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It is shown that for a data set from a branching process with immigration, where the offspring distribution 

is Bernoulli and the immigration distribution is Poisson, the normed sample partial autocorrelations are 

asymptotically independent. This makes possible a goodness-of-fit test of known (Quenouille) form. The 

underlying process is a classical model in statistical mechanics. 
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1. Introduction 

One of the oldest stochastic processes to be fitted by parameter estimation from 

data is the subcritical branching (Galton-Watson) process with immigration (BPI); 

Section 5 of Heyde and Seneta (1972) gives the background. The early context is 

statistical mechanics. Yet tests of goodness-of-fit of data to such a fitted process 

have been examined only recently (Venkataraman, 1982; Mills and Seneta, 1989); 

the approach has come from time series analysis, because of certain similarities of 

the BP1 to the classical AR(l) process. 

The special case of particular interest in statistical mechanics is the simple one 

where the offspring distribution (p.g.f. F(s) = q +ps, 0 <p < 1) is Bernoulli, and the 

immigration distribution (p.g.f. B(s) = exp A (s - 1)) is Poisson. In our earlier paper 

(Mills and Seneta, 1989) we developed a test on the basis of the sample partial 

autocorrelations for a general subcritical BPI, and this was applied to a classical 

data set from a purported Bernoulli-Poisson situation. In Mills (1988) a number of 

other classical data sets are reproduced and goodness-of-fit investigated. 

In the present note we point out the rather startling fact that under the null 

hypothesis that data comes from a Bernoulli-Poisson BPI, the normed sample partial 

autocorrelations at lag 32 are not only asymptotically jointly Gaussian (as is the 
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case in general), but independent, permitting an alternative test (in this simple case 

of most interest) which is almost identical with Quenouille’s test for a stationary 

AR( 1) process. 

2. General results 

We give a formal definition of the BP1 {X(t)} in order to introduce notation: X(t), 

t=0,1,2 ,..., is defined by 

i 

X(r-I) 

C Z(t, I)+ Y(t) ifX(t-l)>O, 
X(t)= r=* 

Y(t) ifX(t-l)=O, 

where X(O), Z(t, r), Y(s), t, r, s 2 1, are independent non-negative integer-valued 

random variables, with the Z( t, r) (t, ra 1) identically distributed (like a non- 

degenerate r.v. Z, say, with p.g.f. F(s)) and Y(s), s = 1,2, . . . , identically distributed 

(like an r.v. Y say, with p.g.f. B(s)). The subcritical case has EZ< 1 and we make 

this assumption here. For results about the general process the additional assump- 

tions E(ZP) < ~0, p = 2, 3, E( Y”) < 00, p = 1, 2, 3, are needed (these clearly hold in 

the Bernoulli-Poisson case); and E(X’(O)) < ~0. We then need the notation 

m = EZ, af=VarZ, A =EY, a:=Var Y, 

p = (1 - rn)-‘A, U;=/.MT:+U;. 

We assume that we have an observed data sequence X(O), X(l), . . . , X(N), and 

N-k 

R(k)= c (X(t)-X)(X(t+k)-X) ; (X(t)-X)‘, 

r=, I ,=L 

so that R(k), k* 1, are the sample autocorrelations of the process. The sample 

partial autocorrelations bk, k> 1, are defined in a standard way in terms of them; 

see Mills and Seneta (1989). According to Venkataraman (1982, Theorem 4.3, part 

(b), and Theorem l.l), N”‘(R(k) - mk), k = 1,2,. . . , H, converges in distribution 

to a normal vector {V(k), k = 1,2, . . . , H} where 

V(k) = uo2 IT (m 
lupkl_ mu+k 

)5(u), k = 1,. . . , H, (1) 
u=, 

where k(s), sz 1, is a zero-mean Gaussian process, with 

E((~(s))~) = u~+u~m”-‘0, 

where 

0={(1-m2)-‘mu~u~+&~+B2}, B,=E((Z-m)3), B2=E((Y-A)3), 
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and 

E(&(r)t(s)) = a$r~mr-2, r> s 3 1. 

Then by Theorem 1 of Mills and Seneta (1989) the vector { N”2/?k, k = 2, . . . , H} 

converges in distribution as N + cc to the vector { W(k), k = 2, . . . , H} where 

W(k)=(V(k)-2mV(k-l)+m’V(k-2))/(1-m2) (2) 

with V(0) = 0 by definition. 

Clearly { W(k), k = 2, . . . , H} has a multivariate normal distribution, E W( k) = 0, 

and (1) and (2) imply that 

W(k) = ao2 -mt(k-l)+(l-m2) f rnuek 
u=k 

6(u)), ka2. 

From (3) after tedious calculations checked numerous times by each of us 

individually, and independently by Dr N. Weber, to whom our thanks are due, we 

obtain 

E(W2(k))=l+ m 
k-l o:f3(1+2m) 2~: -- 

l+m+m2 4 
WO 

2 
UO 1 (4) 

for k&2, while 

E( W(k) W(s)) = 1 T;-;-; 2{a~2a~(l+m-m2)-a~4a~8m(l-m2)} (5) 

for2<k<s<H. 

3. Bernoulli offspring distribution and Poisson immigration distribution 

In this case af=m(l-m), B,=m(l-m)(l-2m), &=A, B,=h, y=h/(l-m), 

ai=A(l+m), O=A(l+m-m’). 

These formulae, when substituted into (4), (5) yield the result that for this special 

Galton- Watson process with immigration 

a’(k) = E( W’(k)) = 1-t 
mk(l-m)(l-m-m2+2m3) 

A(l+m)2(l+m+m2) 
, ka2, (6) 

and the centrally important and surprising result that for 2 < k < s, 

E( W(k) W(s)) = 0. 

Hence for this special case, N”2bk and N1’2gs for 2 s k < s are asymptotically 

uncorrelated, and hence (by normality) independent, in complete analogy to the 

stationary AR(l) model. From this observation we can develop a goodness-of-fit 

test for this special progress on the basis of sample partial autocorrelations com- 

pletely analogous to Quenouille’s test. A further parallel follows from the fact that 
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for moderate m, clearly a’(k) = 1 for most k 22; this will be seen in the example 

below. Recall that for the general Galton-Watson process with immigration (Mills 

and Seneta, 1989, Theorem 2), the best that can be done is independence of linear 

forms of two successive pk, at lags 22. 

In the present case on the basis of a data set X(O), . . . , X(N), approximately 

N/%+,lG*(k+ 1) -x:, N ; bi+,/&*(k+l)-,& 
k=l 

(7) 

for any fixed T, 2 s T + 1 s H, where G.‘(k) is a consistent estimator of a*(k), which 

can be obtained by replacing m and A in (6) by their consistent estimators as N + CO, 

such as the least squares estimators fi, i as in Venkataraman (1982, p. 3) as used 

in Mills and Seneta (1989). 

As an illustration we apply the preceding theory to a data set of the physicist 

Fiirth (1918, 1919). As noted in Heyde and Seneta (1972) Section 5, the Bernoulli- 

Poisson model was the one Fiirth used for purposes of estimation; and as noted in 

Mills and Seneta (1989, Section 5) the general GWI is found to be a poor fit, which 

we expect to be even more so the case for the present more restrictive (Bernoulli- 

Poisson) null hypothesis. Fiirth’s data (N = 505) gives &r = 0.665776, i = 0.532112. 

The same simulated data set as in Mills and Seneta (1989) for an actual Bernoulli- 

Poisson process (with N = 505, m = 0.665776, A = 0.532112) was used for com- 

parison; the least squares estimates & = 0.698434 and i = 0.492469 resulted in this 

case. (See Tables 1 and 2.) 

The values of Quenouille’s statistic, N I,‘=, p’ k+r, which for these data sets is 

clearly almost coincident with our statistic occurring in (7) calculated for T = 40 

are 70.56 (Fiirth’s data) and 49.84 (simulated data), while xf (0.05) = 55.76. Thus 

the Bernoulli-Poisson GWI hypothesis is convincingly rejected for Fiirth’s data by 

the portmanteau test based on (7), while the simulated data leads to clear acceptance. 

Table 1 

Goodness-of-fit of FL&h’s data to a BP1 

k 1 2 3 4 5 6 7 8 9 10 

c?(k+l) 1.02 1.02 1.01 1 .Ol 1.01 1 .oo 1 .oo 1 .oo 1 .oo 1 .oo 

Ni:+,/G2(k+ 1) 21.82 4.52 2.07 0.17 3.17 1.39 0.21 6.37 2.07 0.41 

Table 2 

Goodness-of-fit of simulated data 

k 1 2 3 4 5 6 7 8 9 10 

c?(k+ 1) 1.02 1.02 1.01 1.01 1.01 1 .oo 1 .oo 1 .oo 1.00 1 .oo 

N$+,/&*(k+ 1) 0.05 0.11 3.89 0.71 0.52 0.34 0.44 0.17 0.02 0.14 



TM. Mills, E. Seneta / Autocorrelations in branching 219 

A portmanteau test statistic value based on gk, k = 3, . . . , 10, obtained by summing 

over columns 2 to 9 in the second row of our Table 1 yields 19.97 (to be compared 

with ,&0.05) = 15.51), and hence to rejection of the Bernoulli-Poisson hypothesis. 

A corresponding portmanteau statistic value based on the same &‘s, is obtained 

by summing over columns 2, 4, 6, 8 in the last row of Table 1 of Seneta and Mills 

(1989) which gives 3.43 (to be compared with x:(0.05) = 9.49), and hence is far from 

significant. The arbitrariness inherent in constructing a portmanteau statistic on the 

basis of the results for a general GWI can thus be seen to lead to incorrect results 

in carelessly using such a statistic, but there are no such problems in the present 

Bernoulli-Poisson situation. 

The quantities {N “‘j(k), k = 1, . . . , T}, where the i(k) are the sample autocorre- 

lations of residuals E(t) = X(t) - r?rX(t - 1) -i, t = 1, . . . , N, of least squares fit, are 

asymptotically normal but not asymptotically independent for the Bernoulli-Poisson 

GWI (Venkataraman, 1982, Theorems 1.1,4.1, and Lemma 5.1; Klimko and Nelson, 

1978, Section 5). They cannot therefore be used in the same way as the bk’s to 

construct a portmanteau statistic, although the parallelism exhibited between the 

bk’s and Fk’s in Mills and Seneta (1989) might suggest this. 
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