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1. Introduction 

Let k be a fixed algebraically closed field. Let A be a finite dimensional, basic 

and connected k-algebra. 

In this work we are concerned with the study of certain classes of tame algebras. 

We say that A has acceptable projectives if the Auslander-Reiten quiver r, of A 

has components 9, ‘1!2,, . . . , B, with the following properties: 

(i) Any indecomposable projective /l-module lies on 9 or on some gi. 

(ii) 9 is a preprojective component of r, without injective modules. 

(iii) Each @Yi is an inserted-coinserted standard tube. 

(iv) If HomA(Bi, gj)#O, then isj. 
The main result of this work is the following: Let /1 be a directed algebra with 

acceptable projectives, then /i is tame iff the Tits form q,, of A is weakly semi- 

positive. Moreover, we give an inductive construction of this class of tame algebras 

and of their module categories. The construction of these algebras is an iteration 

of the process given by Ringel in [16] for the definition of the domestic tubular and 

tubular algebras. Hence we call these algebras iterated tubular algebras. 
Following [S], we write /1= k[Q,]/Z. We assume that QA has no oriented cycle 

(i.e. _4 is directed). Our modules are left /l-modules. By P, (resp. Z,) we denote the 

indecomposable projective (resp. injective) /I-module associated with the vertex 

x E Q,,. If ME mod A we set dim M= (dimk Homn(PX, M)),,Qn. By r,, we denote 

the Auslander-Reiten quiver of A and we consider the vertices of r, as indecom- 

posable modules. The translation in r, is denoted by r. 

For basic notions we refer the reader to [S] and [16]. 
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1. Some characterizations of domestic tubular algebras 

1.1. Following [16, 3.11, a translation quiver g without double arrows is said to 
be a tube if its associated topological space is homeomorphic to S’ x Rz and g 
contains a cyclic path. The tube Siis stable if it is of the form ZA,/n, for some 
natural number n 2 1. 

A vertex v in B is a ray vertex if there is an infinite sectional path in % 
v=v[l]+v[2]-+...-,v[i]+v[i+ 11-t *a* with different vertices v[i], ie N, such that 
for each i, there is a unique sectional path of length i starting at v. 

Given a branch B and a ray vertex v E g the translation quiver flv, B], defined 
in [16, 4.51, is said to be obtained from ,Y by a ray insertion. Given 3 a stable 
tube, vl, . . . . vI different vertices in the mouth of g and B,, . . . , B, (possibly empty) 
branches, we say that ~[Vi, Bi]i=, is an inserted tube. 

A vertex v in a tube Yis a back vertex if no arrow pointing to infinity [16, 4.61 
ends at v. For any vertex o in g there is a unique back vertex v and a finite sec- 
tional path v=v[l]-v[2]+... --t v[s] = cc). In an inserted tube the ray vertices are 
back vertices. 

We have the dual notions: coray vertices, coinserted tubes, front vertices. 

Proposition. Let g be a connected component of I-, and assume that 3 is an in- 

serted tube. Let M,, . . . . M, be the back vertices of K Then for any M in g there 
existj,j, ,..., j,E{l,..., /} such that M=Mj[s] and dim M= cf=, dim Mj,. 

Proof. We introduce a partial order I in Z 

If there is no arrow M a --+M’ pointing to the mouth of 9 [16, 4.61, we set 

W(M) = {M). Assume MA A4’ points to the mouth of 5 and M= Mi[s] for 
some j~{l,..., r}, then we set W(M)= W(M’)U{Mj[i]: its). We put MsN if 
ME W(N). 

Let M a __* N be an arrow pointing to infinity. By induction on 5 we show that 

(x is mono and N/Im (Y A Mj for some j E ( 1 , . . . . />. The result then follows. 
If W(M) = {M}, the claim is clear. Otherwise, the Auslander-Reiten sequence 

starting at M has the form 

O*M-NON’-r 
WP’) - ‘M+O 

By induction hypothesis, p’ is mono and r- ‘M/Im p’> Mi for some ie 

(1, *a*, l}. We get the following exact and commutative diagram: 

a 
M - N - coker (Y - 0 

“1 +, ID I 
O-N'- r-‘M - Mi - 0. 
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It follows that cr is mono and y is iso. 0 

Corollary. Let g be as in the proposition and M in X Then (dim ~-“M),zo grows 
at most linearly with n. 0 

1.2. We say that a preinjective component S of Z,, is complete if every inde- 

composable injective Z, belongs to 9 and 9 does not have projective modules. 

Examples of algebras with complete preinjective components are the domestic 
tubular algebras [16, 4.91. 

Assume that 9 is a complete preinjective component of Z,, . Then gl dim /1~ 2 

[16, 2.4(l)]. Moreover, it is well known that /1 is a tilted algebra. 

Take ,, T a slice module in S, then A = End,(T) is a hereditary algebra. Let 

.,Y= Hom,(T, -) and .Y= Extfi(T, -) be the functors defining the torsion pair 

(S(T), ‘$2 (T)). Let o : K&l)+&(A) be the isometry defined by (dim M)CJ = 

dim E’bG dim ZM. Let @ be the Coxeter matrix of /I and QA that of A. Then 

@3=o@‘4. 

The following is a simple generalization of 12, 1.31: 

Proposition. Let A be as above and assume that the orbit graph C(9) is wild. Let 
MEI;I \ SC Then (dim T-“M),,~~ grows exponentially. 

Proof. Let the notation be as above. Applying [16, 2.4(3)], we get: 

n-1 

dim Y”M- (dim AI)@ -’ = c (dim Pj)c$ -j, 
j=O 

where Pj is a projective A-module. As ~-“ME.F(T) and PjE$(T), we have 

n-1 

dim C’T-“kf- (dim Z’A4)@in = c (dim ~‘Pj)~,’ 
j=O 

n-1 

= jso (dim r,‘~‘Pj) 2 0. 

As _FM is not A-preinjective, by [2], (dim ~~nL”M),~o grows exponentially. 

Therefore, (dim Z’t -“M) nzO grows exponentially and so does (dim r “M), 20. 

0 

1.3. Theorem. Assume that r, has a complete preinjective component. Then the 
following are equivalent: 

(a) A is a domestic tubular algebra. 
(b) A is tilted of a tame hereditary algebra. 
(c) A is tame. 
(d) The Tits form qn is semipositive. 
(e) qn is weakly semipositive. 
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(f) The connected components of r,., are preprojective, preinjective or inserted 
tubes. 

(g) r, has an inserted tube. 

Proof. (a) * (b) is [16, 4.9(l)]. (b) # (d) is clear since q/1 coincides with the Euler 
characteristic. (b) * (c) is clear. (a) = (f) is [16, 4.9(2)]. 

(c) * (g). By [5, Corollary F], r,, has a stable tube. (d) * (e) is clear. 
(f) * (g). By [16, 4.5(6)], there is a tame concealed quotient A of /i. Let A4 be 

a regular A-module, then A4 is neither a preprojective nor a preinjective /l-module. 
Hence l-__ has an inserted tube. 

(e) * (b). Let $ be a slice in the preinjective component S of r,. By [16, 4.2(3)], 
there is a hereditary algebra A and a tilting module A T such that /1= EndA (T) and 
$= {XX: XE QA}, where _Z= HomA(T, -). Assume that A is wild. 

Let T= @y= 1 Ti be an indecomposable decomposition of A T. As 9 has no pro- 
jectives, none of the Ti are A-preinjective. 

Let ME& be a preinjective module. Then X=CME 9 and t”X=Zr:M for any 
n 10. Let n E N and consider the vector z, = dim r”X- dim X. By [16, 2.4(4) and 

4.1(7)1, 

z,, = (dim TIM- dim M)o= (dim Hom,(Ti, r:M) -dim Hom,(Ti, M))i. 

If Ti is preprojective (resp. regular), the ith coordinate of z,, is positive by [7] (resp. 
[2, 1.31). On the other hand, 

qn (2,) = 2 - (dim H omA(rjM, M)-dim Hom,($‘M, M)). 

By [7], the coordinates of (dim TAM) ,?a grow exponentially and therefore there 
exists an n E N with qn(z,) < 0. 

(g) * (b). Assume n T is a slice module with A = EndA a hereditary wild 
algebra. Let M be a module in an inserted tube of r,. By 1 .l and 1.2 we obtain 
a contradiction about the growth of (dim 7-“M),,o. 0 

Corollary. Assume that r, has a complete preprojective component and a com- 
plete preinjective component. Then the following are equivalent: 

(a) A is tame concealed. 
(b) q,, is semipositive. 
(c) r, has a stable tube. Cl 

Some parts of the results above also follow from recent work of Kerner [l 11. 

2. Construction of the iterated tubular algebras 

2.1. We recall some notions from [16] (we slightly change the notation). Let Y be 
a standard tubular family in r, separating S’ from & Let El, . . . , E1 be a set of 
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pairwise orthogonal ray modules in 3 and K,, . . . , Kt a set of (possibly empty) 

branches. Then the algebra /I =A[E,, Ki]:=, is called a Stubular extension of A. 

Let A be tame concealed and mod A = 9V FV #, where B is the preprojective 

component, 9 the preinjective component and gis a tubular family separating 9 

from &? 

Let (n,, . . . . n,) be the extension type of /1 and T,,,,,,,,r be the associated tree. If 

u ,,,,..,,,, is Dynkin, then A is a domestic tubular algebra and its module category 

may be described: mod /I = BV JYEi, Ki]:= 1 V gal, where #’ is a preinjective com- 

ponent and flEi, Ki] f= 1 is a tubular family separating 9 from 9’. 

If &q,...,, is extended Dynkin, then A is a tubular algebra and its module 

category is described: modA=Bv~OvV,CQ+ gyvSmvS’, where &= 

J[Ei, Ki]:=, is a tubular family separating 9 from VYCQ+ Zyv gmVS’; for 

each yeQ’, 

V 
gP is a stable tubular family separating BV ,T,,v Vdcy gd from 

y<6 gav TmVS’. 
There is a tame concealed algebra A ’ such that /1= i= [[Ei, K/IA ’ is a g’-tubular 

coextension, where mod A’= 9’~ g’V9’ with .5F’ a tubular family separating 

9’ from 9’. Then .Ym = i=i[El, KJ g’ is a tubular family separating 9V goV 

V yEQ+ gy from 4’. 

Domestic cotubular algebras are defined dually. Every tubular algebra is also 

cotubular . 

2.2. Domestic tubular, domestic cotubular and tubular algebras are said to be 

O-iterated tubular algebras. 
Let /1, be a domestic cotubular algebra or a tubular algebra. In both cases /lo is 

a coextension & = i=:[Ei, Ki]Ao of a tame concealed algebra A, and mod A0 = 

kP”V g”V 9, where So is the preinjective component of both r,+ and rAO and go 

is a tubular family separating 9” from go. Let EF, . . . , Ep be a set of pairwise 

orthogonal ray A,-modules in go. Let Kf, . . . , Ki be a set of branches and assume 

that Ao[EF, KF]fS 1 is a domestic tubular algebra or a tubular algebra. Then we say 

that the extension A, =Ao[E:, K:]‘o_, is a l-iterated tubular algebra. By [16, 4.71, 

modA1=WoV~o[E~~, K~](o!,V9’, where g’[E,g, K,O]f= 1 is a tubular family 

separating 9’ from #I. We want to describe 9 ‘. Let mod A,= 9’,v ~ovgo, 

where go is the stable tubular family separating Y. from 9,. Then 

Lemma. With the above notation, 9 ’ = 5. 

Proof. Let A’=A,[EF, KF]fu!,. Let XE g and PY be an indecomposable A I- 

projective with Horn, I(P,, X) ~0. As Py E 9,V go[EF, Kp]L,, there is an in- 

serted tube g in go[E,c, K,~]~=, with Hom,(gX)#O. Then there is a tube .F’ 

in .F”[E~~, Key],?, which is obtained from 3 by coray insertion and such that 

Horn,, (g’, X) # 0. Hence XE 9 ‘. 
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Let XE 9 I. Let y be a vertex in Qn, but not in QA,. The /lo-injective Zj is also 

/1i-injective. Since I: E .Y-“[Ey, KF]k 1, Homn,(X, I,“) = 0. Thus XE mod A ’ and 

XE~ as above. 0 

2.3. Let /1, =/io[Ef, KF]k 1 be a l-iterated tubular algebra as above. Assume that 

A ’ = A0 [EF, Kp] !s, is a tubular algebra and write mod A ’ = go v .To [I$‘, KF] 2 1 v 
V 
V 

yEQ+ .T~v.T,,v~, as in 2.1. In mod/ii, define 91=90~,To[Ef,K~],?,~ 

YEQ+ g,,r, g’=.YL. Then, by 2.2, modA1=~1v~1v91, and 9, is the pre- 

injective component of Z,,. 

The following result is an easy exercise: 

Lemma. (a) g’ is a tubular family separating 9” from 9,. 
(b) $-“[EF, KF],?, is a tubularfamilyseparating 9” from VYeQ+ LT~vY’vV,. 

(c) For each yeQ+, g; is a tubular family separating .!Y ‘V S”[EF, KF] 2, v 

V 6<y 3: from V6,y 2TiVY1vS,. 0 

Let Ai be the tame concealed algebra such that A1 is a coextension of A,. Let 

E;, . . . . E/, be a set of pairwise orthogonal ray /Ii-modules in $I’. Let Ki, . . . , K:, 
be a set of branches such that A2 =A 1 [Ej, Kj] ‘; 1 is a domestic tubular algebra or 

a tubular algebra. The extension A2 = /1 1 [E:, Kj] I; 1 is called a 2-iterated tubular 
algebra. 

As before, mod A2 = 9 2 v JJF’ v 42, where s2 is the preinjective component of 

r .F2 is a tubular family separating 9’ from 9,. Moreover, if mod A, = 

g;b Ti V9, and A2 is a tubular algebra with modA2= Pi v SIIEj, K/If;, v 

V ycQ+ ~~v~T~vTF~, then .5P2=Y1vg1[E/, K~]~:~v//~~~+ $y’ and $‘=g:. 

By induction, we define the n-iterated tubular algebras (or simply iterated tubular 
algebras). 

Iterated tubular algebras have already appeared: in the construction of the 

derived category of a tubular algebra [9]; in the description of the module category 

of certain group algebras [17]. 

2.4. We immediately obtain: 

Proposition. Let A be an iterated tubular algebra. Then: 
(a) A is tame. 
(b) The Tits form q,, is weakly semipositive. 

Proof. (a) follows from the description given above for mod A. 

(b) follows from (a) and [14, 1.31. 0 

We want to give some examples of iterated tubular algebras. 
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A2 

T T 

a-e-e-t---- 
, 

/ ‘T /I 
I 

I’/ 
/I 

I 

1, T /I / I 
e-*-e+-- 

/ 
I 

I 
T 

/I / 
I ‘,I’ 

-43 ; T r/ / \ 

l 

Ai is i-iterated tubular. We remark that q,,, is not semipositive. 
(b) Let AI, A2, ,u~, p2 E k* pairwise different scalars. 
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Similarly we may define the i-iterated tubular algebra /li (id N). 

2.5. Iterated tubular algebras have acceptable projectives. 

Algebras with acceptable projectives are handy due to the following: Assume that 

/1 has acceptable projectives and let 9, %?r, . . . , ‘if?, be the components of r, where 

the projectives lie (9 is preprojective, the pi are inserted-coinserted tubes). Sup- 

pose that Horn,,, FZj, gj) #O implies isj. Consider F?,= ‘6?,‘[ V, B] where B is a 

branch and V is a ray module in the inserted tube S[. Let b be the root vertex of 

B, that is, I/ is a direct summand of rad P,. Consider W(P,) the wing of Pb in gI 

as defined in 1.1. Let e = CpX, w(p,) e, and /i = /l//letl. 

Proposition. With the above notation we have: 
(a) /1 =;i[V, B]. 
(b) A has acceptable projectives and E’/ is a standard component of r~. 

Proof. We consider W(PJ as in the diagram below. 

\ x Y = r-‘X 

Consider the back modules X, Y. We get that X[i] (=X[i]) /i) = v[i] and sy[i] = 
VJi] where 7 is the Auslander-Reiten translation in r~. 

(a) Let s E Q;i and s+ t in Q,, , then t E QA. Indeed, if t E B, as Hom,(P,, P,) #O, 
then P,E FZ,. Since P, E W(Pb) and P,@ W(Pb), then Hom,(P,, P,) = 0, a contra- 

diction. Therefore, ii is convex in /1 and /1 has the form 
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To prove that II =/i[ I’, B], it is enough to show that there are no zero relations 

between vertices in B \ (b} and vertices in ii. For this purpose, it is enough to show 

that for a path b+-b, +- *.a +-bs in B, we have isb, = I/ (= rad Pb). This is clear since 

every Pb, lies on the path joining Pb to X in g,. 

(b) The modules on ‘8; are /i-modules and g/ is a component of r,. We show 

that g,’ is standard. Assume that %‘,= PZ[Vi, Bi]f=, with %’ a coinserted tube and 

I’,= V, B,=B. Let %= ;=:‘[ V/, Bl] ‘6” with ‘I??’ a stable tube. Then @?’ is a compo- 

nent of r,” where /l,=/l//leO/l and e,= C._“s,e,+ CxGUB;ex. As in (a), we 

obtain that /1,=i=:‘[Vi, B$4,, A=A,[V;, B;]:=, and ;i=A,[V;,B;]~Z,‘. 
Let XE g’ and s be a vertex of QA,. Then HomAO(X, P;) = Horn, (X, P,) = 0, 

where Pi is the projective &-module corresponding to s. Hence, inj dimA ‘Z?‘= 1. 

By [16, 3.11, 6’ is a standard component of r&. By [16, 4.51, @? is a standard 

component of rAl and g,‘= g[ Vi, Bi]fri is standard in modii. 

Since 9, %i, . . . . VZ_ t, %/ are the components of I-, where the projectives lie, we 

get that li has acceptable projectives. 0 

3. The main theorem 

We start with some lemmas. 

3.1. The following lemma is well known: 

Lemma. Let A be a tame hereditary algebra and A T= T,@ Tl a tilting module with 
T, preprojective and T, regular. Let A = End,(T) be the corresponding domestic 
tubular algebra with preinjective component .Y. Then rA \ 9 c Im 2, where .Z= 
Hom,(T,-). 

Proof. The set {ZI,: XE QA) is a slice in N. Let MErA \ S. Then M is a prede- 

cessor of some ,Z’, E Im C. By [ 16, 4.2(l)], Im .Z is closed under predecessors. Cl 
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3.2. Lemma. Let A, T and A be as in 3.1. Let R or,,. Assume that A[R] is a 
tubular extension of A, = End, ( TO). Then : 

(a) There is a simple regular A-module R’ with R = ER’. 
(b) If A[R’] is wild, then A[R] is wild. 

Proof. (a) There is a regular A-module R’ with R =.JCR’. Since A[R] is a tubular 

extension of A,, there is only one irreducible R ---%X starting at R. Thus (Y is 

mono. 
P 

Assume that R’ is not simple regular and let R’- 
z;c 

Z be an irreducible epi- 

morphism. Since R’E 9(T), ZE g(T) and R=XR ‘+2’Z is irreducible. There- 

fore, TO. T-‘RA To,,, coker_@A coker /I = 0. This contradicts with 

rCIREImZ. 

(b) Let 9 be the preinjective component of r’. Since A[R’] is wild, the vector 

space category %(Hom,(R’,$)) is wild. But there is a full embedding 

F: %(Hom,(R’, S))--+ %Y(Homn(R, mod A)), 

showing that A[R] is wild. q 

3.3. Proposition. Let A be a tubular extension of a tame concealed algebra A,. Let 

(m ,, . . . , m,) be the extension type of A and assume that T,,, ,,,,m, is neither Dynkin 
nor extended Dynkin. Then : 

(a) q,, is not weakly semipositive. 
(b) A is wild. 

Proof. It is enough to show the result in the case that T,,,,,.,,, is a minimal tree 

which is neither Dynkin nor extended Dynkin. By [16, 4.4(4)], we may assume that 

A = A’[R] where A’ is a tubular extension of A0 of Dynkin or extended Dynkin 

extension type and R E r,. . We distinguish these cases. 

(1) Assume that the extension type of A’ is Dynkin. Then A’ is domestic tubular 

and A’= End,(T) with A tame hereditary and A T= TO@ T, a tilting module with 

T,, preprojective and T, regular. Let .Z= Hom,(T, -). By 3.2, there is a simple 

regular A-module R’ with XR’= R. Let t be the vertex in QAIRC1 with rad Pl = R’. 
We claim that: 

(a’) There exist Vi, . . . , V, preinjective A-modules and aE iN such that 

<O. 

(b’) A[R’] is wild. 

This implies (a) and (b). Indeed, let s be the vertex in Q,, such that rad P,= R. 
Then 

qn 
> 

-a f dim Hom,(R, CVj)+a2 
i=l 



Iterated tubular algebras 313 

= qAW’1 dim Vi + ae, 
> 

< 0. 

That /1 is wild follows from 3.2. 

The claim may be proved by an easy case by case inspection of the tables in [6] 

(to show (b’) use [15]). 

(2) Assume that the extension type of /1’ is extended Dynkin. Then /1‘ is a tubular 

algebra and mod /1’= 9’~ $,v V gyv Tm v 9 as in 2.1. Since ,4 is a tubular 

extension of /1,, RE .FO. There is a module XE .Y, with q,(dim X) =0 and 

Hom,,(R, X) # 0. Thus qn(2 dim X-t e,) = 1 - 2 dim Hom,,(R, X) < 0. 

Take a family {X,: 1 <n15} of pairwise orthogonal bricks in gi [16, 3.11, such 

that Hom,(R, X,)#O for 11n< 5. There is a full embedding of the vector space 

category Q/ = %(Hom,,(R, {X,},J) in mod _4. Let S be the poset consisting of five 

pairwise non comparable points. There is a full embedding of the vector space 

category @(add kS) into a. By [ 131, S is a representation wild poset. Therefore the 

categories 4?/ and mod/1 are wild. 0 

3.4. Theorem. Let A be an algebra with acceptable projectives. Then the following 
are equivalent : 

(a) A is iterated tubular. 
(b) /1 is tame. 
(c) qA is weakly semipositive. 

Proof. (a) * (b) and (a) * (c) is 2.4. 

Let 9, VZ,, . . . . FZ, be the components of r,, where the projectives lie. Assume 

that 9’ is preprojective and that Homn(‘&‘i, ej)#O implies ilj. As in 2.5, let 

B, = 55’/[ V, B] and /1 =ii[ V, B] be such that /i has acceptable projectives and 

8 8,, *.*, 8,-t, F?,’ are the components of r~ where the projectives lie. 

We proceed by induction on the number p of projectives on the inserted tubes 

81, . . . ) 8,. 
(c) * (a). If p = 0, 9 is a complete preprojective component. By the dual of 1.3, 

/I is a domestic cotubular algebra. 

Assume p> 0, as /i is convex in /1, qA is also weakly semipositive. By induction 

hypothesis ii is n-iterated tubular. Let mod li = BV BV 2, where d is the preinjec- 

tive component of r, and gis the tubular family in r~ separating @ from 3. With 

the notation of Section 2, ii = /1, =A,_ 1 [Ei, Ki]f= 1, where /1,_ 1 is an (n - l)- 

iterated algebra, A, _ 1 is tame concealed and A” =A, _ 1 [Eiy Ki] f= 1 is a domestic 

tubular or a tubular algebra (w.1.g. n z 1). Then mod A” = 9”V g’v 3, where g’ is 

a tubular family separating 9’ from 3. 

As in part 2 of the proof of 3.3, we can show that FZ,’ is obtained from a tube 

in g’ by coray insertion. If A” is domestic tubular, then, as qAfl[v,B] is weakly 
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semipositive, A”[ V, B] is a domestic tubular or a tubular algebra (3.3). Then 

A =/i[ V, B] is again n-iterated tubular. If A” is tubular, then A” is a tubular 

coextension of a tame concealed algebra A,. By 3.3, A, [ V, B] is domestic tubular 

or tubular and therefore A is an (n + 1)-iterated tubular algebra. 

(b) * (a). It follows, as in (c) * (a), from 3.3. El 

Corollary. Let A be a sincere algebra with acceptable projectives. Assume that r, 
has no tubes which are both inserted and coinserted. Then the following are 
equivalent: 

(a) A is a domestic tubular, a domestic cotubular or a tubular algebra. 
(b) A is tame. 
(c) qn is weakly semipositive. 0 
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