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1. Introduction

The origin of graph theory started with the Konigsberg bridge
problem in 1735. This problem led to the concept of the Eulerian
graph. Euler studied the Konigsberg bridge problem and con-
structed a structure that solves the problem that is referred to as an
Eulerian graph. In 1840, Mobius proposed the idea of a complete
graph and a bipartite graph and Kuratowski proved that they are
planar by means of recreational problems. Currently, concepts of
graph theory are highly utilized by computer science applications,
especially in areas of computer science research, including data
mining, image segmentation, clustering, and networking. The
introduction of fuzzy sets by Zadeh [21] in 1965 greatly changed the
face of science and technology. Fuzzy sets paved the way for a new
method of philosophical thinking, “Fuzzy Logic” which is now an
essential concept in artificial intelligence. The most important
feature of a fuzzy set is that it consists of a class of objects that
satisfy a certain property or several properties. In 1994, Zhang
[24,25] initiated the concept of bipolar fuzzy sets. Juanjuan Chen
et al. [1] introduced the notion of the m-polar fuzzy set as a

* Corresponding author.
E-mail addresses: ghoraiganesh@gmail.com (G. Ghorai), mmpalvu@gmail.com
(M. Pal).
Peer review under responsibility of Far Eastern Federal University, Kangnam
University, Dalian University of Technology, Kokushikan University.

http://dx.doi.org/10.1016/j.psra.2016.06.004

generalization of bipolar fuzzy sets. The first definition of fuzzy
graphs was proposed by Kafmann [7] from Zadeh's fuzzy relations
[21—23]. However, Rosenfeld [11] introduced another group of
elaborated definitions, including the fuzzy vertex, fuzzy edges, and
several fuzzy analogues of theoretical graph concepts, such as
paths, cycles, connectedness, and so on. Mordeson and Nair [10]
defined the complement of a fuzzy graph. McAllister [9] charac-
terized fuzzy intersection graphs. Samanta and Pal studied fuzzy
tolerance graphs [14], fuzzy threshold graphs [15], bipolar fuzzy
hypergraphs [16], irregular bipolar fuzzy graphs [17], fuzzy k-
competition graphs, m step fuzzy competition graphs [18,19], and
fuzzy planar graphs [20]. Later, Rashmanlou et al. [12,13] studied
bipolar fuzzy graphs with categorical properties and Ghorai and Pal
introduced product bipolar fuzzy line graphs [3]. In 2014, Juanjuan
Chen et al. [1] defined m-polar fuzzy graphs. Ghorai and Pal
introduced some operations and the density of m-polar fuzzy
graphs [2], studied m-polar fuzzy planar graphs [4]| and defined
faces and the dual nature of m-polar fuzzy planar graphs [5]. In this
paper the Cartesian product, composition, union and join of two m-
polar fuzzy graphs are defined. Some important properties of iso-
morphisms, strong m-polar fuzzy graphs, self-complementary m-
polar fuzzy graphs and self-complementary strong m-polar fuzzy
graphs are discussed.
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2. Preliminaries

In this section, we briefly recall some definitions of undirected
graphs, the notions of fuzzy sets, bipolar fuzzy sets and m-polar
fuzzy sets. For further reference, see Refs. [6,8,10].

Definition 2.1. [6] A graph is an ordered pair G" = (V, E), where V
is the set of vertices of G* and E is the set of all edges of G*. Two
vertices x and y in an undirected graph G are said to be adjacent in
G" if xy is an edge of G". A simple graph is an undirected graph that
has no loops and no more than one edge between any two different
vertices. A subgraph of a graph G"=(V, E) is a graph H=(W, F),
where W<V and F<E.

Definition 2.2. [6] Let G} = (V4, E1) and G3 = (V3, E) be two simple
graphs.

The Cartesian product G* = G} x G, = (V,E) of graphs G} and G,.
Then, V=V x Vo and E = {(X,X3)(x,¥2) : x€Vq,X3 ¥y €Ex }u{(X1,2)
01,2): z€Va, x1y1 €E1 1

Then, the composition of the graph G} with G is denoted by
Gi[G5) = (V4 x V5, E0),  where  E® = Eu{(x1,%2)(¥1,¥2) : 1)1
€E;,X,#Y,} and E is defined in G} x G. Note that G}[G5]+# G [G]].

The union of two simple graphs G} = (V1,Eq) and G, = (V,,E3) is
the simple graph with the vertex set ViUV, and edge set E{UE,. The
union of G} and G}, is denoted by G* = GjuG;, = (V1UV3, EqUEy).

The join of two simple graphs G} = (V1,E1) and G = (V»,E;) is the
simple graph with the vertex set V,uV, and edge set E{UE,UE , where
E is the set of all edges joining the nodes of V1 and V- and assume that
VinV, =@. The join of G; and G, is denoted by
G = G; + G; = (V1uVy, Eq UE2UE,).

Definition 2.3. [1] Throughout the paper, [0,1]™ (the m-power of
[0,1]) is considered to be a poset with point-wise order <, where m is
an natural number. < is defined by x <y< for each i = 1,2,...,m;
pi(x) < pi(y), where x, ye[0,1]™ and p;i[0,1]™—[0,1] is the i pro-
jection mapping.

An m-polar fuzzy set (or a [0,1]™-set ) on X is a mapping A:X—
[0,1]™. The set of all m-polar fuzzy sets on X is denoted by m(X).

Definition 2.4. Let A and B be two m-polar fuzzy sets in X. Then, AUB
and AnB are also m-polar fuzzy sets in X defined by: fori=1, 2,...,m
and xeX
pie (AUB)(x) = max{p;A(x), p;°B(x)} and p;e(AnB)(x) =
min{p;°A(x),p;je B(x)}.A=B if and only if p; °A(x) < p;°B(x)
and A =B if and only if p;°A(x) = p;°B(x).

Definition 2.5. Let A be an m-polar fuzzy set on a set X. An m-
polar fuzzy relation on A is an m-polar fuzzy set B of X x X such
that B(x,y) <min{A(x), A(y)} for all x, yeX, i.e., for each i = 1,
2,...,m, for all x, yeX, p;°B(x,y) < min{p;°A(x),pi°A(y)}. An m-
polar fuzzy relation B on X is called symmetric if B(x, y) = B(y, x)
for all x, yeX.

We assume the following: For a given set V, define an equivalence
relation ~on 'V x V —{(x, x):xe V} as follows: (x1, y1) ~ (x2, y2)< either
(x1, ¥1) = (x2, ¥2) or x; = y» and ¥, = x,. The quotient set obtained in

this way is denoted by V2, and the equivalence class that contains the
element (x, y) is denoted as xy or yx.

Throughout this paper, G" = (V, E) represents a crisp graph and G is
an m-polar fuzzy graph of G".

3. Generalized m-polar fuzzy graphs

Juanjuan Chen et al. [1] defined the m-polar fuzzy graph in the
following way: An m-polar fuzzy graph with an underlying pair (V,
E) (where ESV x V is symmetric) is defined to be a pairG = (A, B),
where A:V—[0,1]" andB:E—[0,1]™, satisfying B(xy) < min{A(x),
A(y)} for all xyE.

According to the above definition, B is actually an m-polar fuzzy
setin ESV x V. However, when the definition is used, B is actually
an m-polar fuzzy set defined in V2, satisfying B(xy)=0=(0,0,...,0)
for all xy e (V2 — E). The above definition will cause some problems
by calculating the complement of an m-polar fuzzy graphs. There-
fore, a generalized m-polar fuzzy graph is defined below.

Definition 3.1. A generalized m-polar fuzzy graph of a graph G* = (V,
E)is apair G=(V, A, B), where A:V—[0,1]™ is an m-polar fuzzy setin V
and B : V210, 1™ is an m-polar fuzzy set in V2 such that B(xy) < min
{A(x), A(y)} for all xyeV? and B(xy)=0 for all xy< (V2 —E) (0= (0,
0,...,0) is the smallest element in [0,1]™ ). A is called the m-polar fuzzy
vertex set of G, and B is called the m-polar fuzzy edge set of G.

Example 3.2. Let X={F,, F5, F3, F4} and M = {My, M, M3} be the
set of four friends and three movies, respectively. Suppose they
planned to watch a movie. This situation can be represented as a 4-
polar fuzzy graph G by considering the vertex set as M and the edge
set as M x M. Let A be a 4-polar fuzzy set of M. The membership
value of M; represents the preference degrees of the movie M; cor-
responding to the friends. Suppose A(M1)=<0.9, 0.4, 0.6, 0.1>,
A(M)=<0.5, 0.3, 0.8, 0.1>, A(M3)=<0.8, 0.9, 0.8, 0.2>. This
means that the preference degrees of My corresponding to Fy, F, F3
and F4 are 0.9, 0.4, 0.6 and 0.1, respectively, and is similar for the
others. An edge between any two nodes represents the degrees of
common features (i.e., love story, comedy, fighting, and horror) of
the nodes. Let B(M1M,) =< 0.4, 0.2, 0.2, 0.1>, B(M>M3) =< 0.4, 0.2,
0.2, 0.2>, B(M3M1)=<0.4, 0.2, 0.3, 0.1>. This means that the de-
grees of common features (i.e., love story, comedy, fighting, and
horror) of the movies M1 and M, are 0.4, 0.2, 0.2 and 0.1. In other
words, both movies M1 and M have 40% love story, 20% comedy,
20% fighting and 10% horror. Similar to the others. It is easy to verify
that G of. It Fig. 1 is a 4-polar fuzzy graph.

Hereafter, we assume an m-polar fuzzy graph to be a generalized
m-polar fuzzy graph.

4. Cartesian product, composition, union and join on m-polar
fuzzy graphs

In this section, four types of operations, such as the Cartesian
product, composition, union and join have been defined on m-polar
fuzzy graphs to construct new types of m-polar fuzzy graphs.

Definition 4.1. The Cartesian product G1 x G, of two m-polar fuzzy
graphs Gy=(Vy, Ay, By) and Gy=(V,, Ay, By) of the graphs
G} = (V1,E1) and G, = (V4,E,), respectively, is defined as a pair
(V1 x Va,A1 x A2,B1 x Bp), such that fori=1, 2,....m

(i) pio (A1 x Ax)(X1,X2) = min{p;°A;(Xq),pi°Ax(X2)} for all (x,,
x2)EVy x Vo

<0.9,04,0.6,0.1 >
M,

< 0.5,03,0.8,0.1 >

< 0.4,0.2,0.2,0.1 >

< 0.4,0.3,0.2,0.1 > <0.4,0.2,0.2,0.2 >

M3
< 0.8,0.9,0.8,0.2 >

Fig. 1. Example of 4-polar fuzzy graph G.
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(i) pie(B1 x B2)((X,%2)(%,¥2)) = min{p;° A1 (x), p;°Ba(x2y2)} for
all xe V4, for all xyy, €E,.

(iii) pi° (B1 x B2)((x1,2)(y1,2)) = min{p;By(x1y1),pi°A2(2)} for
all ze Vs, for all x1y1 €Es.

(iv) pi"z(Bl x By)((x1.,Y1)(X2,¥2)) = 0 for all (x1,y1)(x2,y2) €Vyx
V,2 —E.

Example4.2. LetG] = (Vq,E;) and G, = (Va, E;) be the graphs such
that V1 ={a, b}, Vo, ={c, d}, E;={ab} and E;={cd}. Consider the 3-polar
fuzzy graphs Gy = (V4, Ay, B1) and G = (Va, Az, By) of the graphs G} =
(V1,E7) and G, = (V2,Ep), respectively where

A = {<0,3,oc.l4.o.6> | <030507> } B, — {<0,1,0,2,0.5>} and

ab

Ay — {<0A1A,oé4,o.5> 7 <0A2.0‘.16,0A6>}_ B, = {<0A1.(§a3,0.4>}' Then, it is

easy to verify the following:

(B1 x By)((a,c)(a,d)) = <0.1,0.3,0.4>, (B x By)((a,c)(b,c))
=<0.1,0.2,0.5>,

(By x By)((b,€)(b,d)) = <0.1,0.3,0.4>, (By x By)((a,d)(b,d))
= <0.1,0.2,0.5>,

(B1 x By)((a,c)(b,d)) = <0,0,0>, (By x By)((b,¢)(a,d))
= <0,0,0>
Hence, Gy x Gy is a 3-polar fuzzy graph of G} x G, (see Fig. 2).

Proposition 4.3. The Cartesian product Gy x Gy=(V7x
Va,A1 x A2,B1 x B2) of two m-polar fuzzy graphs of the graphs G} and
G, is an m-polar fuzzy graph of G} x G;.

Proof. Let x& V4, xay2 €Ey. Then, fori =1, 2,...,m
pi°(B1 x B2)((x,%2)(X,¥2))
= min{p;°A1(x), pi°B2(X2y2)}
< min{p;°A(x), min{p;°Az(x2), pi°A2(¥2)}}
= min{min{p; A1 (x),p;°Az(x2) }, min{p; e A1 (x), pi°A2(¥2) }}
= min{p;e (A1 x A2)(X,X2),Di° (A1 x A2)(X,¥2)}.

Let ze Vs, x1y1€E1. Then, fori =1, 2,...,m
pi°(B1 x B2)((%1,2)(¥1,2))
= min{p;°B1(x1y¥1),pi°A2(2)}
< min{min{p;°A;(x1),pi°A1(y1)},Di°A2(2)} }
= min{min{p;°A1(x1), p;°A2(2)}, min{p;°A1(y1), pi°A2(2) } }
= min{p;e (A1 x A2)(X1,2),p;° (A1 x A2)(¥1,2)}-

— 2
Let (x1,¥1)(X2,y2)€Vy x Vo —E. Then, fori=1, 2,....m

< 0.3,04,0.6 > <0.1,04,0.5 >
a c

<0.1,02,05>( 01 03,04 >

b d (b,e)

< 0.3,05,0.7 > <0.2,0.6,0.6 >

Gy G

<0.1,0.4,0.5 >
(a,c)

< 0.1,0.2,05 >

< 0.1,0.4,05 >

pi°(B1 x B2)((%1,¥1)(*2,¥2)) =0 < min{p;° (A1 x Az)(*X1,¥1),
pie (A1 x Az)(X2,¥2)}-

Definition 4.4. The composition G[Gy] = (V1 x V5,A1°A3,B1°B3)
of two m-polar fuzzy graphs G =(V4, A1, B1) and Gy = (V», Az, By) of
the graphs G} = (Vq,E;) and G, = (Va, E,) respectively is defined as
follows: fori=1, 2,....m

(1) pio(A1°A2)(X1,X2) = min{p;°Aq1(X1),pi°A2(X2)}

for all (x4, x2)e V7 x Va.

(i) pie(B1°B2)((X,X2)(X,¥2)) = min{p;°Aq1(X), p;i°B2(x2¥2)}
for all xe Vy, for all x,y, < Es.

(iii) pjo(B1°B2)((%1,2)(¥1,2)) = min{p;°B1(x1y1),pi°A2(2)}
for all ze V5, for all x1y1<E;.

(iv) pie(B1°B2)((X1,X2)(¥1,¥2)) = min{p;oAz(x2), pi°A2(¥2),
pi°Bi(x1y1)} for all (x1,X2)(y1,y2) €E° — E.

(V) pie(B1°B2)((x1,¥1)(X2,¥2)) =0  for all

— 2
eVy x Vo —E°,

(leyl)(XZﬂyZ)

Example 4.5. Let G; and G, be the same as in Example 4.2.
Let G1=(Vy, A1, By) and Gy =(Vs, Az, Bz) be two 3-polar fuzzy

graphs of the graphs G and G, respectively, where
A, — ] <020405> <030504>| p _ ] <020304>

1= a ) b » D1 = ab ’
A, — ] <010405> <020706>| p _ ] <010203>

2= c ) d » P2 = cd :

Then, we have,

(B1°By)((a,c)(a,d)) = <0.1,0.2,0.3>, (By°B,)((b,c)(b,d))

=<01,02,03>,

(B1°By)((a,c)(b,c)) = <0.1,0.3,0.4>, (By°B;)((a,d)(b,d))
=<02,03,04>

(B1°B2)((a,c)(b,d)) = <0.1,0.3,0.4>, (By°B;)((b,c)(a,d))
= <0.1,03,04>.

It can be easily determined that G1|Gz] is a 3-polar fuzzy graph of
G1[G5] (see Fig. 3).

Proposition 4.6. The composition G1[G2] of two m-polar fuzzy
graphs Gy and G, is an m-polar fuzzy graph.

<0.2,04,0.6 >
(a,d)

< 0.1,03,04 >

< 0.1,0.2,05 >

< 0.1,03,04 >

.(b.d)

< 0.2,0.5,0.6 >

(:1 X (,'-_‘

Fig. 2. Product of two 3-polar fuzzy graphs G, and G,.
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Proof. Let x V1, xoy2€Ey. Then, fori=1, 2,...,m,

Pi°(B1 x B2)((X,%2)(X,¥2))

= min{p; A1 (x),p;°Ba(x2¥2)}

< min{pj°A;(x), min{p;°Az(x2), pi°Az(¥2)}}

= min{min{p;°A; (), pj°Az(X2) }, min{p; e A1 (x), pi°A2(y2) } }
= min{pje (A1 x A2)(X,X2), i (A1 X Az2)(X,¥2)}.

Let z€ V5, x1y1 €E1. The proof is similar to the above.
Let (x1,X%2)(y1,Y2) €E® — E. Therefore, x1y1 €E1 and x+Y>. Then,
we have for eachi=1, 2,...,m,

pi°(B1°B2)((x1,X2)(¥1,¥2))
=min{p;°Ay(Xz),p;i>A2(¥2),pi°B1(X1y1)}

< min{p;Az(X2),pi° Az (¥2), min{p;° A1 (x1),pi°A1 (y1)}}
=min{min{{p; A (X1),p;°Az(X2) },min{p;°A; (y1),pi°A2(y2)}}
=min{p;° (A1 x A2)(X1,X2),pi° (A1 X A2)(¥1,¥2)}-

Hence, G1|G>] is an m-polar fuzzy graph.

Definition 4.7. The union G UG, = (VuV,,A{UA;, B{UB;) of two
m-polar fuzzy graphs Gy =(Vy, Ay, B1) and Gy =(V», Az, By) of the
graphs G} = (Vq,Eq) and G, = (V4, E,), respectively is defined as fol-
lows: fori=1,2,....m

picA1(X) if xeVi-V,
1. pie(A1UAZ)(X) = { Di°Ax(X) if xeV, -V,
max{p;°A1(x),pi°A2(x)} if x€VinV;.
pieBy(xy) if xyeE1—E;
2. pi°(B1UBy)(xy) = { pi°By(xy) if xyeE;—E;
max{p;°B1(xy),p;°Ba2(xy)} if xy€EinE;.

— 2
3. pi°(B1UBy)(xy) = 0if xyeV; x Vo — EqUE,;.

Example 4.8. Let G| and G, be graphs such that Vi={a, b, c,
d},E1 ={ab, bc, ad, bd}, Vo ={a, b, c,f} and {ab, bc, bf, cf }. Consider the
two 3-polar fuzzy graphs Gy=(Vy, A1, B1) and Gy =(Vs, Az, By),

where Aj — {<0'2'0&4’0'3> | <040506> <030602> <O.3,O'.i7,048>}' By —

<0.1,0.3,0.2> <0.2,0.5,0.1> <0.2,03,02> <0.3,04,05> <0,0,0> <0,00>
ab ’ bc ’ ad ’ bd > cd 0 ac ’

<02,04,07> <02,0506> <0.3,0.607> <0.40503> _
Azz{ 4, , ; , 4 , i } and By =

<0.2,03,0.5> <0.2,05,04> <0.2,05,03> <0.1,04,03> <0,00> <0,00>
ab ’ bc ’ cf ’ bf > af 0 ac .

Clearly, G1UG, is a 3-polar fuzzy graph (See Fig. 4).

Proposition 4.9. The union G;uG, = (V;uV,,A1UA;, B1UB;) of two
m-polar fuzzy graphs of the graphs G| = (V1,E;) and G, = (V3,E;)
respectively is an m-polar fuzzy graph.

<0.2,04,05 > <0.1,0.4,0.5 >
a c

<0.2,03,04 >(<0.1,0.2,0.3

b d (b, e)

< 0.3,05,04 ><0.2,0.7,0.6 >
G Go

<0.1,04,05 >
(a,c)

<0.1,0.3,04 >

<0.1,0.4,04 >

Proof. Let xy €E{nE,. Then, fori=1, 2,...,m

pi° (B1UBy)(xy) = max{p;Bq(xy),pi°B2(xy)}
< max{min{p; A (x), p;°A1(y)}, min{p;° Ay (x), pj>Ax(¥)}}
= min{p;° (A1UA2)(X), pi° (A1UA2)(¥)}.

Similarly, ifxyeE; — Ea, then pi° (B1UBy)(xy) <
min{p;s (AUA2) (), Pie (AUA2)(¥)} and if xycEx—Ey  then
pie (B1UB2)(xy) < min{p;e (AjUA2)(x), pi= (AjUAz)()}.  This com-
pletes the proof.

Definition 4.10. The join Gy + G = (A1 + A3, By + By) of two m-po-
lar fuzzy graphs G1=(V4, A1, B1) and G = (V3, Az, By) of the graphs
G} = (V1,Eq) and G, = (V3, Ey), respectively, is defined as follows:

(1) pie (A1 +A2)(X) = pi° (A1UAL)(x) if xEV UV,
(ii) pio (B + By)(xy) = pi° (B1UBy)(xy) if Xy SE1UE ,
(iii) pi (By +By)(xy) = min{p;eAy (x), pioAy ()} if xy E , where E
is the set of all of the edges joining the nodes of V, and V, and
assuming that VinV, =@. )
(iv) pjo (B + Bo)(xy) = 0 if xyeV; x Vo~ — EJUE,UE .

Proposition 4.11. The join Gy + G, = (A1 + A3, B1 + By) of two m-
polar fuzzy graphs of the graphs G} = (V1,E;) and G, = (V5, E,) is an
m-polar fuzzy graph of G} + G,

Proof. Follows from the definition.

Proposition 4.12. Let G = (V1,E;) and G, = (V5,E;) be crisp
graphs and let V10V, = @. Let Ay, Az, By and By be m-polar fuzzy
subsets  of  V1,Vo,V?  and V3,  respectively.  Then,
G1UGy = (V1UV3,A1UA,, B1UB,) is an m-polar fuzzy graph of GuG, if
and only if Gy =(Vy, Ay, B1) and Gy =(V>, Ay, By) are m-polar fuzzy
graphs of G} and G, respectively.

Proof. Suppose G,UG, is an m-polar fuzzy graph of GjuG;,.

Let xy€Eq. Then, xy&Ey and x,yeV; —V,, and fori=1, 2,...,m

pi°B1(xy) = p;°(B1UBz)(xy) < min{p;° (A1UAz) .
(%), pie (A1UAY) ()} < min{p;eAy (X), pioA; (v)}. Let xyeV2 —Ey.
Then, fori=1, 2,...,m, p;eB1(xy) = p;°B1UB,(xy) = 0. This shows that
G1=(V4, Ay, B1) is an m-polar fuzzy graph of G. Similarly, we can
show that G =(V3, Az, Bp) is an m-polar fuzzy graph of G,. The
converse follows from proposition 4.9.

Proposition 4.13. Let G = (V1,Ey) and G, = (V5,E;) be crisp
graphs and let VinV, = @. Let Ay, Az, By and By be m-polar fuzzy
subsets of Vq,V,V? and V2, respectively. Then, Gy + Go = (A1 + Az,
By -+ By) is an m-polar fuzzy graph of G} + G, ifand only if G = (V4, Ay,

.. <02,04,05 >
<0.1,0.2,0.3 > {a:d)

< 0.1,0.3,04 >

< 0.2,03,04 >

< 0.1,0.3,0.4 >

< 0.1,0.2,0.3 >
< 0.2,0.5,0.4 >

G1[Ga)

Fig. 3. Composition of two 3-polar fuzzy graphs G; and G,.



42 G. Ghorai, M. Pal / Pacific Science Review A: Natural Science and Engineering 18 (2016) 38—46

<02,04,03> <04,05,06>

<0.1,03,0.2 <0.2,05,0.1 >

<03,06,02> a

€02.05.06>  <03.0607>

<0.2,03,0.5 >

<0.2,05,04 >

<0.2,04,0.7 >
<0.2,05,0.3 >
<0.2,0.3,0.2 > <0.3,0.4,0.5 > <0.1,04,0.3 >
<0.4,05,03 >
< 0.3,0.7,0.8 > Gy
Gy <0.2,04,0.7 > <04.05.06 > <0.3,0.6,0.7 >
‘ <0.2,0.3,0.5 > <0.2,05,0.4 > ¢
<02,03,02 > 20.3.0.4,0.5 > <0.2,05,03 >
f
d
<0.4,05,0.3 >
<0.3,0.7,08 > GiUGy
Fig. 4. Union of two 3-polar fuzzy graphs G; and G,.
By) and Gy =(Va, As, By) are m-polar fuzzy graphs of G} and G, DP1°A1(a)=0.2=p1°Ay(¢(a)=d), py°A1(a)=0.4=p;y-A,(¢(a)=4d),
respectively. p3°A1(a)=0.5=p3°Ax(¢(a)=d).py °A1 (b)=03=pyAz(¢(b)=0),
Proof. Follows from propositions 4.11 and 4.12. p2°A1(b)=0.5=p;°As(¢p(b)=c),p3°A1(b)=0.7=p3°A;(¢(b)=c).
p1°B1(ab)=0.1<0.2=p; * By (¢(a)p(b) =dc),
hi ¢ tar £ b p2°B1(ab)=0.4=p;By(¢(a)¢(b) =dc),
5. Isomorphisms of m-polar fuzzy graphs 3B (ab)=0.3<0.4=p3 - B (¢(a)¢(b) =dc).Hence B(ab) + Ba($(a)

In this section, different types of isomorphisms of m-polar fuzzy
graphs are defined.

Definition 5.1. Let G =(V4, Ay, B1) and G = (V3, A3, By) be two m-
polar fuzzy graphs of the graphs Gj = (Vq,E1) and G = (V3,Ey),
respectively. A homomorphism between Gy and G is a mapping
¢:V1—V, such that fori=1, 2,....m

(1) picA1(xq) < pioAx(¢(xq)) for all x; €y,
(i) pieB1(x1y1) < pieBa(¢(x1)9(y1)) for all X1J’1EV2

Definition 5.2. Let G; =(V4, Ay, B1) and G = (V5, Ay, By) be two m-
polar fuzzy graphs of the graphs G] = (Vq,E;) and G, = (V,Ey),
respectively. An isomorphism between Gy and G is a bijective map-
ping ¢:V1— V5 such that fori=1, 2,....m

(i) pioA1(X1) = picAz(¢(x1)) for all x; €V,
(ii) pi°B1(x1¥1) = pi°Ba(#(x1)b(y1)) for all X1y, €V2 In this case,
we write G1 =G,.

Definition 5.3. Let G; =(V4, Ay, B1) and G = (V5, Ay, By) be two m-
polar fuzzy graphs of the graphs G) = (Vq,E;) and G = (V,Ey),
respectively. A weak isomorphism between Gy and G, is a bijective
mapping ¢:V1— Va, which satisfies the following conditions:

(i) ¢ is a homomorphism, and

(ii) for each i=1, 2,...,m, pj°A1(x1) = pj°Az(¢(x1)) for all x,€ V1.
In other words, a weak isomorphism preserves the weights of
the nodes, but not necessarily the weights of the arcs.

Example 5.4. Consider the two 3-polar fuzzy graphs Gy and G, (see
Fig. 5) of the graphs G} = (V1,E;) and G, = (V,E,), respectively,
where V1 ={a, b}, Vo ={c, d}, E; = {ab} and E; = {cd}. Let us define a
map ¢:V1—V; to be defined by ¢(a)=d, ¢(b) = c. Then, we have

¢(b)). This shows that the map ¢ is a weak isomorphism but not an
isomorphism.

Definition 5.5. Let G; =(V1, Ay, B1) and G, = (V, Az, B2) be two m-
polar fuzzy graphs of the graphs G} = (Vq,E1) and G5 = (V,E),
respectively. A co-weak isomorphism between G and G, is a bijective
mapping ¢:V,— V, which satisfies the following:

(i) ¢ is a homomorphism,

(ii) for each i=1, 2,...m, pioBi(x1y1) = pi°Ba(¢(x1y1)) for all
X1Y1€ Vlz. In other words, a co-weak isomorphism preserves the
weight of the arcs but not necessarily the weights of the nodes.

Example 5.6. Let G} = (V4,Eq) and G = (V5,E,) be as in Example
5.4. Consider the 3-polar fuzzy graphs G = (Vj, Ay, B1) and Gy =(V>,
Ay, By) of G and G, (see Fig. 6). Consider the map ¢:V1— V- defined by
¢(a)=d, ¢(b)=c. Then, we have the following:

p1°A1(a) = 0.2<0.3 = p1°Ax(¢(a) = d), pa°A1(a) =04<0.6 =
P2 A2(9(a) = d).p3eA(@) = 0.5 = 0.5 = p3=Ay(¢( a) = d). There-
fore, A1(a) # Ax(¢(a)=d). Similarly, A1(b) # Ax(¢(b) = c). However,
p1eBi(ab) = 0.1 = py By (¢(a)$(b) = dc), p2°Bi(ab) = 0.4 =py°B;
(¢p(a)¢(b) =dc), and pseByi(ab) =02 =p3°B, (¢(a)¢(b) = dc).
Therefore, B1(ab) = Ba(¢(a)p(b) = dc). Hence, the map ¢ is a co-weak
isomorphism, but not an isomorphism.

6. Some properties of m-polar fuzzy graphs

The strong m-polar fuzzy graph is defined below.

Definition 6.1. An m-polar fuzzy graph G=(V, A, B) of the graph
G"=(V, E) is called strong if p; e B(xy) = min{p;°A(x), p;°A (y)} for all
xyeE i=1,2,....m

Example 6.2. Consider a graph G* = (V, E) such that V= {x, y, z},E =
{xy, yz, zx}. Let G=(V, A, B) be the 3-polar fuzzy graph of G* where
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<0.2,04,0.5 > < 0.3,0.5,0.7 >

. <0.1,04,0.3 > .

a b
G

< 0.3,05,0.7 >

. <0.2,04,04 >

C
Ch d

<0.2,04,0.5>

Fig. 5. Weak isomorphism of G; and G,.

< 0.2,0.4,0.5 > < 0.3,0.5,0.7 >

5.0.7
. < 0.1,04,0.2 > .
b

a

< 0.4,0.5,0.6 >

< 0.3,0.6,0.5 >
< 0.1,04,0.2 >

e]

d
Ga

Fig. 6. Co-weak isomorphism of G; and G,.

Gy
A— J<020405> <030506> <04030.1>
- X ’ y » Z ’
_ J<020405> <030301> <02030.1> :
B= { X7 , 7z , o } Hence, G is a strong 3-

polar fuzzy graph (see Fig. 7).

Proposition 6.3. If Gy and G, are the strong m-polar fuzzy graphs of
the graphs G = (V1,E1) G = (Va,E,), respectively, then Gix Go,
G1[G2] and Gi + G, are strong m-polar fuzzy graphs of the graphs
G; x G5, G1[G5] and G} + G.

Proof. Follows from the Proposition 4.3, 4.6 and 4.11.

Remark 6.4. The union of two strong m-polar fuzzy graphs is not
necessarily a strong m-polar fuzzy graph. For example, let us consider
the 3-polar fuzzy graphs Gi and G, as shown in Fig. 8.

Proposition 6.5. If G; x Gy is strong m-polar fuzzy graph, then at
least G1 or G, must be strong.

Proof. Suppose that both Gy and G, are not strong m-polar fuzzy
graphs. Then, there exists at least one x1y1<E; and at least one
X2¥2 €E; such that
Ai1y1)},

(i) B1(x1y1) < min{A1(x1), and  Ba(x2y2) < min{Ax(x2),

Ax(y2)}-

Without loss of generality, we assume that
(ii) Ba(x2y2) < B1(x1y1) < min{A1(x1), A1(y1)} < A1(x1).
Let E = {(x,%2)(X,y2) : XEV1, Xy, EE}U{ (X1,2)(¥1,2) : ZEV,

X1y1€Eq}. Consider (X, x2)(X, y2)€E. Then, by definition of G1 x G,
and inequality (i) we have,

< 04,03,0.1 >

®

< 0.2,0.3,0.1 >

< 0.3,0.5,0.6 >

< 0.3,0.3,0.1 >

< 0.2,04,05 >

< 0.2,04,0.5 >

Fig. 7. Strong 3-polar fuzzy graph G.

(B1 x B2)((%,%2)(X,y2)) =min{Aq (x), B2(x2y2) }
<min{A;(x),Az(x2),A2(¥2)}

and (A1 x A)(x, x2) = min{A1(x), Aa(x2)}1,(A1 x A2)(x, ¥2)
= min{Aq(x), A2(y2)}.

Thus, min{(A1 x A2)(x, x2),(A1 x A2)(X, y2)} = min{A;(x),
Aax(x2), Aa(y2)}-

Hence, (By x By)((x.x2)(X,¥2)) = min{A;(x),Ba(x2y2)} <min
{(A1 x A2)(X,X2), (A1 x A2)(X,y2)}, i.e.,, G x Gy is not a strong m-
polar fuzzy graph, which is a contradiction. Hence, if G x Gy is a
strong m-polar fuzzy graph, then at least G, or G, must be a strong m-
polar fuzzy graph.

Proposition 6.6. If G{[G>] is a strong m-polar fuzzy graph, then at

least Gy or G, must be strong.
Proof. Follows from previous propositions.

Proposition 6.7. Let G=(V, A, B) be a strong m-polar fuzzy graph of
agraph G" =(V, E). If G = (V, A, B) satisfies A = A and B is defined by,
forallxyeV2,i=1,2,...,m

Sy J 0 if 0<pjeB(xy) <1
B = {pingpe Ao peaw)) o pieBio) 20

Then, G is a strong m-polar fuzzy graph of G* = (V, vz E).

Proof. Obviously, the m-polar fuzzy sets A and B satisfy p;°B(xy) <
min{p;°A(x),picA(y)} forall xyeV2,i=1,2,...m.

Now, let xye\72 - (\75 —E)=E. As G is a strong m-polar fuzzy
graph, therefore we have for i=1, 2,..,m, p;°B(xy)=
min{p;°A(x), p;>A(y)}.

If B(xy) =0, then for each i=1, 2,...,m, p;°B(xy) = 0. Therefore,
pieB(xy) = min{p;eA(X).p;=A(y)} = p;=B(xy) =0,  i=12..m.
Hence, B(xy) = 0.

If for i=1, 2,...,m, 0<p;eB(xy) <1 then p;°B(xy)=0, ie.,
B(xy) = 0. Hence, for all xye\ﬁ - (\7i — E) = E, B(xy) = 0. Therefore,
G = (V,A,B) is an m-polar fuzzy graph of G* = (V, vz _ E).

On the other hand, for all xye\72 — E, we have by Definition 3.1,
B(xy)=0, i.e., for each i=1, 2,...,m, p;>B(xy) = 0. Then, we have for
eachi=1,2,...,m, p;°B(xy) = min{p;~A(x),p;A(y)}. Therefore, G is a

strong m-polar fuzzy graph of G* = (V,V2 —E).

Definition 6.8. The strong m-polar fuzzy graph G = (V, A, B) defined
above, is called the complement of the strong m-polar fuzzy graph
G=(V, A, B).

Definition 6.9. A strong m-polar fuzzy graph G is called self-
complementary if G=G.
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<0.3,05,0.7 > <04,0.7,08 > < 0.6,0.3,0.4 >

<0.7,05,09 > <03,05,0.7 >

<06,0.7,0.8 >

‘0 !
<03,0.5,0.7 >

<0.2,04,05>

C

. 2.0.4 5
Gy is strong < 0-2:0.4,05>

}). c a
<0.6,03,04 >

<02,04,02 >

b
< 03,05,0.7 >
<0.6,04,05 >
<02,04,02>
c

a
<0.7,05,09 >

G1 UGy is not strong

. 0.2,04,0.2
G is strong < o

Fig. 8. The union of the two strong 3-polar graphs G; and G, is not strong.

Example 6.10. LetG = (V,E)beagraphwhereV ={a,b,c,d},E = {ab,
ac, cd} and G = (V, A, B)(see Fig. 9) be a strong 3-polar fuzzy graph of G*

_ J<010203> <010203> <<010203> <0.10203>
where A = { = , b , = , 7 }

B — <0.1,02,03> <0.1,02,03> <0.1,02,03> <0,00> <0,0,0>
- ab ’ ac ’ cd ’ bd ’ ad ’

%}. Then, G is self complementary. Let G = (V,A, B) be the

a n <0,0,0> <0,0,0>
complement of G, where A=A, B:{T,T,

<0,0,0> <0.1,0.2,03>
cd ’ bd ’ ad
mapping ¢:V—V by ¢(a)=b, ¢(b) =c, ¢(c) =d, ¢(d) = a. Then, clearly,
¢ is a bijective mapping and A(a) = A(¢(a) = b), A(b) = A(¢(b) = ©),
A(c) = A(¢p(c) = d), A(d) = A(¢(d) = a). Additionally,

<010203> } Let us now define a

B(ab) = <0.1,0.2,0.3> = B(¢(a)p(b) = bc), B(ac)
= <0.1,02,03> = B(¢(a)¢(c) = bd),

B(cd) = <0.1,0.2,0.3> = B(¢(c)¢(d) = ad), B(bc) = <0,0,0>
= B(¢(b)¢(c) = cd),

B(bd) = <0,0,0> = B(¢(b)$(d) = ac), B(ad) = <0,0,0>
= B(¢(a)¢(d) = ab).

Hence ¢ is an isomorphism from G onto G, i.e., G=G, which means
that G is self complementary.

Proposition 6.11. Let G=(V, A, B) be a strong m-polar fuzzy graph of
the graph G"=(V,E)and G = (V,A, B) be the complement of G. Then,
pi°B(xy) = min{p;°A(x),p;>A(Y)} — pi°B(xy) for all xyeV2, i=1,
2,...,m.

< 0.1,0.2,0.3 >

< 0.1,0.2,03 >

< 0.1,0.2,0.3

< 0.1,0.2,0.3 >. d

<01,02,03> ¢ <01,0203>

<0.1,0.2,03 > <0.1,0.2,0.3 >

<0.1,0.2,0.3 > &

Proof. Let xye\ﬁ. IfO<p;°B(xy) <1 foreach i=1, 2,...,m; then,
xyeE by Definition 31. As G is strong, for i=1, 2,..m,
min{p;°A(x),p;°A(Y)} — pi°B(xy) = 0 = p;°B(xy).

If for i=1, 2,..,m, pjeB(xy)=0, then min{p;°A(x),
pi °Al(y)} — pi°B(xy) = min{p;°A(x),p;*A(y)} = pi°B(xy). Hence the
result.

Proposition 6.12. Let G be a self-complementary strong m-polar
fuzzy graph. Then, for all xyeV?2,i=1,2,...,m

S pieB(y) =5 S min{pieA(), proAY)}
XEy XEy

Proof. Let G=(V, A, B) be a self-complementary strong
m-polar fuzzy graph. Then, for all xyeE, i=1, 2,..,m,
pi°B(xy) = min{p;°A(x),p;°A(y)} and there exists an isomorphism
¢:G—G such that pjoA(x)=p;°Ax) for all xe€V and

pieBxy) = Qljg(cb(x)d)(w) forall xye V2.
Let xye V2. Then, by Proposition 6.11, fori=1, 2,...,m,

PiB(¢(x)p(y)) = min{p;*A(¢(x)), pi°A($(¥))} — Pi°B(#(x)(y))

i.e., pioB(xy) = min{p;°A(¢(x)), piA($(y))} — Pi°B(¢(X)b(y)).

Therefore,

> pieB(w) + > pi°B(¢(x)$()

X£y XEy

=Y min{p;*A($(x)), piA(b(¥))}

XFY

=" min{p;°A(x), p;>A(y)}

XFy

< 0.1,0.2,0.3 >

< 0.1,0.2,0.3 >

< 0.1,0.2,0.3 >

< 0.1,0.2,0.3 >

Fig. 9. Self-complementary 3-polar fuzzy graphs.
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ie.,

2> " pieB(xy) = Y min{p;°A(x),p;°A(y)}
X#Yy X#Yy
ie.,

S pieBlxy) =5 3 min(pieAx).pi=AY))

XFYy X+y

Proposition 6.13. Let G=(V, A, B) be a strong m-polar fuzzy graph
of G"=(V, E). If p;°B(xy) = smin{p;-A(x),p;°A(y)} for all xyeV2,
i=1,2,...,m, then G is self complementary.

Proof. If G=(V, A, B) is a strong m-polar fuzzy graph satisfying
pi°B(xy) = %min{pioA(pr,-oA(y)} forall xyeV2,i=1, 2,...,m, then
the identity mapping I:V— V is an isomorphism from G to G. Clearly, I
satisfies the first condition for isomorphism, i.e., A(x) = A(I(x)) for all
xe€V, and by Proposition 6.11, we have for all xyeV2,i=1, 2,...,m,

pi°B(I(x)(y)) = pi°B(xy) = min{p;°A(x),p;>A(y)} — pi°B(xy)

= min{p;=A(X). pi=AY)} — 3 min{pi=A(X) pieA()}
_ %min{pioA(X),pi"A(J’)} = pioB(xy).

i.e., pioB(Xy) = p;°B(xy) forallxy e \72 i=1,2,...,mie.,lIalso satisfies
the second condition for isomorphism. Therefore, G=G, i.e., G is self
complementary.

From Proposition 6.12 and 6.13, we have the following result.

Corollary 1 Let G=(V, A, B) be a strong m-polar fuzzy graph of
G"=(V, E). Then, G is self complementary if and only if
pi°eB(xy) = %min{pioA(x),p,-oA(y)} forallxyeVv2,i=1,2,..m.

Proposition 6.14. Let Gy and G; be two strong m-polar fuzzy graphs.
Then, Gy =G, if and only if G; =G,.

Proof. Assume that Gy =G,. Then, there exists a bijective mapping
¢:V1—Vy  satisfying  A1(x)=Ax(¢(x)) for all x€V; and

Pi°B1(xy) = pi°Ba(¢(x)p(y)) for all xyeVZ,i=1,2,..,m.
Let xer]Z. If for i=1, 2,...,m, pj°By(xy) = 0, then p;°By(xy) =
min{p;°A;(x),pi°A1(y)} = min{p;°Az($(x)),pi°A2(6(¥))} = Pi°B2

(6(X)d(¥)).

If for, 0<p;°By(xy) <1, then 0<p;°By(¢(x)$(y)) < 1. Therefore,
pi°B1(xy) = 0 = p;°By(¢(X)¢(¥)). S0, G1 =G,.

Conversely, let Gy =G,. Then, there exists a bijective mapping
V:Vi—-Vy  satisfying  Aj(x) =Ay(y(x)) for all xeV; and

pi°Bi(xy) = pi°Ba(Y(x)y(y)) for all xy V3.
Let xye V2. If for i=1, 2,...,m, p;°B; (xy) = 0, then
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So, pieBa(Y(x)¥(y)) =
2,...m, 0<p;°Bi(xy) <1,

) =0.
Thus we have,

0=p;eB(xy), i=1, 2,...m. If for i=1,
then  p;i°By(¥(x)¥(y)) = pi°B1(¥(x)¥

Pi°Bo(Y(x)¥(y)) = min{p; oAz (¥(x)), pieA2(¥(¥))} — 0 = min{p;-
Ay (VX)) pic A (¥())} = min{p;°A1(¥(x)),pi°A1(¥(¥))} = pi°Bi
(xy). Hence G1 =G,.

7. Applications

Fuzzy graphs of the 1-polar type are nothing more than the
most familiar fuzzy graphs and have many applications for
cluster analysis and solving fuzzy intersection equations, data-
base theory, problems concerning group structure, and so on. The
further possible applications of m-polar fuzzy graphs in real-
world problems can be viewed in the case of bipolar fuzzy
graphs, i.e., 2-polar fuzzy graphs. Bipolar fuzzy graphs have many
applications in social networks, engineering, computer science,
database theory, expert systems, neural networks, artificial in-
telligence, signal processing, pattern recognition, robotics, com-
puter networks, medical diagnosis and so on. Additionally, m-
polar fuzzy graphs (m>2) are very useful in many decision-
making situations. This occurs when a group of friends decides
which movie to watch, when a company decides which product
design to manufacture, and when a democratic country elects its
leader. For instance, consider the case of a company. In a com-
pany, a group of people decides which product design to manu-
facture. In such a case, different product designs can be taken as
nodes. An edge is drawn between two nodes if there is some m-
polar fuzzy relationship between them. We assume that the
membership value of each node represents the degrees of pref-
erence of the product design corresponding to the group of
people of the company. The degrees of preference (within [0,1])
represent the individual preferences of the people. Thus, a node
has multi-preference degrees corresponding to a product design.
Similarly, the degree of relationship between the nodes measures
the edge relationship value. Between two product designs, one
design may have a better appearance, may be in very high de-
mand, may be cheap, and so on. Therefore, there is multipolar
information between two product designs. This type of network
is an ideal example of m-polar fuzzy graphs. It is very important
for a company to decide which product design to manufacture so
that they can make as great a profit as possible. A very good
product design is readily accepted by customers if it is also
inexpensive. The determination of which product design to
manufacture is called the decision-making problem. By taking
the very good decision (very good product design), one company
can spread their product all over the world, keeping in mind that
the product design is very good, in demand, cheap, easily
accessible, and so on. Moreover, the results of m-polar fuzzy
graphs can be applicable in various areas of engineering, com-

PieBa(W(X)W(y)) = pi°Br (xy) = min{p; A1 (x), pieAr(y)} = min{pioA1 (x), pioA1(v) }

= min{p;e A (¥(x), Pie Ao (¥(y)) b = min{pioAz(¥(x)), Pi° Az (W(¥))}

Again, pieBy(V(x)¥(y)) = min{p; Az (¥(X)), pi°A2 (¥ (¥))} — pi°B2
Yx)Y(y))

puter science, artificial intelligence, neural networks, social
networks, and so on.
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8. Conclusions

Graph theory is an extremely useful tool for solving combina-
torial problems in different areas, including algebra, number the-
ory, geometry, topology, operations research, optimisation and
computer science. Because research on or modelling of real world
problems often involve multi-agent, multi-attribute, multi-object,
multi-index, multi-polar information, uncertainty, and/or process
limits, m-polar fuzzy graphs are very useful. The m-polar fuzzy
models give increasing precision, flexibility, and comparability to
the system compared to the classical, fuzzy and bipolar fuzzy
models. Therefore, we have studied several important results of
m-polar fuzzy graphs. Our next plan is to extend our research work
to m-polar fuzzy intersection graphs, isomorphisms on m-polar
fuzzy graphs, m-polar fuzzy interval graphs, m-polar fuzzy hyper-
graphs, and so on.
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