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We have investigated the absorption cross section and the Hawking radiation of electromagnetic field
with Weyl correction in the background of a four-dimensional Schwarzschild black hole spacetime. Our
results show that the properties of the absorption cross section and the Hawking radiation depend not
only on the Weyl correction parameter, but also on the parity of the electromagnetic field, which is quite
different from those of the usual electromagnetic field without Weyl correction in the four-dimensional
spacetime. With increase of Weyl correction parameter, the absorption probability, the absorption
cross section, the power emission spectra and the luminosity of Hawking radiation decreases with
Weyl correction parameter for the odd-parity electromagnetic field and increases with the even-parity
electromagnetic field.
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Since generalized Einstein–Maxwell theories contain higher
derivative interactions and carry more information about the elec-
tromagnetic field, a lot of attention have been recently focused
on studying such kind of generalized Einstein–Maxwell theories
in order to probe the full properties and effects of the electro-
magnetic fields. There are two main classes of the generalized
Einstein–Maxwell theories. The first class is minimally coupled
gravitational-electromagnetism in which in the Lagrangian there
is no coupling between the Maxwell part and the curvature part,
but the form of Lagrangian of electromagnetic field is changed. The
well-known Born–Infeld theory [1] belongs to such class of gener-
alized Einstein–Maxwell theory. Born–Infeld theory removes the
divergence of the electron’s self-energy in the classical Maxwell
electrodynamics and possesses good physical properties includ-
ing the absence of shock waves and birefringence phenomena [2].
Moreover, Born–Infeld theory has also received special attention
because it enjoys an electric-magnetic duality [3] and can de-
scribe gauge fields in the low-energy regime of string and D-Brane
physics [4]. In the second class of generalized Einstein–Maxwell
theory, there exist the nonminimal coupling terms between the
gravitational and electromagnetic fields in the Lagrangian [5–7].
These nonminimal coupling terms modify the coefficients of the
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second-order derivatives in the Maxwell and Einstein equations
and change behavior of gravitational and electromagnetic waves in
the spacetime, which may result in time delays in the arrival of
those waves [5]. Moreover, it is also find that such a kind of cou-
pled terms may affect evolution of the early Universe because they
may modify electromagnetic quantum fluctuations, which could
affect the inflation [8–12]. Furthermore, these cross-terms can be
used as attempt to explain the large scale magnetic fields observed
in clusters of galaxies [13–15].

The theory of electromagnetic field with Weyl corrections con-
tains a coupling between the Maxwell field and the Weyl tensor
[16,17]. Since Weyl tensor is actually related to the curvature ten-
sors Rμνρσ , Rμν and the Ricci scalar R , the theory of electro-
magnetic field with Weyl corrections can be treated as a special
kind of generalized Einstein–Maxwell theory with the coupling be-
tween the gravitational and electromagnetic fields. These special
coupling terms could be obtained from a calculation in QED of the
photon effective action from one-loop vacuum polarization on a
curved background [17]. Moreover, it was found that these cou-
plings could exist near classical compact astrophysical objects with
high mass density and strong gravitational field such as the super-
massive black holes at the center of galaxies [18,19]. Considering
that black hole is an important subject in the modern physics,
a lot of efforts have been recently focused on probing the ef-
fects of Weyl correction on black hole physics. In Ref. [16], the
authors studied the effects of Weyl correction on holographic con-
ductivity and charge diffusion in the anti-de Sitter spacetime and
found that the presence of Weyl correction changes the universal
relation with the U (1) central charge observed at leading order.
.
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Moreover, the dependence of the holographic superconductors on
Weyl corrections are also studied in [20–22]. It is shown that Weyl
corrections modify the critical temperature at which holographic
superconductors occur [20] and in the Stückelberg mechanism [21]
Weyl corrections also change the order of the phase transition of
the holographic superconductor. In the AdS soliton background, it
is find that Weyl corrections also affect the phase transition be-
tween the holographic insulator and superconductor [23]. Recently,
we [24] studied the dynamical evolution of the electromagnetic
field with Weyl corrections in the Schwarzschild black hole space-
time and analyze the effect of the Weyl corrections on the stability
of the black hole. In this Letter we are going to study the Hawk-
ing radiation of electromagnetic field with Weyl corrections in the
background of a Schwarzschild black hole. We will calculate the
absorption probability, absorption cross section and the luminos-
ity of Hawking radiation and show physics brought by the Weyl
corrections and the parity of electromagnetic field.

Let us now first review briefly the wave equations of the elec-
tromagnetic field with Weyl corrections in the background of a
black hole [24]. For the electromagnetic field with Weyl correc-
tions, the action in the black hole spacetime can be modified as

S =
∫

d4x
√−g

[
R

16πG
− 1

4

(
Fμν F μν − 4αCμνρσ Fμν Fρσ

)]
(1)

where Fμν is the usual electromagnetic tensor, which is related
to the electromagnetic vector potential Aμ by Fμν = Aν;μ − Aμ;ν .
The coefficient α is a coupling constant with dimensions of length
squared and the tensor Cμνρσ is so-called Weyl tensor, which can
be expressed as

Cμνρσ = Rμνρσ − 2

n − 2
(gμ[ρ Rσ ]ν − gν[ρ Rσ ]μ)

+ 2

(n − 1)(n − 2)
Rgμ[ρ gσ ]ν, (2)

where n and gμν are the dimension and metric of the spacetime,
and brackets around indices refers to the antisymmetric part. Ob-
viously, Weyl tensor Cμνρσ is a function of the Riemann tensor
Rμνρσ , the Ricci tensor Rμν and the Ricci scalar R . Therefore, the
Weyl correction to electromagnetic field can be treated as a kind
of special couplings between the gravitational and electromagnetic
fields.

Varying the action (1) with respect to Aμ , one can find the
corresponding Maxwell equation becomes

∇μ

(
F μν − 4αCμνρσ Fρσ

) = 0. (3)

It is well known that the metric of a Schwarzschild black hole
spacetime has a form

ds2 = f dt2 − 1

f
dr2 − r2 dθ2 − r2 sin2 θ dφ2, (4)

where f = 1 − 2M
r . In such kind of static and spherical symmet-

ric black hole background, one can expand Aμ in vector spherical
harmonics [26]

Aμ =
∑
l,m

⎛
⎜⎝

⎡
⎢⎣

0
0

alm(t,r)
sin θ

∂φYlm

−alm(t, r) sin θ∂θ Ylm

⎤
⎥⎦ +

⎡
⎢⎣

jlm(t, r)Ylm
hlm(t, r)Ylm

klm(t, r)∂θ Ylm
klm(t, r)∂φYlm

⎤
⎥⎦

⎞
⎟⎠ , (5)

where the first term in the right side has parity (−1)l+1 and the
second term has parity (−1)l , l is the angular quantum number
and m is the azimuthal number. Making use of the following form
alm(t, r) = alm(r)e−iωt, hlm(t, r) = hlm(r)e−iωt,

jlm(t, r) = jlm(r)e−iωt, klm(t, r) = klm(r)e−iωt, (6)

and inserting the above expansion (5) into the generalized Maxwell
equation (3), we can obtain three independent coupled differential
equations. Eliminating klm(r), we find that equations of motion of
electromagnetic field can be decoupled into a single second order
differential equation

d2Ψ (r)

dr2∗
+ [

ω2 − V (r)
]
Ψ (r) = 0, (7)

where the tortoise coordinate r∗ is defined as dr∗ = r
r−2M dr. The

wavefunction Ψ (r) is a linear combination of the functions jlm(r),
hlm(r), and alm(r), which appeared in the expansion (6). Both of the
forms of wavefunction Ψ (r) and effective potential V (r) depend
on the parity of electromagnetic field. For the odd parity (−1)l+1,
Ψ (r) and V (r) are given by

Ψ (r)odd =
√

1 − 8αM

r3
alm(r), (8)

V (r)odd =
(

1 − 2M

r

)[
l(l + 1)

r2

(
r3 + 16αM

r3 − 8αM

)

− 24αM(2r4 − 5Mr3 − 10αMr + 28αM2)

r3(r3 − 8αM)2

]
. (9)

For the even parity (−1)l , the forms of Ψ (r) and V (r) become

Ψ (r)even = r
7
2

l(l + 1)

(
−iωhlm(r) − djlm(r)

dr

)√
r3 + 8αM

r3 + 16αM
, (10)

V (r)even =
(

1 − 2M

r

)[
l(l + 1)

r2

(
r3 − 8αM

r3 + 16αM

)

+ 24αM(2r4 − 5Mr3 + 2αMr + 4αM2)

r3(r3 − 8αM)2

]
. (11)

It is obvious that the Weyl corrections change the behavior of ef-
fective potentials V (r)odd and V (r)even . Moreover, the change of
effective potential originating from Weyl corrections is different
for the electromagnetic fields with different parities. For fixed l,
we find in Ref. [24] that the peak height of the potential barrier
increases with the coupling constant α for V (r)odd and decreases
for V (r)even . It implies that the effects of Weyl corrections on the
absorption cross section and Hawking radiation for the electromag-
netic field with the odd parity are different from those of the field
with the even parity. From Eq. (9), one can find that the effec-
tive potential V (r)odd has a discontinuity of the second kind at the
point rd = (8αM)1/3 for the positive α and near the discontinu-
ity point the wave function Ψ (r) is not well-defined. However, if
the discontinuity point is located in the region inside the event
horizon, the above problem can be avoided in the physical region
of the black hole (i.e., r > rH ) and then one can study the Hawk-
ing radiation of electromagnetic field with Weyl corrections by the
standard methods in this case. Therefore, we here must impose
a constraint on the value of the coupling constant, rH > rd (i.e.,
α < M2), to keep the continuity of the effective potential and the
well-defined behavior of the wave function Ψ (r) in the physical
region of black hole for the electromagnetic field with the odd par-
ity. After similar analyses, we can find that the coupling constant
α must be limited in the range r3

H − 8αM > 0 and r3
H + 16αM > 0

(i.e., − M2

2 < α < M2) for the field with the even parity.
In order to calculate the absorption cross section and the lu-

minosity of Hawking radiation for the electromagnetic field with
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Fig. 1. Effects of Weyl correction on the absorption probability of electromagnetic field with odd-parity in the Schwarzschild black hole spacetime. Here we set M = 1.

Fig. 2. Effects of Weyl correction on the absorption probability of electromagnetic field with even-parity in the Schwarzschild black hole spacetime. Here we set M = 1.

Fig. 3. Dependence of absorption cross section of the odd-parity electromagnetic field on Weyl corrections in Schwarzschild spacetime. Here we set M = 1 and A = 4π M2.

Fig. 4. Dependence of absorption cross section of the even-parity electromagnetic field on Weyl corrections in Schwarzschild spacetime. Here we set M = 1 and A = 4π M2.
Weyl corrections, we must solve the radial equation (7) numeri-
cally. Near the horizon regime and at infinity, one can find that
the radial wavefunction Ψ (r) satisfies the boundary conditions

Ψ (r) ≈
{

Atr
ωl(ω)e−iωr∗ , r∗ → −∞;

Ain
ωl(ω)e−iωr∗ + Aout

ωl (ω)eiωr∗ , r∗ → +∞,
(12)

respectively. The coefficients Atr
l (ω), Aout

l (ω) and Ain
l (ω) obey the

conservation relationship |Atr
l (ω)|2 + |Aout

l (ω)|2 = |Ain
l (ω)|2. With

help of this relationship and Eq. (12), we can calculate the absorp-
tion probability
Al =
∣∣∣∣ Atr

ωl(ω)

Ain
ωl(ω)

∣∣∣∣
2

= 1 −
∣∣∣∣ Aout

ωl (ω)

Ain
ωl(ω)

∣∣∣∣
2

. (13)

The absorption cross section σabs is related to the absorption prob-
ability Al by

σabs =
∞∑

l=0

σl = π

ω2

∞∑
l=0

(2l + 1)Al. (14)

In Figs. 1 and 2, we present the effects of Weyl correction on the
absorption probability of electromagnetic field for fixed angular in-
dex l. For the odd parity electromagnetic field, one can easily see
that the absorption probability decreases with the increase of the
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Fig. 5. The change of bc with Weyl correction parameter α in the Schwarzschild
black hole spacetime. The dashed line and the solid line are for the electromagnetic
field with odd-parity and even-parity, respectively. Here we set M = 1.

Weyl correction parameter α. The main reason behind this phe-
nomenon is that the larger α yields the higher peak of the effective
potential so that less electromagnetic wave from infinity can be
transmitted to the black hole. For the even parity electromagnetic
field, we find that the absorption probability increases with the
Weyl correction parameter α, which means that the dependence
of the absorption probability on the Weyl correction parameter α
is different entirely from that of in the case of the electromagnetic
field with odd parity. It can be attributed to the difference in the
change of the effective potential with the parameter α for the elec-
tromagnetic fields with different types of parities. With increase of
the angular index l, we find that the absorption probability de-
creases for the two different parities, which is similar to that in
the case without Weyl corrections.

In Figs. 3 and 4, we plot the change of the partial and to-
tal absorption cross sections on the Weyl correction parameter
α for the odd-parity and even-parity electromagnetic fields, re-
spectively. With increase of the Weyl correction parameter α, we
find both of the partial and total absorption cross sections de-
crease for the odd-parity electromagnetic field, but increase for
the even-parity one. As the frequency ω → 0, one can easily ob-
tain that the absorption cross section tend to zero for both of
different electromagnetic fields, which is the same as that in the
case without Weyl corrections. Figs. 3 and 4 also tell us that in
the high-energy region the total absorption cross section oscillate
around the geometric-optical limit σgeo , which is similar to that
in the case without Weyl corrections [25]. However, in the case
with Weyl corrections, we find that the geometric-optical limit
σgeo decreases with α for the odd-parity electromagnetic field and
increases for the even-parity one. It is not surprising because the
geometric-optical limit σgeo can be approximated as a function of
impact parameter bc , i.e., σgeo ∼ πb2

c and bc is related to the ra-
dius of photon sphere rps , which depends on behavior of effective
potential of electromagnetic field in the background of black hole
spacetime. For the electromagnetic field with Weyl corrections, the
change of bc with α is shown in Fig. 5. It is clear that with increase
of the Weyl correction parameter α the impact parameter bc de-
creases for the odd-parity electromagnetic field and increases for
the even-parity one.

Now let us turn to study the effects of Weyl corrections on
Hawking radiation of electromagnetic field in the background of a
Schwarzschild black hole. The Hawking power emission spectrum
and the Hawking luminosity of electromagnetic field are [27–29]

d2 E

dt dω
= 1

2π

∑
l

(2l + 1)Alω

eω/T H − 1
, (15)

and

L =
∑

l

∞∫
0

(2l + 1)Alω

eω/T H − 1

dω

2π
, (16)

respectively, where T H is the Hawking temperature of Schwarzs-
child black hole. In Figs. 6 and 7, we present the power emission
spectra of the electromagnetic field with Weyl corrections in the
Schwarzschild black hole spacetime for fixed l. With increase of
Weyl correction parameter α, we find that the power emission
spectra decreases for the electromagnetic field with odd parity
and increases for the electromagnetic field with even parity. The
Fig. 6. Power emission spectra of the odd-parity electromagnetic field with Weyl corrections in the Schwarzschild black hole spacetime. Here we set M = 1.

Fig. 7. Power emission spectra of the even-parity electromagnetic field with Weyl corrections in the Schwarzschild black hole spacetime. Here we set M = 1.
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Fig. 8. Luminosity of Hawking radiation of electromagnetic field with Weyl corrections in Schwarzschild spacetime. Here we set M = 1.
dependence of power emission spectra on Weyl correction param-
eter is similar to the dependence of absorption probability on Weyl
correction parameter. In Fig. 8, we show the dependence of the lu-
minosity of Hawking radiation on parameter α for fixed angular
index l. It is clear that as α increases, the luminosity L of par-
tial wave decreases for the odd parity electromagnetic field and
increases for the even parity one. It is shown again that Weyl
corrections modifies the standard results of Hawking radiation of
electromagnetic field in the black hole spacetime.

In summary, we have investigated numerically the absorption
cross section and the Hawking radiation of an electromagnetic
field with Weyl correction in the background of a four-dimensional
Schwarzschild black hole spacetime. Our results show that Weyl
correction modifies the standard results of the absorption cross
section and the Hawking radiation for the electromagnetic field.
Due to the presence of Weyl corrections, the properties of the ab-
sorption cross section and the Hawking radiation depend not only
on the Weyl correction parameter α, but also on the parity of the
electromagnetic field. With increase of Weyl correction parame-
ter α, we find that both of the absorption probability and the
absorption cross section, decreases with Weyl correction param-
eter for the odd-parity electromagnetic field and increases with
the even-parity electromagnetic field. In the low frequency limit
ω → 0, we find that both of the absorption probability and the ab-
sorption cross section tend to zero, which is similar to those in
the case of electromagnetic field without Weyl correction. In high-
energy region we also find that the total absorption cross section
oscillates around the geometric-optical limit σgeo . However, in the
case with Weyl corrections, the geometric-optical limit σgeo also
depend on the Weyl correction parameter α and the parity of the
electromagnetic field. Moreover, we also find that the power emis-
sion spectra and the luminosity of Hawking radiation decreases
with Weyl correction parameter for the odd-parity electromagnetic
field and increases with the even-parity electromagnetic field. Our
results show again that Weyl corrections modifies the properties
of the absorption cross section and the Hawking radiation for the
electromagnetic field in the black hole spacetime.
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