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Abstract

Poincaré-invariant quantum field theories can be formulated on non-commutative planes if the coproduct on the Poincaré group
deformed. As shown in our previous work, this important result implies modification of free field commutation and anti-commutation
and striking phenomenological consequences such as violations of Pauli principle. In this Letter we prove that with these modification
mixing disappears to all orders in perturbation theory from the S-matrix. This result is in agreement with the previous results of Oeckl.
 2006 Elsevier B.V.Open access under CC BY license.
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1. Introduction

The non-commutative Groenwold–Moyal plane is the al
braAθ (R

d+1) of functions onR
d+1 with the∗-product as the

multiplication law. The latter is defined as follows.
If α,β ∈Aθ (R

d+1), then

(1)α ∗θ β(x) = (
αe

i
2

←−
∂ µθµν−→

∂ ν β
)
(x),

(2)θµν = −θνµ ∈ R, x = (
x0, x1, . . . , xd

)
.

Herex0 is the time coordinate, and the rest are spatial coo
nates.

Henceforth, we will writeα ∗θ β asα ∗ β.
The appearance of constantsθµν would at first sight sug

gest that the diffeomorphism group Diff(Rd+1) of R
d+1, and

in particular its Poincaré subgroup is not an automorphism
Aθ (R

d+1). But the work of[1] and[2] (and the earlier work o
[3,4] and [5]) have shown that this appearance is false. T
there exists a deformed coproduct on Diff(Rd+1) which de-
pends onθµν . With this deformation, Diff(Rd+1) does act as
the automorphism group ofAθ (R

d+1).
In [6] (and the earlier work of[4] and[5]), it was shown tha

the standard commutation relations are not compatible with
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deformed action of Poincaré group. Rather they too have t
deformed. Ifa(p) is the annihilation operator of a free field f
momentump, then for example,

(3)a(p)a(q) = ηeipµθµνqν a(q)a(p),

whereη is a Lorentz-invariant function ofp andq. The choices
η = ±1 correspond, forθ = 0, to bosons and fermions.

There are similar relations involvinga(p)†’s as well. All of
them follow from the relations

(4)a(p) = c(p)e+ i
2pµθµνPν ,

(5)a(p)† = e− i
2pµθµνPν c(p)†,

where c(p) and c(p)† are the standard oscillatorsa(p)|θ=0,
a(p)†|θ=0 for θ = 0, andPµ is the translation generator:

(6)Pµ =
∫

dµ(p)pµc(p)†c(p) =
∫

dµ(p)pµa(p)†a(p),

dµ(p) here is the Poincaré-invariant measure. For a spin 0
of massm,

(7)dµ(p) = d3p

2p0
, p0 = ∣∣√ �p2 + m2

∣∣.
There are striking consequences of the deformed commut
relation[6] such as the existence of Pauli-forbidden levels
attendant phenomenology[7]. In this note, we show anothe
striking result: Non-planar graphs and UV–IR mixing co
pletely disappear from the S-matrixSθ because of the deforme
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statistics.Sθ is in fact independent ofθµν so thatSθ = S0. This
does not mean that scattering amplitudes are independentθ ,
as the in- and out-state vectors are different, being subje
deformed statistics.

Our treatment here covers both time–space and space–
non-commutativity. In the former case, although there were
tial claims of loss of unitarity, the work of Doplicher et al.[8]
showed how to construct unitary theories. These ideas w
subsequently applied to construct unitary quantum mecha
as well [9,10]. So there is no good theoretical reason to
θ0i = 0. The work we present here is quite general as reg
the choice ofθµν , allowing also the choiceθ0i �= 0.

We present the calculations for a real scalar field with
interaction

φn∗ := φ ∗ φ ∗ · · · ∗ φ (n � 2).

The generality of the results will be evident from this examp
There is considerable overlap of the results of this work w

those of Oeckl[4]. He too uses non-trivial twisted statistics, b
does not use Poincaré symmetry implemented with a twi
coproduct[1,2]. In contrast, our previous work[6] deduced
twisted statistics from Poincaré invariance. Oeckl then ded
an expression for then-point function in agreement with our
His derivation is based on braided quantum field theory
veloped by him[3]. Its relation to our approach awaits cla
fication. But we point out that once the appropriately twis
spacetime algebra and statistics are accepted as axioms
Oeckl and us get the same final answer without ever invo
Poincaré invariance or any other spacetime symmetry ex
translations.

2. The model

The free scalar fieldφ of massm in the Moyal plane has th
Fourier expansion

φ(x) =
∫

dµ(p)
[
a(p)eip·x + a(p)†e−ip·x],

(8)p0 =
√

�p2 + m2.

The interaction Hamiltonian, in the interaction representat
is taken to be

(9)HI (x0) = λ

∫
ddx :φn∗ :,

where: : denote normal ordering ofa(p)’s anda(p)†’s.
The operatorHI (x0) is self-adjoint for any choice ofθµν ,

even with time–space non-commutativity. Hence the S-mat

Sθ = T exp

(
−i

∫
dx0 HI (x0)

)

= T exp

(
−i

∫
dd+1x :φn∗ (x):

)

is unitary. We will now show thatSθ is independent ofθ . That
means in particular that there is no UV–IR mixing.
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Let ep be the plane wave of momentump: ep = eip·x . The
∗-product of plane waves is simple:

(10)ep ∗ eq = e− i
2pµθµνqν ep+q .

Let us introduce the notation

a(p)† = a(−p),

wherep0 is also reversed by the dagger. Then

(11)φ =
∫

dµ(p)
[
a(p)ep + a(−p)e−p

]
.

3. The proof

(i) n = 2
First considern = 2, just as an example. Then theO(λ) term

of Sθ is

(12)S
(1)
θ = −iλ

∫
dd+1x :φ ∗ φ:(x).

A typical term inφ ∗ φ is1

(13)a(p)a(q)ep ∗ eq = a(p)a(q)e
i
2pµθµνqν ep+q .

Substituting from(4), we get

R.H.S. of(13)

= c(p)e
i
2pµθµνPν c(q)e

i
2qνθµνPν e

i
2pµθµνqν ep+q

= c(p)c(q)e− i
2pµθµνqν e

i
2pµθµνqν e

i
2 (p+q)µθµνPν ep+q(

since[Pν, c(q)] = −qνc(q)
)

(14)= c(p)c(q)ep+qe
i
2 (p+q)µθµνPν .

Note how the phasese∓ i
2pµθµνqν cancel.

Using

∂µep+q = i(p + q)µep+q,

we can write this as

c(p)c(q)ep+qe
1
2

←−
∂ µθµνPν .

Hence

(15)

−iλ

∫
dd+1x :φ ∗ φ:(x) = −iλ

∫
dd+1x :φ2:(x)e

1
2

←−
∂ µθµνPν .

Expanding the exponential, integrating and discarding the
face terms, we find that

−iλ

∫
dd+1x :φ ∗ φ:(x) = −iλ

∫
dd+1x :φ2:(x)

is independent ofθµν .
The only delicate issue here concerns the surface term.

and in what follows, we will assume that such surface te

1 Here we have usedep ∗ eq = e
i
2pµθµνqν ep+q , which requires replac

ing θµν by −θµν in (1). The reason for this change is explained in[6] after
Eq. (2.33).
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vanish. In the absence of long range forces, the assum
should be correct.

Next consider theO(λ2) term

S
(2)
θ = (−iλ)2

2!
∫

dd+1x1 dd+1x2

(16)

× {
θ(x10 − x20):φ ∗ φ:(x1):φ ∗ φ:(x2) + (x1 ↔ x2)

}
.

A typical term inθ(x10 − x20):φ ∗ φ:(x1):φ ∗ φ:(x2) is

θ(x10 − x20):a(p1)a(q1):ep1∗ eq1(x1):a(p2)a(q2):ep2∗ eq2(x2)

= θ(x10 − x20):c(p1)c(q1):ep1+q1(x1)e
+ i

2 (p1+q1)µθµνPν

× :c(p2)c(q2):ep2+q2(x2)e
+ i

2 (p2+q2)µθµνPν

= θ(x10 − x20)

×
{
:c(p1)c(p2)::c(q1)c(q2):e− i

2 (p1+q1)µθµν(p2+q2)ν

(17)×
[
ep1+q1(x1)ep2+q2(x2)e

+ 1
2 (

←−
∂

∂x1µ
+ ←−

∂
∂x2µ

)θµνPν
]}

,

where the differentials act only onep1+q1, ep2+q2 and phases
involving justpµ andqµ cancelling out as before.

Note first that by energy–momentum conservation [enfor
by integration overx1 + x2 and the resultantδd+1(

∑
pi)], we

can setp2 + q2 = −p1 − q1. Hence we can set

e− i
2 (p1+q1)µθµν(p2+q2)ν = 1.

Next note that since(
∂

∂x10
+ ∂

∂x20

)
θ(x10 − x20) = 0,

we can in fact allow
←−
∂

∂x10
+ ←−

∂
∂x20

to act on theθ -function as well.
But then all terms involvingθµν in the power series expansio
of the exponential are total differentials and vanish upon i
grating overdd+1x1 dd+1x2. Thus

S
(2)
θ = S

(2)
0 .

Similar calculations show thatSθ is independent ofθµν exactly,
to all orders inθµν .

Sθ = S0 for n = 2.

(ii) Genericn

The typical term in

:φ ∗ φ ∗ · · · ∗ φ︸ ︷︷ ︸
n-terms

:(x)

is

:a(p)a(q) · · ·a(s):ep ∗ eq ∗ · · · ∗ es(x)

which too simplifies to
n

d

-

:c(p)c(q) · · · c(s):ep+q+···+s(x)e+ i
2 (p+q+···+s)µθµνPν

for anyn. Hence, we find toO(λ), for anyn, as before that

S
(1)
θ = S0.

The proof to higher orders is similar. Thus toO(λ2), (17) is
replaced by

θ(x10 − x20)

×
{
:c(p(1)

1

) · · · c(p(n)
1

)::c(p(1)
2

) · · · c(p(n)
2

):
× e

− i
2
(∑n

j=1(p
(j)
1 )µ

)
θµν

(∑n
k=1(p

(k)
2 )ν

)

(18)×
[
e∑

j p
(j)
1

(x1)e∑
k p

(k)
2

(x2)e
+ 1

2 (
←−
∂

∂x1µ
+ ←−

∂
∂x2µ

)θµνPν
]}

,

which can again be shown to be independent ofθµν using
energy–momentum conservation and partial integration. Th
fore

S
(2)
θ = S

(2)
0 .

This proof extends to all orders so that

Sθ = S0.
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