ITERATED TUBULAR ALGEBRAS

J.A. De La PEÑA
Instituto de Matemáticas, UNAM, México 04510, D.F., México
B. TOMÉ
Facultad de Ciencias, UNAM, México 04510, D.F., México

Communicated by E.M. Friedlander
Received 20 July 1988

1. Introduction

Let k be a fixed algebraically closed field. Let Λ be a finite dimensional, basic and connected k-algebra.

In this work we are concerned with the study of certain classes of tame algebras. We say that Λ has acceptable projectives if the Auslander-Reiten quiver Γ_{A} of Λ has components $\mathscr{P}, \mathscr{C}_{1}, \ldots, \mathscr{C}_{l}$ with the following properties:
(i) Any indecomposable projective Λ-module lies on \mathscr{P} or on some \mathscr{C}_{i}.
(ii) \mathscr{P} is a preprojective component of Γ_{Λ} without injective modules.
(iii) Each \mathscr{C}_{i} is an inserted-coinserted standard tube.
(iv) If $\operatorname{Hom}_{\Lambda}\left(\mathscr{C}_{i}, \mathscr{C}_{j}\right) \neq 0$, then $i \leq j$.

The main result of this work is the following: Let Λ be a directed algebra with acceptable projectives, then Λ is tame iff the Tits form q_{Λ} of Λ is weakly semipositive. Moreover, we give an inductive construction of this class of tame algebras and of their module categories. The construction of these algebras is an iteration of the process given by Ringel in [16] for the definition of the domestic tubular and tubular algebras. Hence we call these algebras iterated tubular algebras.

Following [8], we write $\Lambda=k\left[Q_{A}\right] / I$. We assume that Q_{A} has no oriented cycle (i.e. Λ is directed). Our modules are left Λ-modules. By P_{x} (resp. I_{x}) we denote the indecomposable projective (resp. injective) A-module associated with the vertex $x \in Q_{A}$. If $M \in \bmod \Lambda$ we set $\operatorname{dim} M=\left(\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}\left(P_{x}, M\right)\right)_{x \in Q_{A}}$. By Γ_{A} we denote the Auslander-Reiten quiver of Λ and we consider the vertices of Γ_{Λ} as indecomposable modules. The translation in Γ_{A} is denoted by τ.

For basic notions we refer the reader to [8] and [16].

1. Some characterizations of domestic tubular algebras

1.1. Following [$16,3.1$], a translation quiver \mathscr{T} without double arrows is said to be a tube if its associated topological space is homeomorphic to $S^{1} \times \mathbb{R}_{0}^{+}$and \mathscr{T} contains a cyclic path. The tube \mathscr{T} is stable if it is of the form $\mathbb{Z} \mathbb{A}_{\infty} / n$, for some natural number $n \geq 1$.
A vertex v in \mathscr{T} is a ray vertex if there is an infinite sectional path in \mathscr{T}, $\nu=v[1] \rightarrow \nu[2] \rightarrow \cdots \rightarrow v[i] \rightarrow v[i+1] \rightarrow \cdots$ with different vertices $v[i], i \in \mathbb{N}$, such that for each i, there is a unique sectional path of length i starting at v.
Given a branch B and a ray vertex $v \in \mathscr{T}$, the translation quiver $\mathscr{T}[v, B]$, defined in [16, 4.5], is said to be obtained from \mathscr{T} by a ray insertion. Given \mathscr{T} a stable tube, v_{1}, \ldots, v_{t} different vertices in the mouth of \mathscr{T} and B_{1}, \ldots, B_{t} (possibly empty) branches, we say that $\mathscr{T}\left[v_{i}, B_{i}\right]_{i=1}^{t}$ is an inserted tube.
A vertex v in a tube \mathscr{T} is a back vertex if no arrow pointing to infinity [16, 4.6] ends at v. For any vertex ω in \mathscr{T} there is a unique back vertex v and a finite sectional path $v=\nu[1] \rightarrow \nu[2] \rightarrow \cdots \rightarrow \nu[s]=\omega$. In an inserted tube the ray vertices are back vertices.
We have the dual notions: coray vertices, coinserted tubes, front vertices.
Proposition. Let \mathscr{T} be a connected component of Γ_{Λ} and assume that \mathscr{T} is an inserted tube. Let M_{1}, \ldots, M_{1} be the back vertices of \mathscr{T}. Then for any M in \mathscr{T} there exist $j_{j}, \ldots, j_{s} \in\{1, \ldots, l\}$ such that $M=M_{j}[s]$ and $\operatorname{dim} M=\sum_{i=1}^{s} \operatorname{dim} M_{j_{i}}$.

Proof. We introduce a partial order \leq in \mathscr{T}.
If there is no arrow $M \xrightarrow{\alpha} M^{\prime}$ pointing to the mouth of \mathscr{T} [16, 4.6], we set $W(M)=\{M\}$. Assume $M \xrightarrow{\alpha} M^{\prime}$ points to the mouth of \mathscr{T} and $M=M_{j}[s]$ for some $j \in\{1, \ldots, l\}$, then we set $W(M)=W\left(M^{\prime}\right) \cup\left\{M_{j}[i]: i \leq s\right\}$. We put $M \leq N$ if $M \in W(N)$.

Let $M \xrightarrow{\alpha} N$ be an arrow pointing to infinity. By induction on \leq we show that α is mono and $N / \operatorname{Im} \alpha \xrightarrow{\sim} M_{j}$ for some $j \in\{1, \ldots, l\}$. The result then follows.

If $W(M)=\{M\}$, the claim is clear. Otherwise, the Auslander-Reiten sequence starting at M has the form

$$
0 \rightarrow M \xrightarrow{\binom{\alpha}{\alpha^{\prime}}} N \oplus N^{\prime} \xrightarrow{\left(\beta, \beta^{\prime}\right)} \tau^{-1} M \rightarrow 0 .
$$

By induction hypothesis, β^{\prime} is mono and $\tau^{-1} M / \operatorname{Im} \beta^{\prime} \xrightarrow{\sim} M_{i}$ for some $i \in$ $\{1, \ldots, l\}$. We get the following exact and commutative diagram:

It follows that α is mono and γ is iso.
Corollary. Let \mathscr{T} be as in the proposition and M in \mathscr{T}. Then $\left(\operatorname{dim} \tau^{-n} M\right)_{n \geq 0}$ grows at most linearly with n.
1.2. We say that a preinjective component \mathscr{I} of Γ_{A} is complete if every indecomposable injective I_{x} belongs to \mathscr{I} and \mathscr{I} does not have projective modules. Examples of algebras with complete preinjective components are the domestic tubular algebras [16, 4.9].

Assume that \mathscr{I} is a complete preinjective component of Γ_{A}. Then $\operatorname{gl} \operatorname{dim} \Lambda \leq 2$ [16, 2.4(1)]. Moreover, it is well known that Λ is a tilted algebra.

Take ${ }_{A} T$ a slice module in \mathscr{I}, then $A=\operatorname{End}_{A}(T)$ is a hereditary algebra. Let $\Sigma=\operatorname{Hom}_{A}(T,-)$ and $\Sigma^{\prime}=\operatorname{Ext}_{A}^{1}(T,-)$ be the functors defining the torsion pair $(\mathscr{F}(T), \mathscr{G}(T))$. Let $\sigma: K_{0}(A) \rightarrow K_{0}(A)$ be the isometry defined by $(\operatorname{dim} M) \sigma=$ $\operatorname{dim} \Sigma M-\operatorname{dim} \Sigma^{\prime} M$. Let ϕ be the Coxeter matrix of Λ and ϕ_{A} that of A. Then $\phi \sigma=\sigma \phi_{A}$.

The following is a simple generalization of [2, 1.3]:
Proposition. Let Λ be as above and assume that the orbit graph $\mathscr{O}(\mathscr{F})$ is wild. Let $M \in \Gamma_{\Lambda} \backslash \mathscr{F}$. Then $\left(\operatorname{dim} \tau^{-n} M\right)_{n \geq 0}$ grows exponentially.

Proof. Let the notation be as above. Applying [16, 2.4(3)], we get:

$$
\operatorname{dim} \tau^{-n} M-(\operatorname{dim} M) \phi^{-n}=\sum_{j=0}^{n-1}\left(\operatorname{dim} P_{j}\right) \phi^{-j},
$$

where P_{j} is a projective Λ-module. As $\tau^{-n} M \in \mathscr{F}(T)$ and $P_{j} \in \mathscr{F}(T)$, we have

$$
\begin{aligned}
\operatorname{dim} \Sigma^{\prime} \tau^{-n} M-\left(\operatorname{dim} \Sigma^{\prime} M\right) \phi_{A}^{-n} & =\sum_{j=0}^{n-1}\left(\operatorname{dim} \Sigma^{\prime} P_{j}\right) \phi_{A}^{-j} \\
& =\sum_{j=0}^{n-1}\left(\operatorname{dim} \tau_{A}^{-j} \Sigma^{\prime} P_{j}\right) \geq 0 .
\end{aligned}
$$

As $\Sigma^{\prime} M$ is not A-preinjective, by [2], $\left(\operatorname{dim} \tau_{A}^{-n} \Sigma^{\prime} M\right)_{n \geq 0}$ grows exponentially.
Therefore, $\left(\operatorname{dim} \Sigma^{\prime} \tau^{-n} M\right)_{n \geq 0}$ grows exponentially and so does $\left(\operatorname{dim} \tau^{-n} M\right)_{n \geq 0}$.
1.3. Theorem. Assume that Γ_{A} has a complete preinjective component. Then the following are equivalent:
(a) Λ is a domestic tubular algebra.
(b) Λ is tilted of a tame hereditary algebra.
(c) Λ is tame.
(d) The Tits form q_{A} is semipositive.
(e) q_{A} is weakly semipositive.
(f) The connected components of Γ_{Λ} are preprojective, preinjective or inserted tubes.
(g) Γ_{A} has an inserted tube.

Proof. (a) \Leftrightarrow (b) is $[16,4.9(1)]$. (b) \Leftrightarrow (d) is clear since q_{A} coincides with the Euler characteristic. (b) \Rightarrow (c) is clear. (a) $\Rightarrow(\mathrm{f})$ is $[16,4.9(2)]$.
$(\mathrm{c}) \Rightarrow(\mathrm{g})$. By $[5$, Corollary F$], \Gamma_{A}$ has a stable tube. $(\mathrm{d}) \Rightarrow(\mathrm{e})$ is clear.
$(\mathrm{f}) \Rightarrow(\mathrm{g})$. By $[16,4.5(6)]$, there is a tame concealed quotient $\bar{\Lambda}$ of Λ. Let M be a regular $\bar{\Lambda}$-module, then M is neither a preprojective nor a preinjective Λ-module. Hence Γ_{A} has an inserted tube.
(e) \Rightarrow (b). Let $\mathscr{\mathscr { L }}$ be a slice in the preinjective component \mathscr{I} of Γ_{Λ}. By [16, 4.2(3)], there is a hereditary algebra A and a tilting module ${ }_{A} T$ such that $\Lambda=\operatorname{End}_{A}(T)$ and $\mathscr{D}=\left\{\Sigma I_{x}: x \in Q_{A}\right\}$, where $\Sigma=\operatorname{Hom}_{A}(T,-)$. Assume that A is wild.

Let $T=\oplus_{i=1}^{n} T_{i}$ be an indecomposable decomposition of ${ }_{A} T$. As \mathscr{I} has no projectives, none of the T_{i} are A-preinjective.

Let $M \in \Gamma_{A}$ be a preinjective module. Then $X=\Sigma M \in \mathscr{F}$ and $\tau^{n} X=\Sigma \tau_{A}^{n} M$ for any $n \geq 0$. Let $n \in \mathbb{N}$ and consider the vector $z_{n}=\operatorname{dim} \tau^{n} X-\operatorname{dim} X$. By [16, 2.4(4) and 4.1(7)],

$$
z_{n}=\left(\operatorname{dim} \tau_{A}^{n} M-\operatorname{dim} M\right) \sigma=\left(\operatorname{dim} \operatorname{Hom}_{A}\left(T_{i}, \tau_{A}^{n} M\right)-\operatorname{dim} \operatorname{Hom}_{A}\left(T_{i}, M\right)\right)_{i} .
$$

If T_{i} is preprojective (resp. regular), the i th coordinate of z_{n} is positive by [7] (resp. $[2,1.3]$). On the other hand,

$$
q_{A}\left(z_{n}\right)=2-\left(\operatorname{dim} \operatorname{Hom}_{A}\left(\tau_{A}^{n} M, M\right)-\operatorname{dim} \operatorname{Hom}_{A}\left(\tau_{A}^{n-1} M, M\right)\right) .
$$

By [7], the coordinates of $\left(\operatorname{dim} \tau_{A}^{l} M\right)_{l \geq 0}$ grow exponentially and therefore there exists an $n \in \mathbb{N}$ with $q_{A}\left(z_{n}\right)<0$.
$(\mathrm{g}) \Rightarrow(\mathrm{b})$. Assume ${ }_{A} T$ is a slice module with $A=\operatorname{End}_{A}(T)$ a hereditary wild algebra. Let M be a module in an inserted tube of Γ_{Λ}. By 1.1 and 1.2 we obtain a contradiction about the growth of $\left(\operatorname{dim} \tau^{-n} M\right)_{n \geq 0}$.

Corollary. Assume that Γ_{A} has a complete preprojective component and a complete preinjective component. Then the following are equivalent:
(a) Λ is tame concealed.
(b) q_{A} is semipositive.
(c) Γ_{A} has a stable tube.

Some parts of the results above also follow from recent work of Kerner [11].

2. Construction of the iterated tubular algebras

2.1. We recall some notions from [16] (we slightly change the notation). Let \mathscr{T} be a standard tubular family in Γ_{A} separating \mathscr{P} from \mathscr{I}. Let E_{1}, \ldots, E_{t} be a set of
pairwise orthogonal ray modules in \mathscr{T} and K_{1}, \ldots, K_{t} a set of (possibly empty) branches. Then the algebra $A=A\left[E_{i}, K_{i}\right]_{i=1}^{t}$ is called a \mathscr{T}-tubular extension of A.

Let A be tame concealed and $\bmod A=\mathscr{P} \vee \mathscr{T} \vee \mathscr{I}$, where \mathscr{P} is the preprojective component, \mathscr{I} the preinjective component and \mathscr{T} is a tubular family separating \mathscr{P} from \mathscr{I}.

Let $\left(n_{1}, \ldots, n_{r}\right)$ be the extension type of Λ and $\mathbb{T}_{n_{1}, \ldots, n_{r}}$ be the associated tree. If $\mathbb{T}_{n_{1}, \ldots, n_{r}}$ is Dynkin, then Λ is a domestic tubular algebra and its module category may be described: $\bmod \Lambda-\mathscr{P} \vee \mathscr{T}\left[E_{i}, K_{i}\right]_{i=1}^{t} \vee \mathscr{I}^{\prime}$, where \mathscr{I}^{\prime} is a preinjective component and $\mathscr{T}\left[E_{i}, K_{i}\right]_{i=1}^{t}$ is a tubular family separating \mathscr{P} from \mathscr{F}^{\prime}.

If $\mathbb{T}_{n_{1}, \ldots, n_{r}}$ is extended Dynkin, then Λ is a tubular algebra and its module category is described: $\bmod \Lambda=\mathscr{P} \vee \mathscr{T}_{0} \vee \bigvee_{p \in Q^{+}} \mathscr{T}_{\gamma} \vee \mathscr{T}_{\infty} \vee \mathscr{I}^{\prime}$, where $\mathscr{T}_{0}=$ $\mathscr{T}\left[E_{i}, K_{i}\right]_{i=1}^{1}$ is a tubular family separating \mathscr{P} from $\bigvee_{\nu \in Q^{+}} \mathscr{T}_{\nu} \vee \mathscr{T}_{\infty} \vee \mathscr{I}^{\prime}$; for each $\gamma \in Q^{+}, \mathscr{T}_{y}$ is a stable tubular family separating $\mathscr{P} \vee \mathscr{T}_{0} \vee \bigvee_{\delta<\gamma} \mathscr{T}_{\delta}$ from $\bigvee_{\gamma<\delta} \mathscr{T}_{\delta} \vee \mathscr{T}_{\infty} \vee \mathscr{F}^{\prime}$.

There is a tame concealed algebra A^{\prime} such that $\Lambda={ }_{i=1}^{r}\left[E_{i}^{\prime}, K_{i}^{\prime}\right] A^{\prime}$ is a \mathscr{T}^{\prime}-tubular coextension, where $\bmod A^{\prime}=\mathscr{P}^{\prime} \vee \mathscr{T}^{\prime} \vee \mathscr{I}^{\prime}$ with \mathscr{T}^{\prime} a tubular family separating $\mathscr{P} \mathscr{P}^{\prime}$ from \mathscr{I}^{\prime}. Then $\mathscr{T}_{\infty}={ }_{i=1}^{r}\left[E_{i}^{\prime}, K_{i}^{\prime}\right] \mathscr{T}^{\prime}$ is a tubular family separating $\mathscr{P} \vee \mathscr{T}_{0} \vee$ $\mathrm{V}_{\gamma \in Q^{+}} \mathscr{T}_{\gamma}$ from \mathscr{I}^{\prime}.

Domestic cotubular algebras are defined dually. Every tubular algebra is also cotubular.
2.2. Domestic tubular, domestic cotubular and tubular algebras are said to be 0 -iterated tubular algebras.

Let Λ_{0} be a domestic cotubular algebra or a tubular algebra. In both cases Λ_{0} is a coextension $\Lambda_{0}={ }_{i=1}^{t}\left[E_{i}, K_{i}\right] A_{0}$ of a tame concealed algebra A_{0} and $\bmod \Lambda_{0}=$ $\mathscr{P}^{0} \vee \mathscr{T}^{0} \vee \mathscr{I}_{0}$ where \mathscr{I}_{0} is the preinjective component of both $\Gamma_{\Lambda_{0}}$ and $\Gamma_{A_{0}}$ and \mathscr{T}^{0} is a tubular family separating \mathscr{P}^{0} from \mathscr{I}_{0}. Let $E_{1}^{0}, \ldots, E_{i}^{0}$ be a set of pairwise orthogonal ray A_{0}-modules in \mathscr{T}^{0}. Let $K_{1}^{0}, \ldots, K_{t_{0}}^{0}$ be a set of branches and assume that $A_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{l_{0}}$ is a domestic tubular algebra or a tubular algebra. Then we say that the extension $\Lambda_{1}=\Lambda_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$ is a 1-iterated tubular algebra. By [16, 4.7], $\bmod \Lambda_{1}=\mathscr{P}^{0} \vee \mathscr{T}^{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}} \vee \mathscr{I}^{1}$, where $\mathscr{T}^{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$ is a tubular family separating \mathscr{P}^{0} from \mathscr{I}^{1}. We want to describe \mathscr{F}^{1}. Let $\bmod A_{0}=\mathscr{P}_{0} \vee \mathscr{T}_{0} \vee \mathscr{I}_{0}$, where \mathscr{T}_{0} is the stable tubular family separating \mathscr{P}_{0} from \mathscr{I}_{0}. Then

$$
\bmod A_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}=\mathscr{P}_{0} \vee \mathscr{T}_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}} \vee \hat{\mathscr{F}} .
$$

Lemma. With the above notation, $\mathscr{I}^{1}=\hat{\mathscr{F}}$.
Proof. Let $A^{1}=A_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$. Let $X \in \hat{\mathscr{Y}}$ and P_{y} be an indecomposable A^{1} projective with $\operatorname{Hom}_{A^{1}}\left(P_{y}, X\right) \neq 0$. As $P_{y} \in \mathscr{P}_{0} \vee \mathscr{T}_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$, there is an inserted tube \mathscr{T} in $\mathscr{T}_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$ with $\operatorname{Hom}_{A^{\prime}}(\mathscr{T}, X) \neq 0$. Then there is a tube \mathscr{T}^{\prime} in $\mathscr{T}^{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$ which is obtained from \mathscr{T} by coray insertion and such that $\operatorname{Hom}_{\Lambda_{1}}\left(\mathscr{T}^{\prime}, X\right) \neq 0$. Hence $X \in \mathscr{I}^{1}$.

Let $X \in \mathscr{I}^{1}$. Let y be a vertex in $Q_{A_{0}}$ but not in $Q_{A_{0}}$. The Λ_{0}-injective I_{y}^{0} is also Λ_{1}-injective. Since $I_{y}^{0} \in \mathscr{T}^{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}^{0}}, \operatorname{Hom}_{\Lambda_{1}}\left(X, I_{y}^{0}\right)=0$. Thus $X \in \bmod A^{1}$ and $X \in \hat{\mathscr{I}}$ as above.
2.3. Let $\Lambda_{1}=\Lambda_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$ be a 1-iterated tubular algebra as above. Assume that $A^{1}=A_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}}$ is a tubular algebra and write $\bmod A^{1}-\mathscr{P}_{0} \vee \mathscr{T}_{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}} \vee$ $\vee_{y \in Q^{+}} \mathscr{T}_{y^{1}}^{1} \vee \mathscr{T}_{\infty}^{1} \vee \mathscr{I}_{1}$ as in 2.1. In $\bmod \Lambda_{1}$, define $\mathscr{P}^{1}=\mathscr{P}^{0} \vee \mathscr{T}^{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}} \vee$ $\bigvee_{\gamma \in Q^{+}}^{\gamma \in \mathscr{T}_{\gamma}^{1}}, \mathscr{T}^{1}=\mathscr{T}_{\infty}^{1}$. Then, by 2.2, $\bmod \Lambda_{1}=\mathscr{P}^{1} \vee \mathscr{T}^{1} \vee \mathscr{I}_{1}$, and \mathscr{I}_{1} is the preinjective component of $\Gamma_{\Lambda_{1}}$.

The following result is an easy exercise:
Lemma. (a) \mathscr{T}^{1} is a tubular family separating \mathscr{P}^{1} from \mathscr{I}_{1}.
(b) $\mathscr{T}^{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{I_{0}}$ is a tubular family separating \mathscr{P}^{0} from $\bigvee_{\gamma \in Q^{+}} \mathscr{T}_{\gamma}^{1} \vee \mathscr{T}^{1} \vee \mathscr{F}_{1}$.
(c) For each $\gamma \in Q^{+}, \mathscr{T}_{\gamma}^{1}$ is a tubular family separating $\mathscr{P}^{0} \vee \mathscr{T}^{0}\left[E_{i}^{0}, K_{i}^{0}\right]_{i=1}^{t_{0}} \vee$ $\mathrm{V}_{\delta<\gamma} \mathscr{F}_{\delta}^{1}$ from $\mathrm{V}_{\delta>\gamma} \mathscr{T}_{\delta}^{1} \vee \mathscr{T}^{1} \vee \mathscr{I}_{1}$.

Lel A_{1} be the tame concealed algebra such that A^{1} is a coextension of A_{1}. Let $E_{1}^{1}, \ldots, E_{t_{1}}^{1}$ be a set of pairwise orthogonal ray A_{1}-modules in \mathscr{T}^{1}. Let $K_{1}^{1}, \ldots, K_{t_{1}}^{1}$ be a set of branches such that $A^{2}=A_{1}\left[E_{i}^{1}, K_{i}^{1}\right]_{i=1}^{t_{1}}$ is a domestic tubular algebra or a tubular algebra. The extension $\Lambda_{2}=\Lambda_{1}\left[E_{i}^{1}, K_{i}^{1}\right]_{i=1}^{t_{1}}$ is called a 2-iterated tubular algebra.

As before, $\bmod \Lambda_{2}=\mathscr{P}^{2} \vee \mathscr{T}^{2} \vee \mathscr{I}_{2}$, where \mathscr{I}_{2} is the preinjective component of $\Gamma_{\Lambda_{2}}, \mathscr{T}^{2}$ is a tubular family separating \mathscr{P}^{2} from \mathscr{I}_{2}. Moreover, if $\bmod A_{1}=$ $\mathscr{P}_{1} \vee \mathscr{T}_{1} \vee \mathscr{I}_{1}$ and A^{2} is a tubular algebra with $\bmod A^{2}=\mathscr{P}_{1} \vee \mathscr{T}_{1}\left[E_{i}^{1}, K_{i}^{1}\right]_{i=1}^{t_{1}} \vee$ $\bigvee_{\gamma \in Q^{+}} \mathscr{T}_{\gamma}^{2} \vee \mathscr{T}_{\infty}^{2} \vee \mathscr{I}_{2}$, then $\mathscr{P}^{2}=\mathscr{P}^{1} \vee \mathscr{T}^{1}\left[E_{i}^{1}, K_{i}^{1}\right]_{i=1}^{l_{1}} \vee \bigvee_{\gamma \in Q^{+}} \mathscr{T}_{\gamma}^{2}$ and $\mathscr{T}^{2}=\mathscr{T}_{\infty}^{2}$.

By induction, we define the n-iterated tubular algebras (or simply iterated tubular algebras).

Iterated tubular algebras have already appeared: in the construction of the derived category of a tubular algebra [9]; in the description of the module category of certain group algebras [17].

2.4. We immediately obtain:

Proposition. Let Λ be an iterated tubular algebra. Then:
(a) Λ is tame.
(b) The Tits form q_{A} is weakly semipositive.

Proof. (a) follows from the description given above for $\bmod \Lambda$.
(b) follows from (a) and [14, 1.3].

We want to give some examples of iterated tubular algebras.
(a)

Λ_{i} is i-iterated tubular. We remark that $q_{A_{1}}$ is not semipositive.
(b) Let $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in k^{*}$ pairwise different scalars.

Similarly we may define the i-iterated tubular algebra $\Lambda_{i}(i \in \mathbb{N})$.
2.5. Iterated tubular algebras have acceptable projectives.

Algebras with acceptable projectives are handy due to the following: Assume that Λ has acceptable projectives and let $\mathscr{P}, \mathscr{C}_{1}, \ldots, \mathscr{C}_{l}$ be the components of Γ_{A} where the projectives lie (\mathscr{P} is preprojective, the \mathscr{C}_{i} are inserted-coinserted tubes). Suppose that $\operatorname{Hom}_{A}\left(\mathscr{C}_{i}, \mathscr{C}_{j}\right) \neq 0$ implies $i \leq j$. Consider $\mathscr{C}_{l}=\mathscr{C}_{i}^{\prime}[V, B]$ where B is a branch and V is a ray module in the inserted tube \mathscr{E}_{i}. Let b be the root vertex of B, that is, V is a direct summand of $\operatorname{rad} P_{b}$. Consider $W\left(P_{b}\right)$ the wing of P_{b} in \mathscr{E}_{l} as defined in 1.1. Let $e=\sum_{P_{x} \in W\left(P_{b}\right)} e_{x}$ and $\bar{\Lambda}=\Lambda / \Lambda e \Lambda$.

Proposition. With the above notation we have:
(a) $\Lambda=\bar{\Lambda}[V, B]$.
(b) \bar{A} has acceptable projectives and \mathscr{C}_{1}^{\prime} is a standard component of $\Gamma_{\bar{A}}$.

Proof. We consider $W\left(P_{b}\right)$ as in the diagram below.

Consider the back modules X, Y. We get that $\bar{X}[i](=X[i] \mid \bar{\Lambda})=V[i]$ and $\bar{\tau} Y[i]=$ $V[i]$ where $\bar{\tau}$ is the Auslander-Reiten translation in $\Gamma_{\bar{A}}$.
(a) Let $s \in Q_{\bar{\Lambda}}$ and $s \rightarrow t$ in Q_{A}, then $t \in Q_{\bar{A}}$. Indeed, if $t \in B$, as $\operatorname{IIm}_{A}\left(P_{t}, P_{s}\right) \neq 0$, then $P_{s} \in \mathscr{C}_{l}$. Since $P_{t} \in W\left(P_{b}\right)$ and $P_{s} \notin W\left(P_{b}\right)$, then $\operatorname{Hom}_{\Lambda}\left(P_{t}, P_{s}\right)=0$, a contradiction. Therefore, $\bar{\Lambda}$ is convex in A and A has the form

To prove that $\Lambda=\bar{\Lambda}[V, B]$, it is enough to show that there are no zero relations between vertices in $B \backslash\{b\}$ and vertices in \bar{A}. For this purpose, it is enough to show that for a path $b \leftarrow b_{1} \leftarrow \cdots \leftarrow b_{s}$ in B, we have $\bar{P}_{b_{i}}=V\left(=\overline{\operatorname{rad} P_{b}}\right)$. This is clear since every $P_{b_{i}}$ lies on the path joining P_{b} to X in \mathscr{E}_{l}.
(b) The modules on \mathscr{C}_{i}^{\prime} are $\bar{\Lambda}$-modules and \mathscr{C}_{i}^{\prime} is a component of $\Gamma_{\bar{A}}$. We show that \mathscr{C}_{i} is standard. Assume that $\mathscr{C}_{l}=\mathscr{C}\left[V_{i}, B_{i}\right]_{i=1}^{t}$ with \mathscr{C} a coinserted tube and $V_{t}=V, B_{t}=B$. Let $\mathscr{C}={ }_{i=1}^{t_{1}^{\prime}}\left[V_{i}^{\prime}, B_{i}^{\prime}\right] \mathscr{C}^{\prime}$ with \mathscr{C}^{\prime} a stable tube. Then \mathscr{C}^{\prime} is a component of $\Gamma_{A_{0}}$ where $\Lambda_{0}=\Lambda / \Lambda e_{0} \Lambda$ and $e_{0}=\sum_{x \in \cup B_{i}} e_{x}+\sum_{x \in \bigcup B_{i}} e_{x}$. As in (a), we obtain that $\Lambda_{1}={ }_{i=1}^{t_{1}^{\prime}}\left[V_{i}^{\prime}, B_{i}^{\prime}\right] \Lambda_{0}, \Lambda=\Lambda_{1}\left[V_{i}, B_{i}\right]_{i=1}^{t_{i}}$ and $\bar{\Lambda}=\Lambda_{1}\left[V_{i}, B_{i}\right]_{i=1}^{t-1}$.

Let $X \in \mathscr{C}^{\prime}$ and s be a vertex of $Q_{A_{0}}$. Then $\operatorname{Hom}_{A_{0}}\left(X, P_{s}^{\prime}\right)=\operatorname{Hom}_{A}\left(X, P_{s}\right)=0$, where P_{s}^{\prime} is the projective Λ_{0}-module corresponding to s. Hence, inj $\operatorname{dim}_{\Lambda_{0}} \mathscr{E}^{\prime}=1$. By $[16,3.1], \mathscr{C}^{\prime}$ is a standard component of $\Gamma_{\Lambda_{0}}$. By [16, 4.5], \mathscr{C} is a standard component of $\Gamma_{\Lambda_{1}}$ and $\mathscr{C}_{i}^{\prime}=\mathscr{C}\left[V_{i}, B_{i}\right]_{i=1}^{t-1}$ is standard in $\bmod \bar{A}$.

Since $\mathscr{P}, \mathscr{C}_{1}, \ldots, \mathscr{C}_{l-1}, \mathscr{C}_{i}$ are the components of $\Gamma_{\bar{\Lambda}}$ where the projectives lie, we get that $\bar{\Lambda}$ has acceptable projectives.

3. The main theorem

We start with some lemmas.
3.1. The following lemma is well known:

Lemma. Let A be a tame hereditary algebra and ${ }_{A} T=T_{0} \oplus T_{1}$ a tilting module with T_{0} preprojective and T_{1} regular. Let $\Lambda=\operatorname{End}_{A}(T)$ be the corresponding domestic tubular algebra with preinjective component \mathscr{I}. Then $\Gamma_{\Lambda} \backslash \mathscr{I} \subset \operatorname{Im} \Sigma$, where $\Sigma=$ $\operatorname{Hom}_{A}(T,-)$.

Proof. The set $\left\{\Sigma I_{x}: x \in Q_{A}\right\}$ is a slice in \mathscr{I}. Let $M \in \Gamma_{\Lambda} \backslash \mathscr{F}$. Then M is a predecessor of some $\Sigma I_{x} \in \operatorname{Im} \Sigma$. By [16, 4.2(1)], $\operatorname{Im} \Sigma$ is closed under predecessors.
3.2. Lemma. Let A, T and Λ be as in 3.1. Let $R \in \Gamma_{A}$. Assume that $\Lambda[R]$ is a tubular extension of $\Lambda_{0}=\operatorname{End}_{A}\left(T_{0}\right)$. Then:
(a) There is a simple regular A-module R^{\prime} with $R=\Sigma R^{\prime}$.
(b) If $A\left[R^{\prime}\right]$ is wild, then $\Lambda[R]$ is wild.

Proof. (a) There is a regular A-module R^{\prime} with $R=\Sigma R^{\prime}$. Since $A[R]$ is a tubular extension of Λ_{0}, there is only one irreducible $R \xrightarrow{\alpha} X$ starting at R. Thus α is mono.
Assume that R^{\prime} is not simple regular and let $R^{\prime} \xrightarrow[\Sigma \beta]{\beta} Z$ be an irreducible epimorphism. Since $R^{\prime} \in \mathscr{G}(T), Z \in \mathscr{G}(T)$ and $R=\Sigma R^{\prime} \xrightarrow{\Sigma \beta} \Sigma Z$ is irreducible. Therefore, $T \otimes_{\Lambda} \tau^{-1} R \longrightarrow T \otimes_{A}$ coker $\Sigma \beta \longrightarrow$ coker $\beta=0$. This contradicts with $\tau^{-1} R \in \operatorname{Im} \Sigma$.
(b) Let \mathscr{I} be the preinjective component of Γ_{A}. Since $A\left[R^{\prime}\right]$ is wild, the vector space category $\mathscr{U}\left(\operatorname{Hom}_{A}\left(R^{\prime}, \mathscr{F}\right)\right)$ is wild. But there is a full embedding

$$
F: \mathscr{U}\left(\operatorname{Hom}_{A}\left(R^{\prime}, \mathscr{F}\right)\right) \rightarrow \mathscr{U}\left(\operatorname{Hom}_{\Lambda}(R, \bmod \Lambda)\right)
$$

showing that $\Lambda[R]$ is wild.
3.3. Proposition. Let Λ be a tubular extension of a tame concealed algebra Λ_{0}. Let (m_{1}, \ldots, m_{r}) be the extension type of Λ and assume that $\mathbb{T}_{m_{1}, \ldots, m_{r}}$ is neither Dynkin nor extended Dynkin. Then:
(a) q_{A} is not weakly semipositive.
(b) Λ is wild.

Proof. It is enough to show the result in the case that $\mathbb{T}_{m_{1}, \ldots, m}$, is a minimal tree which is neither Dynkin nor extended Dynkin. By [16, 4.4(4)], we may assume that $\Lambda=\Lambda^{\prime}[R]$ where Λ^{\prime} is a tubular extension of Λ_{0} of Dynkin or extended Dynkin extension type and $R \in \Gamma_{\Lambda^{\prime}}$. We distinguish these cases.
(1) Assume that the extension type of Λ^{\prime} is Dynkin. Then Λ^{\prime} is domestic tubular and $\Lambda^{\prime}=\operatorname{End}_{A}(T)$ with A tame hereditary and $A_{A} T=T_{0} \oplus T_{1}$ a tilting module with T_{0} preprojective and T_{1} regular. Let $\Sigma=\operatorname{Hom}_{A}(T,-)$. By 3.2, there is a simple regular A-module R^{\prime} with $\Sigma R^{\prime}=R$. Let t be the vertex in $Q_{A\left[R^{\prime}\right]}$ with $\operatorname{rad} P_{t}=R^{\prime}$. We claim that:
(a^{\prime}) There exist V_{1}, \ldots, V_{m} preinjective A-modules and $a \in \mathbb{N}$ such that

$$
q_{A\left[R^{\prime}\right]}\left(\sum_{i=1}^{m} \operatorname{dim} V_{i}+a e_{t}\right)<0 .
$$

(b) $A\left[R^{\prime}\right]$ is wild.

This implies (a) and (b). Indeed, let s be the vertex in Q_{A} such that $\operatorname{rad} P_{s}=R$. Then

$$
q_{A}\left(\sum_{i=1}^{m} \operatorname{dim} \Sigma V_{i}+a e_{s}\right)=q_{A^{\prime}}\left(\sum_{i=1}^{m} \operatorname{dim} \Sigma V_{i}\right)-a \sum_{i=1}^{m} \operatorname{dim} \operatorname{Hom}_{A^{\prime}}\left(R, \Sigma V_{i}\right)+a^{2}
$$

$$
\begin{aligned}
& =q_{A}\left(\sum_{i=1}^{m} \operatorname{dim} V_{i}\right)-a \sum_{i=1}^{m} \operatorname{dim} \operatorname{Hom}_{A}\left(R^{\prime}, V_{i}\right)+a^{2} \\
& =q_{A\left[R^{\prime}\right]}\left(\sum_{i=1}^{m} \operatorname{dim} V_{i}+a e_{i}\right)<0 .
\end{aligned}
$$

That Λ is wild follows from 3.2.
The claim may be proved by an easy case by case inspection of the tables in [6] (to show (b^{\prime}) use [15]).
(2) Assume that the extension type of Λ^{\prime} is extended Dynkin. Then Λ^{\prime} is a tubular algebra and $\bmod \Lambda^{\prime}=\mathscr{P} \vee \mathscr{T}_{0} \vee \bigvee \mathscr{T}_{\gamma} \vee \mathscr{T}_{\infty} \vee \mathscr{I}$ as in 2.1. Since Λ is a tubular extension of $\Lambda_{0}, R \in \mathscr{F}_{0}$. There is a module $X \in \mathscr{T}_{1}$ with $q_{A^{\prime}}(\operatorname{dim} X)=0$ and $\operatorname{Hom}_{A^{\prime}}(R, X) \neq 0$. Thus $q_{A}\left(2 \operatorname{dim} X+e_{s}\right)=1-2 \operatorname{dim} \operatorname{Hom}_{A^{\prime}}(R, X)<0$.

Take a family $\left\{X_{n}: 1 \leq n \leq 5\right\}$ of pairwise orthogonal bricks in $\mathscr{T}_{1}[16,3.1]$, such that $\operatorname{Hom}_{A^{\prime}}\left(R, X_{n}\right) \neq 0$ for $1 \leq n \leq 5$. There is a full embedding of the vector space category $\mathscr{U}=\mathscr{U}\left(\operatorname{Hom}_{\Lambda^{\prime}}\left(R,\left\{X_{n}\right\}_{n}\right)\right)$ in $\bmod \Lambda$. Let S be the poset consisting of five pairwise non comparable points. There is a full embedding of the vector space category $\mathscr{U}($ add $k S)$ into \mathscr{U}. By [13], S is a representation wild poset. Therefore the categories \mathscr{U} and $\bmod \Lambda$ are wild.
3.4. Theorem. Let Λ be an algebra with acceptable projectives. Then the following are equivalent:
(a) Λ is iterated tubular.
(b) Λ is tame.
(c) q_{A} is weakly semipositive.

Proof. (a) \Rightarrow (b) and (a) \Rightarrow (c) is 2.4 .
Let $\mathscr{P}, \mathscr{C}_{1}, \ldots, \mathscr{C}_{1}$ be the components of Γ_{Λ} where the projectives lie. Assume that \mathscr{P} is preprojective and that $\operatorname{Hom}_{\Lambda}\left(\mathscr{C}_{i}, \mathscr{B}_{j}\right) \neq 0$ implies $i \leq j$. As in 2.5, let $\mathscr{C}_{l}=\mathscr{C}_{[}^{\prime}[V, B]$ and $A=\bar{\Lambda}[V, B]$ be such that $\bar{\Lambda}$ has acceptable projectives and $\mathscr{P}, \mathscr{C}_{1}, \ldots, \mathscr{C}_{l-1}, \mathscr{C}_{i}$ are the components of $\Gamma_{\bar{A}}$ where the projectives lie.
We proceed by induction on the number p of projectives on the inserted tubes $\mathscr{C}_{1}, \ldots, \mathscr{C}_{1}$.
(c) \Rightarrow (a). If $p=0, \mathscr{P}$ is a complete preprojective component. By the dual of 1.3, Λ is a domestic cotubular algebra.

Assume $p>0$, as $\bar{\Lambda}$ is convex in $\Lambda, q_{\bar{A}}$ is also weakly semipositive. By induction hypothesis $\bar{\Lambda}$ is n-iterated tubular. Let $\bmod \bar{\Lambda}=\overline{\mathscr{P}} \vee \overline{\mathscr{T}} \vee \overline{\mathscr{I}}$, where $\overline{\mathscr{I}}$ is the preinjective component of $\Gamma_{\bar{A}}$ and $\overline{\mathscr{T}}$ is the tubular family in $\Gamma_{\bar{A}}$ separating $\overline{\mathscr{T}}$ from $\overline{\mathscr{I}}$. With the notation of Section $2, \bar{\Lambda}=\Lambda_{n}=\Lambda_{n-1}\left[E_{i}, K_{i}\right]_{i=1}^{t}$, where Λ_{n-1} is an $(n-1)$ iterated algebra, A_{n-1} is tame concealed and $A^{n}=A_{n-1}\left[E_{i}, K_{i}\right]_{i=1}^{t}$ is a domestic tubular or a tubular algebra (w.l.g. $n \geq 1$). Then $\bmod A^{n}=\mathscr{P}^{\prime} \vee \mathscr{T}^{\prime} \vee \overline{\mathcal{I}}$, where \mathscr{T}^{\prime} is a tubular family separating \mathscr{P}^{\prime} from $\overline{\mathscr{I}}$.

As in part 2 of the proof of 3.3 , we can show that \mathscr{C}_{l} ' is obtained from a tube in \mathscr{T}^{\prime} by coray insertion. If A^{n} is domestic tubular, then, as $q_{A^{n}[V, B]}$ is weakly
semipositive, $A^{n}[V, B]$ is a domestic tubular or a tubular algebra (3.3). Then $\Lambda=\bar{\Lambda}[V, B]$ is again n-iterated tubular. If A^{n} is tubular, then A^{n} is a tubular coextension of a tame concealed algebra A_{n}. By 3.3, $A_{n}[V, B]$ is domestic tubular or tubular and therefore Λ is an $(n+1)$-iterated tubular algebra.
(b) \Rightarrow (a). It follows, as in (c) \Rightarrow (a), from 3.3.

Corollary. Let Λ be a sincere algebra with acceptable projectives. Assume that Γ_{Λ} has no tubes which are both inserted and coinserted. Then the following are equivalent:
(a) Λ is a domestic tubular, a domestic cotubular or a tubular algebra.
(b) Λ is tame.
(c) q_{A} is weakly semipositive.

References

[1] M. Auslander and I. Reiten, Representation theory of Artin algebras III, Comm. Algebra 3 (1975) 239-294.
[2] D. Baer, Wild hereditary artin algebras and linear methods, Manuscripta Math. 55 (1986) 69-82.
[3] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983) 461-469.
[4] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984) 117-136.
[5] W.W. Crawley-Boevey, On tame algebras and BOCS's, Proc. London Math. Soc. (3) (1988) 451-483.
[6] V. Dlab and C.M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
[7] V. Dlab and C.M. Ringel, Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebra, Proc. Amer. Math. Soc. 83 (1981) 228-232.
[8] P. Gabriel, Auslander-Reiten sequences and representation-finite algebra, In: Representation Theory I, Lecture Notes in Mathematics 831 (Springer, Berlin, 1980) 1-71.
[9] D. Happel and C.M. Ringel, The derived category of a tubular algebra, in: Proc. ICRA IV, Lecture Notes in Mathematics 1177 (Springer, Berlin, 1986) 156-180.
[10] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983) 221-243.
[11] O. Kerner, Preprojective components of wild tilted algebras, Manuscripta Math. 61 (1988) 429-445.
[12] M. Kleiner, Partially ordered sets of finite type, Engl. translation: J. Soviet Math. 23 (1975) 607-615.
[13] L.A. Nazarova, The representation of partially ordered sets of infinite type, Izv. Akad. Nauk. SSSR. Ser. Mat. 39 (1975) 963-991.
[14] J.A. de la Peña, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988) 183-194.
[15] C.M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Mathematics 831 (Springer, Berlin, 1980) 137-287.
[16] C.M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics 1099 (Springer, Berlin, 1984).
[17] A. Skowronski, Group algebras of polynomial growth, Manuscripta Math. 59 (1987) 499-516.

