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Abstract

Poincaré-invariant quantum field theories can be formulated on non-commutative planes if the coproduct on the Poincaré group is suitabl
deformed. As shown in our previous work, this important result implies modification of free field commutation and anti-commutation relations
and striking phenomenological consequences such as violations of Pauli principle. In this Letter we prove that with these modifications, UV-IR
mixing disappears to all orders in perturbation theory from the S-matrix. This result is in agreement with the previous results of Oeckl.

0 2006 Elsevier B.VOpen access under CC BY license.

1. Introduction deformed action of Poincaré group. Rather they too have to be
deformed. lfa(p) is the annihilation operator of a free field for
The non-commutative Groenwold—Moyal plane is the alge-momentump, then for example,
bra Ay (R?*1) of functions onR?*1 with the sx-product as the

—_— i l,euv v
multiplication law. The latter is defined as follows. a(pla(q) = ne'™ a(g)a(p), (3)
If o, B € Ag(RIT1), then wheren is a Lorentz-invariant function gf andg. The choices
T e, n = %1 correspond, fof = 0, to bosons and fermions.

o g B(x) = (e B, 1) There are similar relations involving p)™'s as well. All of
O = —p"* e R, x=(x%x L x9). (2)  them follow from the relations
Herex? is the time coordinate, and the rest are spatial coordiz(p) = c(p)e*2Pu?"" P, (4)
nates. P auv

a(p)f = e 2Pu"" Poc(pyF (5)

Henceforth, we will writex xg 8 asa * 8.
The appearance of constamt$” would at first sight sug- wherec(p) andc¢(p)T are the standard oscillatots p)|g—o,
gest that the diffeomorphism group Diff‘*1) of R4, and  a(p)'ls—o for 6 = 0, andP, is the translation generator:
in particular its Poincaré subgroup is not an automorphism of
Ay (R4+1), But the work off1] and[2] (and the earlier work of P =/du(p) puc(p)te(p) =/dM(P) pua(p)la(p),  (6)
[3,4] and[5]) have shown that this appearance is false. Thus
there exists a deformed coproduct on DEft1) which de-  du(p) here is the Poincaré-invariant measure. For a spin 0 field
pends o9’ With this deformation, DiffR?*+1) does act as of massn,
the automorphism group o (R4+1). 2
In [6] (and the earlier work d] and[5]), it was shown that  du(p) = <, po= |/ P2 +m?2|. 7)
the standard commutation relations are not compatible with the 2po
There are striking consequences of the deformed commutation
" ) relation[6] such as the existence of Pauli-forbidden levels and
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statistics.Sy is in fact independent ¢f*¥ so thatSy = Sg. This Let ¢, be the plane wave of momentum ¢, = e'P*. The
does not mean that scattering amplitudes are independént of x-product of plane waves is simple:
as the in- and out-state vectors are different, being subject to D
deformed statistics. epreg=e 2P e, . (10)
Our treatme.n'.[ here covers both time—space and SPace-spae s introduce the notation
non-commutativity. In the former case, although there were ini-
tial claims of loss of unitarity, the work of Doplicher et §8] a(p)t =a(=p).
showed how to construct unitary theories. These ideas were
subsequently applied to construct unitary quantum mechanic¥
as well[9,10]. So there is no good theoretical reason to set
6% — 0. The work we present here is quite general as regard® = /d“(p) [a(p)ep +a(=p)e,]
the choice ob*", allowing also the choice® = 0.
We present the calculations for a real scalar field with the3. The proof
interaction

herepg is also reversed by the dagger. Then

(11)

Yn=2
Pl i=¢pxpx---xdp (n>=>2). First considen = 2, just as an example. Then tBg)) term

. . . . fSpi
The generality of the results will be evident from this example.O So 15

There is considerable overlap of the results of this work withx) . d+1_ . .
those of Oeck]4]. He too uses non-trivial twisted statistics, but ¢ i / A7 x i) (12)
does not use Poincaré symmetry implemented with a twiste
coproduct[1,2]. In contrast, our previous worf6] deduced
twisted stat_istics from Pqincaré ir.1var.iance. Oeckl thgn deduceg(p)a(q)ep xey = a(p)a(q)eg,,ﬂequ epiag- (13)
an expression for the-point function in agreement with ours.

His derivation is based on braided quantum field theory deSubstituting from(4), we get

veloped by him[3]. Its relation to our approach awaits clari-

o . . . R.H.S. of(13)

fication. But we point out that once the appropriately twisted _ . .
spacetime algebra and statistics are accepted as axioms, both= c(p)e2?u? " Poe(g)e 2?0 Poe2pu® ' tve
Oeckl and us get the same final answer without ever invoking
Poincaré invariance or any other spacetime symmetry except
translations. (since[ Py, c(q)] = —qvc(q))

= c(p)c(g)epige2 PO P, (14)

q typical term ing * ¢ ist

_i v i v i v
=C(p)C(q)€ 217/19 l]vezpue (11)62(P+‘1)/L9 Pvep+q

2. The model ‘
Note how the phases27:¢""4 cancel.
The free scalar fielgp of massn in the Moyal plane has the Using

Fourier expansion i
8/46p+q =i(p+ Q)/Lep+q ,

d(x) = /dM(p) [a(p)e?™ +a(p)TeP], we can write this as
19 guvp
ﬁ c(p)e(@)eprqe? "1,
po =4/ p?+m?. (8) pr
_ _ o . . ~ Hence
The interaction Hamiltonian, in the interaction representation, 1
is taken to be —ix/d‘”lx (b * di(x) = _ik/derlx 42 (x)e2 00" P,
HiGo = [ alx:gl, (©) | R W)
Expanding the exponential, integrating and discarding the sur-

where: : denote normal ordering af(p)'s anda(p)™’s. face terms, we find that

The operatorH; (xp) is self-adjoint for any choice of#?, ) il ] ) il 2.
even with time—space non-commutativity. Hence the S-matrix _1)‘/‘1 X i gix) = _’}‘/d x:9%(0)

is independent of*".
So=T exp(—i / dxo Hy (XO)) The only delicate issue here concerns the surface term. Here
and in what follows, we will assume that such surface terms
= Texp(—i / d iy gn (x):)
. . . o 1 Here we have used, x e; = eél’“ewq"eﬁq, which requires replac-
is unitary. We will now show thasy is independent of. That  jng g1v by —6/¥ in (1). The reason for this change is explained6h after
means in particular that there is no UV-IR mixing. Eq. (2.33).
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vanish. In the absence of long range forces, the assumptian(p)c(q) - -

should be correct.
Next consider the (A2) term

—inN2
SéZ) — ( 12') /dd+lx1dd+lx2

x {6(x10 — x20):¢) * :(x1):¢ * :(x2) + (x1 <> x2)}.
(16)
A typical term inf (x10 — x20):¢ * ¢:(x1):¢ * P:(x2) iS

0(x10 — x20):a(p1)a(qi):ep; * eq (x1):a(p2)a(qz):ep, * eqy(x2)

= 0(x10 — X20):¢(P1)C(q1):€ py-pqq (x1)e T 2(P1HIVUOT Py

i v
X :c(P2)c(q2):e pytqy (x2)e T 2P2HaDnI Ry
=0(x10 — Xx20)

) I:C(Pl)C(PZ)ZIC(Cll)C(t]Z):e_%(m"'ql)”ew(pz"'q””

2(8x1p,+8x2}1 )9/“71)‘}]}’ (17)

where the differentials act only o#),,44,, ¢p,+4, and phases
involving just p,, andg,, cancelling out as before.

% [eptan (Depp gz (62

Note first that by energy—momentum conservation [enforce

by integration over; + x, and the resultart?*1(}" p;)], we
can setpz + g2 = —p1 — g1. Hence we can set

e*%(ﬁﬁgl),ﬁ“"(ﬁﬁ%)u -1
Next note that since
a
— + — |0(x10—x20) =
9x10
we can in fact aIIowi + aa to act on the-function as well.
But then all terms mvoIvm@ in the power series expansion

0X20

of the exponential are total differentials and vanish upon inte-

grating overd?*1x, d%t1x,. Thus
S(Z) S(Z).

Similar calculations show thay, is independent of#*” exactly,
to all orders inp#v.

Sp=Sp forn=2.

(ii) Genericn
The typical term in

DxP k- xpi(x)
—_—

n-terms
is
:a(p)a(q) - -k eg(x)

which too simplifies to

a(s)ep xeg x
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“C(8):€prgtts (x)e+§(P+q+~--+s),Lewpv

for anyn. Hence, we find ta@ (1), for anyn, as before that
SV = so.

The proof to higher orders is similar. Thus@(1.2), @anis
replaced by

0 (x10 — x20)
. @ (n) [¢))
x fre(p) - -e(pi”)e(pg?) -+
w o= 2 (i) (Sioa(pg”))

by " as

which can again be shown to be independen®®f using
energy—momentum conservation and partial integration. There-
fore

(o)

X [eZ_; pgn(m)ezk o0 (X2)e

S(Z) S(Z)

This proof extends to all orders so that

% =50
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