithm, the bandwidth of operators T; is extended to 2w on each scale
using the approximate quadrature formula. In doing so, we effectively interpolate the
matrix for T, as follows: for T,, we compute interpolated entries of T, within the
band [ 2w, 4w]. For T,, we compute interpolated entries of T, within the band [ 4w,
8w], and so forth on each scale. However, we reduce the sampling rate by a factor
of two on each scale (which is consistent with the assumptions regarding the smooth-
ness of T,). Thus, the amount of work to fill in a band of width 2w remains constant
on each scale.

Therefore, although blocks T; are *“truncated’’ to a bandwidth of 2w, the operator
T, is sampled well beyond this bandwidth.

ALGoRrITHM 5.1. (Fast Construction of NS-Form). Given an operator T,: V, —
Vo, a banded approximation to its NS- form (to arbitrary precision) may be computed
in a fast manner using the following steps:
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1. Compute entries of T, within a band of width 2w.
2. Forj=1,2,...,n,

(a) compute A, B;, C, and T; via (5.19),

(b) extend the band of T; to 2w via (5.20).

Computational cost. Step 1 is computed in O(N) steps. The cost of Step 2a is
O(wN;), where N; isthe size of T;_;. The cost of Step 2bis O(wN;). The total computa-
tional cogt is O((—log €)N) since the bandwidth w is proportional to —log e.

5.4. Fast Reconstruction of NS-Forms

Let us now show how to reconstruct a banded version of the operators T; from an
operator in the NS-form. That is, given the operators { { A, B, Ci}1<j=n, Tn}, We wish
to compute the operators { Tj}1-j-n—1. We note that if T, satisfies the conditions of
Section 5.1, then the blocks { { A, Bj, C}1<j<n. Tn} are banded, with bandwidth w.
The operators { T;} 1 -n-1, however, are represented using a bandwidth 2w (see above).

At each scale j, the operator T;_; may be reconstructed from the blocks A;, B;, G,
and T, via the inverse wavelet transform (see Remark 2.1). Let us demonstrate the
process of reconstructing operators T; beginning at the final scale, j = n.

We compute T,_; from operators A,, B., C,, T, using the inverse transform. We
note that the bandwidth of T, ; will be 2w. To proceed, we first truncate T, ; to a
bandwidth of w. Next, we reconstruct T, , from the operators A, 1, By_1, Cio1, Thoa
using the inverse transform. We note that T, , will have a bandwidth of 2w. The
process is repeated at each scale, where in general T;_, is computed by first truncating
T; to a bandwidth of w, and then computing the inverse transform.

ALGORITHM 5.2. (Fast Reconstruction of NS-Forms).  Given the banded NS- form
To = {{A, B, G}i-j=nTn} With width w, the banded operators { T;}:1-;-n_1 May be
computed using the following steps:

1. Forj=nn-1,...,1,
(a) truncate T, to a bandwidth w,
(b) compute T,_, via (2.15).

Computational cost. The cost of Step 1b is O(wN;_;), where N;_; is the size of
T;—1. The total computational cost is O((—log €)N) since the bandwidth w is propor-
tional to —log e.

5.5. Sparse Multiresolution LU Factorization

Let us consider the number of operations necessary for computing multiresolution
LU factorization for sparse NS-forms. We assume that T, and its factors To, T, are
compressible. Under these conditions, we show that multiresolution LU factorization
may be performed in O(N) steps. We note that sparse data structures are required to
achieve this result. To represent an operator in a sparse format, we truncate matrix
entries below a threshold, related to the desired accuracy.

5.5.1. Sparse Factorization

We begin by computing operators A, and A, as described in Section 4. Using
standard LU factorization, we compute
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A - A =LY, (5:22)

and set A = L and A = U,. If the matrix representing A, — A is sparse, then the
factorsin (5.22) are computed using sparse LU factorization, where computations are
restricted to non-zero entries. For banded matrices, the computational cost is reduced
from O(N?) to O(w?N;) where N, is the dimension of A; — A; and w is its half-
bandwidth.

According to Theorem 5.5, operators E~3,- and C,— are compressible and may be repre-
sented by banded matrices. Thus, these operators may be obtained efficiently using
sparse forward and backward substitutions. We note that fill-in may naturally occur
during this process, but the banded structure is maintained by truncating values below
the threshold. For this reason, the entire procedure may be viewed as an incomplete
factorization scheme. We note, however, that unlike standard incompl ete factorization
schemes, which are generaly used within an iterative method, multiresolution LU
factorization may be used to solve the problem directly (see Section 6).

The computational cost of this procedure is O(ww'N;), where N; is the dimension
of matrices, w is the bandwidth of B; — B, and C, — C;, and w’ is the bandwidth of
B, and C,.

5.5.2. Sparse Projections

In this section we consider the projections used during multiresolution LU factoriza-
tion. First, we compute the product of CJ , and BJ 1, €ach with bandwidth w. The
product C, 1B;_1 is obtained using sparse matrix multiplication and has bandwidth
2w. The cost is O(w?N;). Next, we compute the projections A;, B, C;, T;, which are
also banded, with width w. These are computed using the fast methods developed in
Section 5.3.

We now describe an algorithm, which combines the fast projection methods of
Section 5.3, with sparse LU factorization, to obtain an O(N) agorithm for the direct
construction of LU factors.

ALGorITHM 5.3. (Fast Construction of Factored NS-Forms). Given an operator
To: Vo = Vo, we perform the fast wavelet decomposition and multiresolution LU
factorization To = To- To, where To = {{ A, §}1oj=n, T} and To = {{ A, B.} 12 =,
T.} are banded lower and upper NS- forms, using the following steps:

1. Initialization: set Ay =B, = C, =T, = C; = B, = 0.
2. Compute entries of T, within a band of width 2w.
3. Forj=1,2,...,n
(a) compute (A — A), (B, — B), (C, — C),and (T, — T)), as described in
Section 5.3,
(b) extend the band of (T, — T,) to 2w via (5.20),
(c) compute A and A via (4.5a) using sparse factorization,
(d) compute B;, and C, via (4.5b) and (4.5c) using sparse forward and
backward substitution,
(e) compute C,B; using sparse multiplication.
4. At the last scale compute T, and T, via (4.6) using LU factorization.
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FIG. 6. Organization of multiresolution forward substitution.

Computational cost. Step 2 is computed in O(wN) steps. The cost of Step 3a is
O(WN). Step 3b is O(wWN). Steps 3c and 3d are O(W?N). Step 3e is O(WN). The
total cost of this procedure is O((—log €)®N) since the bandwidth is proportional to
—log e.

6. SOLUTIONS OF LINEAR ALGEBRAIC EQUATIONS

In this section we combine the results of previous sections and describe a direct
multiresolution solver for operators described in Section 5. We proceed along the
usual lines of using LU factorization for this purpose.

Given an NS-form To = {{ A}, B;, Cj}1<j=n, Tn}, and the vector by = {{d;,}1<j=n,
s} in awavelet basis, we seek to find a vector x, = {{dj +}1=j=n, S} which satisfies

To* X = b, (6.1)

where (-) isthe multiresolution product defined in Section 3.2. We note that solutions
of (6.1) are easily obtained when T, is a lower or upper NS-form. We refer to the
algorithms in Sections 6.1 and 6.2 as multiresolution forward and backward substitu-
tions, since they share common characteristics with the usual forward and backward
substitutions. Combining these algorithmsin Section 6.3, we obtain a direct multireso-
lution solver which may be used to compute solutions to (6.1).

6.1. Multiresolution Forward Substitution

First, we consider (6.1) where T, is the lower NS-form To = {{A;, C}i<j=n, Tn}-
The structure of the resulting linear system is shown in Fig. 6. The governing equations
are obtained by combining Egs. (3.11a) and (3.14). Noting that B; = O for j = 1, 2,
..., h, we have

Adi=d - g (6.2)
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onall scaesj =1, 2,...,n, and on the last scale
T8 = s — 5 — Cudy. (6.3)
The terms d;, 5 are computed via the projection equation obtained from (3.13)
Ca.d ,1+S5.:=d+s5. (6.4)

At agiven scale k, Eq. (6.2) is satisfied by first computing the projection of vector
Cc1d,1 + S, on scale k to obtain d, and s as in (6.4) and then solving (6.2)
for de using standard forward substitution. On the final scale we compute &, by
solving (6.3).

ALGORITHM 6.1 (Multiresolution Forward Substitution). Given the lower NS
form To = {{A, C}ij=n, Tn}, and the vector by = {{d}i<jn, S} in a wavelet
basis, we solve the system Ty- X, = by, Where X, = {{ d,-}lsjsn, $.} is a vector in the
wavelet basis, by performing multiresolution forward substitution as follows:

1. Initialization: setd, = s, = 0.
2. Forj=1,2,...,ncompute
(a) dj, (j = 1), via(6.4),
(b) d,— via (6.2).
3. At the last scale compute §, via (6.3).

Computational cost. For operators with banded lower NS-forms, the above ago-
rithm is O(N). The projection in Step 2a requires O(N) steps using the pyramid
scheme, while the application of C, to d; requires O(wN) steps, where w is the matrix
bandwidth. The cost for Steps 2b and 3 is O(wN). The total cost is O((—log €)N)
since w is usually proportiona to —log e.

Remark 6.1. It is possible to combine the wavelet decomposition of b, with multi-
resolution forward substitution, analogous to the method used in Section 4.3 for matrix
factorization.

6.2. Multiresolution Backward Substitution

We now consider (6.1) where T, is the upper NS-form To = {{ A, Bi}1<j=n, Tn}.
The structure of the resulting linear system is shown in Fig. 7. We obtain the solution
using a multiresolution backward substitution algorithm.

The governing equations are obtained by combining Egs. (3.11a) and (3.14) . Noting
that C; = 0forj=1,2,...,n, wehave
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onall scaesj =1, 2,...,n, and on the last scale,
TS = s (6.6)

We note that no projections enter into Egs. (6.5) and (6.6), since C; = 0in (3.11b)
implies that § = 5 = 0. We show, however, that projections from coarser to finer
scales (i.e., reconstructions) will be required throughout the algorithm.

To demonstrate this, let us begin on the coarsest scale, j = n, and solve (6.6) for &,
using the usual backward substitution. This completes the procedure for j = n. We now
assume that Eq. (6.5) has been satisfied for j = n, ..., k + 1, and reconstruct %,

& = dk+1 + St (67)

using the inverse wavelet transform (see Remark 2.3). Next, we compute d,_, by
solving (6.5) using the usual backward substitution. We have

ALGORITHM 6.2. (Multiresolution Backward Substitution). Given the upper NS
form To = {{ A, B}1<j=n. Tn}, and the vector by = {{d}i-j=n, S} in a wavelet
basis, we solve the system Ty- X, = by, Where x, = {{dj}lsjsn, S} isa vector in the
wavelet basis, by performing multiresolution backward substitution as follows:

1. At the last scale compute &, using (6.6).
2. Forj=nn-1,...,1compute

(@) §, (j #n),via(6.7),

(b) d via (6.5).

Computational cost. The computational cost for this procedure is the same as for
forward substitution, namely, O((—log €)N).

6.3. Multiresolution Direct Solver

We have now developed al the tools necessary to solve the linear system of
algebraic equations

To* X% = b, (6.8)
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for general NS-forms Ty = {{ A, B;, C}1-j=n} Tn} . The procedure is analogous to
direct methods based on the usual LU factorization. The only difference is that the
product in (6.8) refers to the multiresolution product defined in Section (3.2).

We begin by computing the multiresolution LU factorization To* T, = T, as outlined
in Sections 4.2, 4.3, and 4.4. We proceed to solve the system T, VYo = by for y, using
multiresolution forward substitution, as described in Section 6.1. Given y,, we may
obtain X, by solving To X = Yo Using multiresolution backward substitution, as de-
scribed in Section 6.2.

We emphasize that for operators which satisfy the conditions of Section (5.2), the
multiresolution LU decomposition requires O((—log €)2N) operations and multireso-
lution forward and backward substitutions O((—log ¢) N) operations.

7. SOLUTIONS OF MATRIX EQUATIONS

In this section we present a direct method for solving matrix equations. Specifically,
given the NS-forms To = {{ A, B;, G}1<j=n, Tn} and Bo = {{A, Bj, C}1oj=n, T},
we seek to find a NS-form X, = {{A, B, Ci}igj=n, T.} which satisfies

To‘)zo = Bq, (7-1)

where (-) is the multiresolution product defined in Section 3.3.

Similar to the usual LU decomposition, we may consider the column vectors of By
in awavelet basis and solve for columns of X,. Unlike the usual LU decomposition,
however, there is asignificant difference between considering columns of B, separately
and considering B, as a matrix; namely, the matrix representation of B, is sparser.
For example, under the wavel et transform the identity matrix does not change, whereas
unit columns of the identity matrix develop bands on all scales.

The algorithms of this section may therefore be viewed as generalizations of multi-
resolution forward and backward substitution for matrix equations. Such a solver may
be used to compute the inverse operator Tg™.

7.1. Factorization of Blocks T,

In what follows, we use the lower and upper trlangular factors T and TJ, which
belong to the extended lower and upper NS-forms T, and T,. Since th@e factors are
not normally computed during the multiresolution LU factorization, we begin by
describing a procedure for their construction. These operators may not be sparse, but
algorithms of this section require only a band around the diagonal.

Combining formulas (3.21d) and (3.26), and eliminating the intermediate variable
T,, we obtain

+ CB +

—|e
—||

T =TT, (7.2)

forj =1, 2,..., n. We compute the factors 'T', and 'T', on each scale using the usual
LU factorization,
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FIG. 8. Organization of multiresolution forward substitution for matrices.

LU =T, - CB - T, (7.3)

wherel; = T,and U; = T,.

Remark 7.1. We note that this procedure requires the multiplication of Cj and B;,
and the computation of T; via(4.4). These computations are apart of the LU factoriza-
tion of T, (see, eg., Step 2a of Algorithm 4.1). The results may be stored as T; —
CB — T, a each scalej during LU factorization.

ALGoRITHM 7.1. (LU Factorization of Blocks T) Given the extended NS- form
To = {A1 B;. C,, T;}1<j=n, and its LU factors TO = {{A, C}l<,<n, T} and T, =
{{A1 BJ }zj=ns T.}, thelower and upper triangular factorsT andT may be computed
using the following steps.

1. Initialization: set T, = O.

2. Forj=1,2,...,ncompute
(@) T (j = 1) via(44),
(b) T, and T, via (7.3).

Computational cost. We note that operations in this algorithm are performed on
dense matrices. However, since we require only a banded version of the operators, we
may perform computations in a fast manner. Step 2a requires the projection of a banded
matrix on a coarser scale and may be computed in O(wN) steps using the fast algorithm
described in Section 5.3. We also require the matrix multiplication of C; and B; which
requires O(w?N) operations, where w is the matrix bandwidth. In Step 2b we compute
the LU factorization of a banded operator, which requires O(w?N) operations. The total
computational cost is O((—log €)2N) since w is proportional to —log e.

7.2. Multiresolution Forward Substitution

We now consider (7.1), where T, is the lower NS-form T, = {{ A, C}1-j-n, To}.
The structure of the resulting matrix equation is illustrated in Fig. 8.

The governing equations are obtained by combining Egs. (3.21) and (3.24), and
noting that I:%j =0forj=1,2, ...,n Wehave
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AA = A - A, (7.42)

AB =B - B (7.4b)

AJCI I I I C1’A~J- (740)
forj=1,2,...,n,and at the last scale

Tn-rn = Tn - Tn - Can- (75)

The terms A, B;, C;, and T; are computed via the projection equation in (4.4)
CG.B,+T.,=A+B+C+T,. (7.6)

At a given scale k, Egs. (7.4) are satisfied by first computing projections of the
matrix C,_1Bc_1 + Ty, to obtain A, B, Cy, and Ty, as in (7.6). Next we use the
usual matrix operations to solve (7.4a) and (7.4b) for A, and By. Given A,, we obtain
C, by solving (7.4c) using the usual forward substitution. We have now satisfied Eqgs.
(7.4) for j = k. On the last scale, we compute the term T, by solving (7.5) using the
usual forward substitution.

ALGORITHM 7.2. (Multiresolution Forward Substitution (Matrix Version)). Given
the extended lower NS-form T, = { A, CJ, T,}12jn, and the NS- form B = {{A,
Bi, Ci}1<j=n. Tn}, we solve the system T0 X, = By, where X, = {{A, C}1<J<n,

T } is a NS- form, using multiresolution forward substitution as foIIows

1. Initialization: set A, = B, = C, =T, = 0.
2. Forj=1,2, ---ncompute

(@ A, B, G (j#1)via(76),

(b) A via (7.4a),

(c) B via (7.4b),

(d) G via (7.4c).
3. At the last scale compute T, via (7.5).

Computational cost. The projection in Step 2a requires O(wN) operations using
the fast algorithm described in Section 5.3. The matrix multiplication of C; with B,
may be computed in O(wW?N) steps, where w is the matrix bandwidth. Steps 2b, 2c,
and 2d require O(w?N) operations. The total computational cost is O((—log €)?N),
since w is usually proportiona to —log e.

7.3. Multiresolution Backward Substitution

We now consider (7.1), where T, is the upper NS-form To = {{A, B}1j-n, Tn}.
The structure of the resulting matrix equation is illustrated in Fig. 9. We obtain the
governing equations by combining Egs. (3.21) and (3.24) and noting that C,— = 0 for
=12 ...,n. Wehave
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o

AA = A - BCj, (7.72)
AB =B - BT, (7.7p)
TG =G, (7.7¢)
forj=1,2,...,n,and at the last scale
T.Tn = Ta. (7.8)

We note that no projections enter into Egs. (7.7) and (7.8), since C; = 0in (3.21c)
impliesthat A =B, =C =T, =0.

We start at the scalej = n and compute T, by solving (7.8) using the usual backward
substitution. Let us now assume that (7.7) has been satisfied forj = n, ...,k + 1.
We first reconstruct T, via (2.9),

-rk = A~k+1 + E§k+1 + C~:k+1 + -rk+1! (79)

using the inverse wavelet transform (see Remark 2.1) . We next compute C. by solving
(7.7c) using the usual backward substitution. Given T, and C,, we may obtain A and
By by solving (7.7a) and (7.7b) using the usual backward substitution.

ALGORITHM 7.3. (Multiresolution Backward Substitution (Matrix Version)).
Given the extended upper NS- form To = {A BJ, T}1<,<n, and the NS-form B, =
{{A, B, G}ij=n, Tu}, e solve the system To-Xo = By, where X, = {{A, B,
C}lSJSn, T.} is a NS- form, using multiresolution backward substitution as follows:

1. At the last scale compute T, using (7.8).
2. Forj=nn-1,...,1, compute

(a) T, (i + n) via (7.9),

(b) C via (7.7¢),

(c) B via(7.7b),

(d) A via(7.7a).

Computational cost. The computational cost for this algorithm is the same as for
forward substitution, namely, O((—log €)°N).



LU FACTORIZATION OF NS-FORMS 189

b 12 ’

A
6#'3

FIG. 10. Organization of multiresolution forward substitution for finding the inverse.

7.4. Multiresolution Direct Solver for Matrix Equations

We now consider the solution to matrix equations of the type in (7.1) for general
NS-forms To = {{ A, Bj, Ci}1-j=n} Tn} . This procedure is completely analogous to
the multiresolution direct methods developed for linear systems in Section 6.3.

We begin by computing the multiresolution LU factorization To- To = Toasoutlined
in Sections 4.2, 4.3, and 4.4. In addition, we store the banded versions of the blocks
T, and T, as described in Section 7.1. We then solve the system T,- Y, = B, for Y,
using multiresolution forward substitution for matrices, as described in Section 7.2.
Given Yo, we may obtain X, by solving To+ X, = Y, using multiresolution backward
substitution for matrices, as described in Section 7.3.

Each of these algorithms is O((—log €)?N), where operators satisfy the conditions
in Section 5.2. We thus have a direct, O(( —log €)?N) method for computing solutions
to matrix equations.

7.5. Computing the Inverse Operator

Let us describe the algorithm to compute the inverse operator in greater detail.
Given the NSform To = {{Aj C}1<,<n}T }, we seek to find the inverse NS-
form Tg* = {{A,, , C}ls]sn}T } which satisfies

To-To' = lo, (7.10)

where o = {{1;}15j=n, In} is the NSform of an identity matrix. We note that the
identity blocks I; occupy the space of Ay and that the block I, occupies the space of
T,., a may be seen in Fig. 10. Although the NS-form T5* may be obtained using the
multiresolution direct solver as described in Section 7.4, the algorithm is simpler for
this special case.

7.5.1. Forward SQubstitution

We first consider the multiresolution forward substitution T,- Y, = I, to obtain ¥Y,.
We note that Y, represents the inverse of T, and that Y, is lower triangular. The latter
is true since the inverse of a lower triangular matrix is also lower triangular. Since
Yo is lower triangular, B; = 0 on all scales, and A =B, =C =T, = 0forj = 1, 2,
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FIG. 11. Organization of multiresolution backward substitution for finding the inverse.

..., h, and no projections need be computed. Thus, operations on each scale may be
performed independently. From (7.4) and (7.5) we obtain the simplified equations

AA =1, (7.11a)
G = —CA;, (7.11b)

forj=1,2,...,n,and at the last scale
T.Tn = 1. (7.12)

7.5.2. Backward Substitution

We next consider the multiresolution backward substitution, 'T'o- Xo = Y,, to obtain
Xo, asillustrated in Fig. 11. Using (7.7) and (7.8), we have

AA = A - BC,, (7.13a)
AB = -BT;, (7.13b)
G =G, (7.13c)
forj=1,2,...,n,and at the last scale
T.T. =T, (7.14)

8. LU DECOMPOSITION OF STANDARD FORMS

The LU factorization of matrices represented in the standard form (S-form) is the
usual LU factorization in a wavelet system of coordinates. Although such representa-
tion is less efficient than the multiresolution LU factorization of NS-forms, we show
that if lower and upper NS-forms T, and T, are compressible in a wavelet basis, then
the corresponding S-forms are also compressible.

The S-form may be obtained by applying the wavelet transform to each row and
column of the matrix representing T,. Alternatively, in [1] it was demonstrated that
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S-forms may be obtained by first constructing the NS-form and then converting it to
an S-form using the following algorithm:

ALGoRITHM 8.1. (Computing the S-Form from the NS-Form). Given the NS- form
To = {{A, B}, G}ij=n, Tn}, the S form may be obtained at each scale j using the
following steps:

1. Recursively apply the wavelet transform to each row in B; for k = j, j + 1,
., N
2. Recursively apply the wavelet transform to each column in C; for k = j, j +
1,...,n

3. Placetheblocks{ A, B;, C;} in the space occupied by T,_;. (This step returns
the system to its original dimension.)

We now use Algorithm 8.1 to construct the S-form of lower and upper NS-forms.
We have

THEOREM 8.1. Let Ty = 'i'o- T, be the multiresolution LU factorization of the NS
form for Ty, and let T, = LU be the standard LU factorization of the Sform for T,.
Then 'T'o isthe NSformof L, and T, is the NSform of U. Therefore, sparsity of lower
and upper NS-forms implies sparsity of lower and upper factors of the standard form.

Remark 8.1. We note that since S-form representations also admit a sparse struc-
ture, standard LU factorization may be used to compute the factors L and U. However,
such approach is less efficient than that of using the NS-forms. The loss of efficiency
may be clearly seen from Theorem 8.1. Single bands of C; and B; are expanded into
several bands to account for interaction between scales, thus reducing the sparsity of
corresponding matrices by a significant factor.

9. NUMERICAL EXAMPLES

In this section we present numerical examples to demonstrate the performance of
the algorithms of this paper. The programs were written in C and all calculations were
performed on an HP 735/125 computer. As far as the raw speed is concerned, the
code was not optimized. The goal of these examples is to illustrate the behavior of
the algorithms as the size of matrices increases.

In Examples 1 through 4 we compute solutions to linear systems of the type Ax =
b, where Alisan N X N matrix, using the fast direct solver described in Section 6.3.
In Example 5 we compute the S-form of a matrix and then perform standard LU
decomposition using sparse data structures to illustrate Theorem 8.1 in Section 8. In
Example 6 we compute the inverse of a matrix using a sparse version of the algorithm
described in Section 7.5. In al cases, the experiments were performed for N = 128,
256, 512, 1024, and 2048, and in al figures the matrices are depicted for N = 256.

Accuracy estimates are obtained by first computing the r.h.s. b as b = Ax, where
X is a random vector with ||X|. = 1. We then compute the solution X’ using the
specified method. Finally, the L, and L.. norms of the error vector e = x — X’ are
evauated. In the examples the number of vanishing moments of wavelet coefficients
was chosen to achieve roughly the single precision accuracy.
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FIG. 12. The NSform of LU factors for Example 1. The factors are combined together as T & To
and entries above the threshold 107 are shown in black.

L et us describe organization of the tables. Column 1 indicates the size of the matrix,
N. Column 2 contains CPU time t; . required to compute the factored NS-forms To
and T, using Algorithm 4.2 of Section 4.3. The time t;. includes the matrix fill,
wavelet decomposition, and multiresolution LU factorization. Column 3 contains the
time ty,, Necessary to compute the solution of the linear system using sparse multireso-
lution forward and backward substitution of Section 6. Columns 4 and 5 contain the
L. and L, errors of the computations. Column 6 contains the compression ratio for
To, the NS-form of the operator. The compression ratio is defined as the ratio of N2
to Ns, where N; is the number of significant entries in the matrix after truncation.
Finally, column 7 contains the compression ratio for the lower and upper NS-forms
To and To. This compression ratio is computed for the matrix obtained by placing
both the lower and upper factors into the same matrix (this is how we store the
factors). We denote this combination T, & T, and note that this matrix contains all
significant entries of the multiresolution LU factorization. We display the combination
To & T, for various examples to illustrate the sparsity of the LU factors.

ExampLE 1. We consider the matrix

(9.1)

i =

{C/tan(w(i —)IN), i#]
1, =],
wherei,j=1,...,Nand C = 1/N. The constant C is chosen so that A; =~ 1/(=(i —
j)) for small |i —j|. Multiresolution LU factorization was performed using periodized
wavel ets with six vanishing moments. Operations were restricted to a half-bandwidth
of 20, and elements of absolute value less than 10~ were truncated. In Fig. 12 we
show the truncated matrix T, & T,. Timi ng and error results are given in Table 1.
We include in Table 1 a comparison of CPU times with usual direct methods.
Column 4 contains the time necessary to compute the usual LU factorization of the
original matrix, which requires O(N?®) operations since the original matrix is dense.
Column 5 contains the time used for dense forward and backward substitution, which
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TABLE 1
Numerical Results for Example 1

MultiR. LU Dense LU Errors Comp. ratios
N tract tan tract tan L. L. To To& T
128 0.46 0.01 0.05 0.01 2.75 x 1077 131 x 1077 253 222
256 115 0.02 0.47 0.01 3.50 x 1077 135 x 1077 4.76 4.09
512 257 0.05 9.93 0.02 2.46 x 10°° 443 x 1077 9.25 7.85

1024 5.66 0.12 97.05 0.11 354 x 10°° 7.33 x 1077 18.22 15.41
2048 13.27 0.28 776.4* 0.4% 3.67 x 10°° 745 x 1077 36.19 30.55

2 Estimated values.

is O(N?). Columns 6 and 7 contain the L.. and L, errors of the sparse multiresolution
computations.

ExampLE 2. We consider the matrix

1, li—jl=1,N-1
A= -2 Q=] (9.2)

0, elsewhere

which is a periodized version of the second derivative operator. We note that this
matrix has a one-dimensional nullspace which contains a constant. This nullspace
may easily be removed in the NS-form by computing the decomposition to the last
scale and then eliminating the equationsinvolving T,,. Multiresol ution Choleski factor-
ization was performed using periodized wavel ets with eight vanishing moments. Oper-
ations were restricted to a half-bandwidth of 22, and elements of absolute value less
than 10~ were truncated. In Fig. 13 we show the truncated matrix T, & T, which

AN\
N e

F.

FIG. 13. The NS-form of LU factors for Example 2. The factors are combined together as T, & T,
and entries above the threshold 10 *° are shown in black.
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TABLE 2
Numerical Results for Example 2

Run times Errors Comp. ratios
N tract taw L. L, To To& T
128 0.61 0.01 350 x 1077 3.17 x 1077 201 1.60
256 153 0.03 9.13 x 1077 9.46 x 1077 371 2.83
512 3.46 0.06 249 x 10°° 2.37 X 10°° 7.17 5.38
1024 7.30 0.14 6.52 x 10°© 5.94 x 1076 14.11 10.50
2048 17.41 0.33 134 x 10°° 111 x 10°° 28.03 20.78

contains the lower and upper NS-forms. Results for this example are summarized in
Table 2.

ExampLE 3. We consider the operator 9/9n In(1/r) (i.e., the normal derivative
of the two-dimensiona static Green’s function). We discretize the operator on the
boundary of an ellipse and obtain the matrix | + A where

_1 cosh(u)sinh(u)
A= N os(w)sin(6y) + Snh(u)cos(6y) (93)

and 6; = w(i + j)/N, and u is a parameter related to the eccentricity of the ellipse.
The eccentricity of an ellipse is defined as the ratio of the distance between foci to
the length of the magjor axis. For this example, we use u = 1.0, which corresponds
to an eccentricity of 0.65.

Multiresolution Choleski factorization was performed using periodized wavelets
with six vanishing moments. Operations were restricted to a half-bandwidth of 10,
and elements of absolute value less than 10~7 were truncated. The results for this
example are shown in Table 3. Remarkably, in this case the compressiton ratios are
the same for both the NS-form and the LU factors.

TABLE 3
Numerical Results for Example 3

Run times Errors Comp. ratios
N troct taw L. L, To To& T
128 0.31 0.01 1.08 x 10”7 7.14 x 1078 17.73 17.73
256 0.70 0.01 143 x 1077 9.21 x 10°® 64.38 64.38
512 152 0.03 5.69 x 1078 3.36 x 1078 198.29 198.29
1024 3.61 0.06 437 x 1078 271 x 1078 576.14 576.14

2048 8.16 0.12 3.88 x 10°® 250 x 10°® 1474.79 1474.79
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FIG. 14. The NS-form of LU factors for Example 4. The factors are combined together as T, & T,
and entries above the threshold 107 are shown in black.

ExampPLE 4. We consider the matrix

Aj=4 -15  i=]j (9.4)

which is similar to the second derivative operator. This matrix, however, is not posi-
tive-definite and does not satisfy the requirements of Section 5.2. We include this
example to demonstrate that some improvement in speed may still be obtained. In
Fig. 14 we show the lower and upper NS-forms T, & T, constructed using periodized
wavelets with 6 vanishing moments. All entries above a threshold of 10~7 are shown
in black. The first two scales correspond to a positive definite submatrix, and the
blocks of the LU factors are banded. Beyond scale j = 3, the matrix is no longer
banded, but some sparsity remains. The algorithm is modified by allowing fill-ins to
be generated outside the bands (the initial half-bandwidth was 15). The effect is that
the bandwidth is alowed to grow and, at ] = 3, the bandwidth equals the size of the
sub-block. Sincethe matrix isnot positive-definite, we use partial pivoting as described
in the Appendix. The results are summarized in Table 4.

TABLE 4
Numerical Results for Example 4

Run times Errors Comp. ratios
N o tan L.. L, To To& T,
128 0.37 0.01 172 x 10°® 149 x 10°° 2.63 197
256 094 0.04 505 x 10°° 491 x 10°° 5.04 331
512 2.60 0.11 7.01 x 10°© 6.33 X 10°° 9.88 6.09
1024 8.32 0.38 7.68 x 10°° 591 x 10°° 19.62 11.35

2048 30.05 1.40 3.13x 10°® 237 x 10°° 39.11 20.57
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FIG. 15. The Sform of LU factors for Example 5. The factors are combined together as L & U and
entries above the threshold 10~7 are shown in black.

ExampPLE 5. We compute the S-form of the operator used in Example 1 and then
perform standard LU factorization using sparse data structures. All elements of abso-
lute value less than 107 were truncated. We compute the S-form directly (without
computing the NS-form first) and it requires O(N?) operations. We use this example
to demonstrate that if NS-forms remain sparse during multiresolution LU factorization
(asin Example 1), then the corresponding S-forms will also be sparse (see Section
8 for details). In Fig. 15 we show the truncated matrix L & U which contains the
lower and upper triangular matrices produced during LU factorization. From Table 5
we observe that the compression ratio for the S-form is worse than that for the NS
form in Table 1.

ExampPLE 6. We compute the inverse of the operator used in Example 3 and leave
the result in the NS-form. All operations were performed using periodized wavelets
with six vanishing moments. Operations were restricted to a half-bandwidth of 10,
and elements of absolute value less than 107 were truncated.

Error analysis for this example was performed by computing the solution vector x’
as X' = Ty'b, and then comparing x’ to x as previously described. In Fig. 16 we
show the resulting matrix T,*. All entries whose absolute value is greater than 10’
are shown in black.

TABLE 5
Numerical Results for Example 5

Run times Errors Comp. ratios
N tract tab L. L, A L&U
128 0.52 0.00 1.86 x 10”7 952 x 1078 184 175
256 222 0.02 249 x 1077 118 x 10°7 2.87 273
512 8.55 0.05 2.70 x 1077 1.30 x 1077 4.82 4.60
1024 31.68 0.18 250 x 1077 132 x 1077 8.72 8.37

2048 124.53 0.59 295 x 1077 142 x 1077 16.60 15.95
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FIG. 16. The NS-form of T5*, the inverse for operator in Example 6. Entries above the threshold 10~
are shown in black. We observe that blocks € and B are zero on several scales.

The results of this test are shown in Table 6. Column 2 contains the total time
required to fill the matrix, compute the multiresolution LU factors, and compute the
inverse. Columns 3 and 4 contain the error in the computed solution, and column 5
contains the compression ratio for the inverse operator. We observe that for this
example, the time required to compute the inverse is roughly a factor of 2 greater
than for computing the LU factorization.

Condition numbers. In Table 7 we present the condition humbers of matrices in
four examples and the condition numbers of blocks which are actually factorized
during the multiresolution LU factorization. The top row shows the condition number
of the original matrix of size N = 256. In rows 2 through 7 we present the condition
number of blocks A of the NS-form at different scales j = 1, ..., 7, which are
factorized during multiresolution LU factorization.

The second column of Table 7 (Example 2) is most interesting since it shows
nearly perfect condition numbers on all scales, whereas the origina operator has
condition number of O(N?), where the size of the matrix isN x N.

10. GENERALIZATIONS AND CONCLUSIONS

The sparsity of multiresolution LU factorization algorithms does not depend on
dimension. Thisisin a sharp contrast with the usual practice, where LU factorization

TABLE 6
Numerical Results for Example 6

Run time Errors Comp. ratio
N tinv L.. L, To!
128 0.55 214 x 1077 1.88 x 10”7 21.90
256 144 218 x 10°7 229 x 1077 74.73
512 3.05 2.60 x 1077 2.04 x 1077 222.34
1024 6.83 157 x 1077 1.55 x 10”7 615.36

2048 15.79 153 x 1077 148 x 1077 1572.08
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TABLE 7
Condition Numbers for Blocks A; (N = 256)

Examples
Scale (j) 1 2 3 4
0 141 6641° 231 1751
1 1.05 2.00 1.00 235
2 1.25 341 1.00 17.21
3 1.56 3.85 1.00 40.93
4 1.76 3.96 1.00 251
5 1.87 3.99 1.00 116
6 1.93 4.00 1.01 115
7 1.96 4.00 114 1.09

@ Condition number of origina matrix.
® Null space was removed from matrix.

is not recommended as an efficient approach in problems of dimension two or higher.
For example, if we consider the Poisson equation, then LU decomposition is not
considered as a practical option since the fill-ins will yield dense LU factors. We
emphasi ze that the of f-diagonal decay described in Theorems 5.1 and 5.3 is not specific
to dimension one. Thus, multiresolution LU factorization in the wavelet system of
coordinates becomes an option in solving elliptic problems in higher dimensions and
we plan to demonstrate the multidimensional algorithm in a separate paper.

In multidimensional generalizations it is important to satisfy boundary conditions,
and this implies using non-periodized wavelets. We note that the wavelet transform
appears only as an orthogonal transformation in our approach and thus multiwavel ets
[3] or other orthogonal transformations may be used (provided the sparsity is main-
tained). We forsee future work in this direction, where one would try to optimize the
choice of the basis (or coordinate transformation) in an adaptive manner for a given
operator.

An additional feature of multiresolution forward and backward substitution algo-
rithms that we did not address in this paper is adaptivity. Namely, if the right-hand
side of the equation is compressible in wavel et bases, then the solution may be obtained
with the number of operations proportional to the number of significant entries of the
right-hand side.

The multiresolution LU factorization algorithms are intimately related to the idea
of multiresolution homogenization [12]. The development in this direction may be
found in [13], where multiresolution LU factorization algorithms are used as tools
for fast computation. It is shown that these algorithms may be used for computing
small eigenvalues (we note that the approach in [13] is not the power method for the
inverse operator). It is clear, however, that the power method with inverse iteration
may be used in conjunction with the fast multiresolution LU decomposition to find
small eigenvalues of the original operator.
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We notethat it appears possible to generalize our approach to perform fast multireso-
lution QR (or LQ) factorization of NS-forms rather than multiresolution LU factoriza-
tion. The operators for which QR factorization should work have sparse NS-forms,
and thus Householder transformations may be described by sparse vectors. We plan
to develop this algorithm at a later date. Such an agorithm will have a number of
important applications.

Finally, we note that an easy access to inverse operators is very useful in a variety
of situations, e.g., preconditioning, low rank updates of inverse operators, etc. In signa
processing variants of LU agorithms are used in various linear estimation schemes and
we hope that the algorithms of this paper will have an impact on this area as well.

APPENDIX: PIVOTING

In this Appendix we consider linear systems which are not positive-definite. Strictly
speaking, our approach is not guaranteed to work for such systems, as may be seen
in Example 4. However, some improvement has been observed and we describe
the use of partia pivoting with the multiresolution direct methods which have been
devel oped.

1. Factorization. We consider the effects of partial pivoting on multiresolution
LU factorization described in Section 4. When a row exchange is encountered, we
modify the governing equations in (4.5) using a permutation matrix R which contains
the pivoting information

(RAR*)(RA) = R(A — A), (11.1a)
(RAR*)(RB)) = R(B, - B), (11.1b)
(GR*)(RA) = C - G, (11.1c)

and solve for RAR*, RA,, RB,, and C;R*. To proceed to the next scale, j + 1, we
reguire the decomposition of the term C,— I§j . We note that this product may be obtained
from the relation (C;R*)(RB,) = C;B,, which implies that scale j + 1 is unaffected
by row exchanges at scalej.

2. Forward and backward substitution. We note that multiresolution forward
substitution with pivoting is completely analogous to standard forward substitution
with pivoting. The governing eguation (6.2) becomes

(RAR*)Rd, = R(d, — d), (11.2)

which we solve for Rd;. The projections of C;d; on the next scale are computed by
noting that (C;R*)Rd, = C;d;, which again implies that scalej + 1 is unaffected by
row exchanges. The governing equations for multiresolution back substitution are
unaffected by pivoting.

3. Factorization of T; blocks. To solve matrix equations of the type in Eq.
(7.1), we require the factorization of the blocks T, as described in Section (7). We
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denote R, as the permutation matrix describing the row exchanges in T;, and let R
describe the row exchanges in A;. We obtain

(RAR*)(RA) = R(A - A), (11.3a)
(RAR*)(RB)) = R(B; — B), (11.3b)
(RGR*)(RA) = R(C - C), (11.3c)
(RT/R¥)(RT)) = RT; — (RGR*)(RB)). (11.3d)

We note that row exchanges in T, will affect terms A4, Bj.1, Cj+1, and T, at the
next scale, since these terms are computed as projections of R(T, — T, — GB),
instead of thosein (4.11). To avoid modifying these terms, we use the direct factoriza-
tion method in Section 4.3, where A1, Bj.1, G141, and T,,; are computed after the
factorization of T;.

4. Forward and backward substitution of matrices. The governing equations
in (7.4) for multiresolution forward substitution for matrices become

(RAR*)(RA)) = R(A - A), (11.4a)
(RAR*)(RB)) = R(B, - B), (11.4b)
(RTR#)(RC)) = R(C - C) — (RGR*)(RA). (11.4c)

Again, terms at the next scale, j + 1, are affected by the row exchanges in T, since
we require the projection of (RCR*)(RB;) = RCB; instead of C;B;. Multiresolution
backward substitution for matrices is unaffected by pivoting.

5. Factorization using alternate algorithm. We now consider the effects of
partial pivoting when using the aternate algorithm described in Section 4.4. We note
that the factorization in (4.12) allows us to interchange rows between A; and C; (and,
hence, B; and T;). This provides greater flexibility when choosing the pivots and may
lead to a more accurate solution. We note, however, that since T; is modified during
the procedure, the terms A1, Bj.1, Ci,1, Tj.1 Will be affected. Again, we use the
direct factorization method described in Section 4.3 so that A1, Bj+1, Cji1, Tj41 @re
computed after T;.
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