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Abstract

This paper is concerned with boundary value problems for systems of nonlinear second-order differential
equations. Under the suitable conditions, the existence and multiplicity of positive solutions are established
by using abstract fixed-point theorems.
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Keywords: Boundary value problems; Positive solutions; Multiplicity; Green’s functions; Cones

1. Introduction

Recently, existence and multiplicity of solutions for boundary value problems of ordinary dif-
ferential equations have been of great interest in mathematics and its applications to engineering
sciences (see [4,6–10] and references cited therein). To our knowledge, most existing results on
this topic are concerned with single equation and simple boundary conditions.
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It should be pointed out that Erbe and Wang [3] discussed the boundary value problem as
follows⎧⎨

⎩
−u′′ = f (x,u),

αu(0) − βu′(0) = 0,

γ u(1) + δu′(1) = 0.

(1)

By using a Krasnosel’skii fixed-point theorem, the existence of solutions of (1) is obtained in the
case when, either f is superlinear, or f is sublinear. Yang and Sun [9] considered the boundary
value problem of the system of differential equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−u′′ = f (x, v),

−v′′ = g(x,u),

u(0) = u(1) = 0,

v(0) = v(1) = 0.

(2)

By appealing to the degree theory, the existence of solutions of (2) is established. Note that, there
is only one differential equation in (1) and BVP (2) holds simple boundary conditions.

Motived by the works of [3] and [9], this paper is concerned with the existence and multiplicity
of positive solutions for boundary value problems⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−u′′ = f (x, v),

−v′′ = g(x,u),

αu(0) − βu′(0) = 0, γ u(1) + δu′(1) = 0,

αv(0) − βv′(0) = 0, γ v(1) + δv′(1) = 0,

(3)

where f,g ∈ C([0,1] × R+,R+), f (x,0) ≡ 0, g(x,0) ≡ 0, α,β, γ, δ � 0, ρ = γβ +
αγ + αδ > 0.

The arguments for establishing the existence of solutions of (3) involve properties of Green’s
functions that play a key role in defining some cones. A fixed point theorem due to Kras-
nosel’skii [5] is applied to yield the existence of positive solutions of (3). Another fixed point
theorem about multiplicity is applied to obtain the multiplicity of positive solutions of (3).

This paper is organized as follows. In the next section, we present some notation and prelimi-
naries. The main results, existence and multiplicity of positive solutions of BVP(3), are given in
Section 3. Some examples are given to illustrate our main results.

2. Preliminaries

Obviously, (u, v) ∈ C2[0,1] × C2[0,1] is the solution of (3) if and only if (u, v) ∈ C[0,1] ×
C[0,1] is the solution of the system of integral equations⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(x) =
1∫

0

k(x, y)f
(
y, v(y)

)
dy,

v(x) =
1∫
k(x, y)g

(
y,u(y)

)
dy,

(4)
0
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where k(x, y) is the Green’s function defined as follows:

k(x, y) =
{ 1

ρ
(γ + δ − γ x)(β + αy), 0 � y � x � 1,

1
ρ
(β + αx)(γ + δ − γy), 0 � x � y � 1.

Integral equations (4) can be transferred to the nonlinear integral equation

u(x) =
1∫

0

k(x, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy. (5)

Lemma 1. The Green’s function k(x, y) satisfies

(i) k(x, y) � k(y, y) for 0 � x, y � 1;

(ii) k(x, y) � Mk(y, y) for 1
4 � x � 3

4 , 0 � y � 1,

where M = min{ γ+4δ
4(γ+δ)

,
α+4β

4(α+β)
} � 1.

The proof of this lemma is standard and omitted.
Let E = C[0,1]. For u ∈ E, define ‖u‖ = max0�x�1 |u(x)|. Then (E,‖·‖) is a Banach space.

Denote

P =
{
u ∈ E

∣∣∣ u(x) � 0, min
1
4 �x� 3

4

u(x) � M‖u‖
}
.

It is obvious that P is a positive cone in E. Define

Au(x) =
1∫

0

k(x, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy, u ∈ P. (6)

Lemma 2. If the operatorA is defined as (6), then A :P → P is completely continuous.

Proof. From the continuity of f and g, we know Au ∈ E for each u ∈ P . It follows from
Lemma 1 that for u ∈ P ,

Au(x) =
1∫

0

k(x, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy

�
1∫

0

k(y, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy.

Note that by the nonnegativity of f and g, one has

‖Au‖ �
1∫

0

k(y, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy,

from which we have
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min
1
4 �x� 3

4

Au(x) = min
1
4 �x� 3

4

1∫
0

k(x, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy

� M

1∫
0

k(y, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy

� M‖Au‖, u ∈ P.

Therefore A :P → P. Since k(x, y), f (x,u) and g(x,u) are continuous, it is easily known that
A :P → P is completely continuous. The proof is complete. �

From above arguments, we know that the existence of positive solutions of (3) can be trans-
ferred to the existence of positive fixed points of the operator A.

Lemma 3. (See [1,2,5].) Let (E,‖ · ‖) be a Banach space, and P ⊂ E be a cone in E. Assume
that Ω1 and Ω2 are open subsets of E such that 0 ∈ Ω1, Ω̄1 ⊂ Ω2. If

A :P ∩ (Ω̄2 \ Ω1) → P

is a completely continuous operator such that either

(i) ‖Au‖ � ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Au‖ � ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈ P ∩ ∂Ω2,

then A has a fixed point in P ∩ (Ω̄2 \ Ω1).

Lemma 4. (See [1,2,5].) Let (E,‖ · ‖) be a Banach space, and P ⊂ E be a cone in E. Assume
that Ω1,Ω2 and Ω3 are open subsets of E such that 0 ∈ Ω1, Ω̄1 ⊂ Ω2, Ω̄2 ⊂ Ω3. If

A :P ∩ (Ω̄3 \ Ω1) → P

is a completely continuous operator such that:

‖Au‖ � ‖u‖, ∀u ∈ P ∩ ∂Ω1;
‖Au‖ � ‖u‖, Au �= u, ∀u ∈ P ∩ ∂Ω2;
‖Au‖ � ‖u‖, ∀u ∈ P ∩ ∂Ω3,

then A has at least two fixed points x∗, x∗∗ in P ∩ (Ω̄3 \ Ω1), and furthermore x∗ ∈
P ∩ (Ω2 \ Ω1), x∗∗ ∈ P ∩ (Ω̄3 \ Ω̄2).

3. Main results

First we give the following assumptions:

(A1) lim
u→0+ sup

x∈[0,1]
f (x,u)

u
= 0, lim

u→0+ sup
x∈[0,1]

g(x,u)

u
= 0;

(A2) lim
u→∞ inf

f (x,u) = ∞, lim
u→∞ inf

g(x,u) = ∞;

x∈[0,1] u x∈[0,1] u
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(A3) lim
u→0+ inf

x∈[0,1]
f (x,u)

u
= ∞, lim

u→0+ inf
x∈[0,1]

g(x,u)

u
= ∞;

(A4) lim
u→∞ sup

x∈[0,1]
f (x,u)

u
= 0, lim

u→∞ sup
x∈[0,1]

g(x,u)

u
= 0;

(A5) f (x,u), g(x,u) are increasing functions with respect to u and, there is a number N > 0,
such that

f

(
x,

1∫
0

N ′g(y,N)dx

)
<

N

N ′ , ∀x ∈ [0,1], y ∈ [0,1],

where N ′ = (α + β)(γ + δ)/ρ.

Theorem 1. If (A1) and (A2) are satisfied, then (3) has at least one positive solution (u, v) ∈
C2([0,1],R+) × C2([0,1],R+) satisfying u(x) > 0, v(x) > 0.

Proof. From (A1) there is a number H1 ∈ (0,1), such that for each (x,u) ∈ [0,1]× (0,H1), one
has

f (x,u) � ηu, g(x,u) � ηu,

where η > 0 satisfies

η

1∫
0

k(x, x) dx � 1.

For every u ∈ P and ‖u‖ = H1/2, note that

1∫
0

k(y, z)g
(
z,u(z)

)
dz � η

1∫
0

k(z, z)u(z) dz � ‖u‖ = H1

2
< H1,

thus

Au(x) �
1∫

0

k(y, y)f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy

� η2‖u‖
1∫

0

k(y, y)

1∫
0

k(z, z) dz dy

� ‖u‖.
Let Ω1 = {u ∈ E: ‖u‖ < H1/2} then

‖Au‖ � ‖u‖, u ∈ P ∩ ∂Ω1. (7)

On the other hand, from (A2) there exist four positive numbers μ,μ′,C1 and C2 such that

f (x,u) � μu − C1, ∀(x,u) ∈ [0,1] × R+,

g(x,u) � μ′u − C2, ∀(x,u) ∈ [0,1] × R+,



L. Hu, L. Wang / J. Math. Anal. Appl. 335 (2007) 1052–1060 1057
where μ and μ′ satisfy

μM

3
4∫

1
4

k

(
1

2
, y

)
dy � 2, μ′M

3
4∫

1
4

k(y, y) dy � 1.

By direct computation, for u ∈ P ,

Au

(
1

2

)
�

1∫
0

k

(
1

2
, y

)[
μ

1∫
0

k(y, z)g
(
z,u(z)

)
dz − C1

]
dy

� μ

1∫
0

k

(
1

2
, y

) 1∫
0

k(y, z)g
(
z,u(z)

)
dzdy − C1

1∫
0

k

(
1

2
, y

)
dy

� μ

1∫
0

k

(
1

2
, y

) 1∫
0

k(y, z)
[
μ′u(z) − C2

]
dzdy − C1

1∫
0

k

(
1

2
, y

)
dy

� μμ′
1∫

0

k

(
1

2
, y

) 1∫
0

k(y, z)u(z) dz dy − C3

(
1

2

)
,

where

C3

(
1

2

)
= μC2

1∫
0

k

(
1

2
, y

) 1∫
0

k(y, z) dz dy + C1

1∫
0

k

(
1

2
, y

)
dy

� μC2

1∫
0

k

(
1

2
, y

) 1∫
0

k(z, z) dz dy + C1

1∫
0

k

(
1

2
, y

)
dy

= C3.

Therefore

Au

(
1

2

)
� μ

3
4∫

1
4

k

(
1

2
, y

)
dy · Mμ′

3
4∫

1
4

k(z, z)u(z) dz − C3 � 2‖u‖ − C3,

from which it follows that ‖Au‖ � Au( 1
2 ) � ‖u‖ as ‖u‖ → ∞.

Let Ω2 = {u ∈ E: ‖u‖ < H2}. Then for u ∈ P and ‖u‖ = H2 > 0 sufficient large, we have

‖Au‖ � ‖u‖, ∀u ∈ P ∩ ∂Ω2. (8)

Thus, from (7), (8) and Lemma 3, we know that the operator A has a fixed point in P ∩(Ω̄2 \Ω1).

The proof is complete. �
Theorem 2. If (A3) and (A4) are satisfied, then (3) has at least one positive solution (u, v) ∈
C2([0,1],R+) × C2([0,1],R+) satisfying u(x) > 0, v(x) > 0.
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Proof. From (A3) there is a number Ĥ3 ∈ (0,1) such that for each (x,u) ∈ [0,1] × (0, Ĥ3), one
has

f (x,u) � λu, g(x,u) � λ′u,

where λ and λ′ satisfy

λM

3
4∫

1
4

k

(
1

2
, x

)
dx � 1, λ′M

3
4∫

1
4

k(y, y) dy � 1.

From g(x,0) ≡ 0 and the continuity of g(x,u), we know that there exists a number H3 ∈ (0, Ĥ3)

small enough such that

g(x,u) � Ĥ3∫ 1
0 k(x, x) dx

, ∀(x,u) ∈ [0,1] × (0,H3).

For every u ∈ P and ‖u‖ = H3, note that

1∫
0

k(y, z)g
(
z,u(z)

)
dz �

1∫
0

k(y, z)
Ĥ3∫ 1

0 k(z, z) dz
dz < Ĥ3,

thus

Au

(
1

2

)
=

1∫
0

k

(
1

2
, y

)
f

(
y,

1∫
0

k(y, z)g
(
z,u(z)

)
dz

)
dy

�

3
4∫

1
4

k

(
1

2
, y

)
λ

3
4∫

1
4

k(y, z)λ′u(z) dz dy

� M2‖u‖λ
3
4∫

1
4

k

(
1

2
, y

)
λ′

3
4∫

1
4

k(z, z) dz dy

� ‖u‖.
Let Ω3 = {u ∈ E: ‖u‖ < H3} we have

‖Au‖ � ‖u‖, u ∈ P ∩ ∂Ω3. (9)

On the other hand, we know from (A4) that there exist three positive numbers η′,C4, and C5
such that for every(x,u) ∈ [0,1] × R+,

f (x,u) � η′u + C4, g(x,u) � η′u + C5,

where

η′
1∫
k(x, x) dx � 1

2
.

0
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Thus we have

Au(x) �
1∫

0

k(y, y)

[
η′

1∫
0

k(z, z)g
(
z,u(z)

)
dz + C4

]
dy

� η′
1∫

0

k(y, y) dy

1∫
0

k(z, z)
[
η′u(z) + C5

]
dz + C4

1∫
0

k(y, y) dy

� 1

4
‖u‖ + C6,

where

C6 = C5η
′

1∫
0

k(y, y) dy

1∫
0

k(z, z) dz + C4

1∫
0

k(y, y) dy,

from which it follows Au(x) � ‖u‖ as ‖u‖ → ∞. Let Ω4 = {u ∈ E: ‖u‖ < H4}. For each u ∈ P

and ‖u‖ = H4 > 0 large enough, we have

‖Au‖ � ‖u‖, ∀u ∈ P ∩ ∂Ω4. (10)

From (9), (10) and Lemma 3, we know that the operator A has a fixed point in P ∩ (Ω̄4 \Ω3).

The proof is complete. �
Theorem 3. If (A2), (A3) and (A5) are satisfied, then (3) has at least two distinct positive
solutions (u1, v1), (u2, v2) ∈ C2([0,1],R+) × C2([0,1],R+) satisfying ui(x) > 0, vi(x) > 0
(i = 1,2).

Proof. Note that k(x, y) � 1
ρ
(α + β)(γ + δ) = N ′. Let BN = {u ∈ E: ‖u‖ < N}. Then from

(A5), for every u ∈ ∂BN ∩ P , x ∈ [0,1], we have

Au(x) � N ′
1∫

0

f

(
y,

1∫
0

N ′g(z,N)dz

)
dz

< N ′ N

N ′ = N.

Thus

‖Au‖ < ‖u‖, ∀u ∈ ∂BN ∩ P. (11)

And from (A2) and (A3) we have

‖Au‖ � ‖u‖, u ∈ ∂Ω2 ∩ P, (12)

‖Au‖ � ‖u‖, u ∈ ∂Ω3 ∩ P. (13)

We can choose H2,H3 and N such that H3 � N � H2 and (11)–(13) are satisfied. From
Lemma 4, A has at least two fixed points in P ∩ (Ω̄2 \ BN) and P ∩ (B̄N \ Ω2), respectively.
The proof is complete. �
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Examples. Some examples are given to illustrate our main results.

(i) Let f (x, v) = v2, g(x,u) = u3, then conditions of Theorem 1 are satisfied. From Theo-
rem 1, BVP(3) has at least one positive solution.

(ii) Let f (x, v) = v
1
2 , g(x,u) = u

1
2 , then conditions of Theorem 2 are satisfied. From Theo-

rem 2, BVP(3) has at least one positive solution.

(iii) Let f (x, v) = v
1
2 +v2

12 , g(x,u) = u
1
2 +u2, α = β = γ = δ = 1. Thus N ′ = 4

3 . We can choose
N = 1, then conditions of Theorem 3 are satisfied. From Theorem 3, BVP(3) has at least
two positive solutions.
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