
ELSEVIER Theoretical Computer Science 175 (I 997) 15-27

Theoretical
Computer Science

Program schemata vs. automata for decidability
of program logics’

N.V. Shilov”

Russian Academy of Sciences, Institute of Informatics Systems, 6, Acad. Lavrentjev pr.,

630090, Novosibirsk, Russia

Abstract

A new technique for decidability of program logics is introduced. This technique is applied
to the most expressive propositional program logic - mu-calculus.

0. Introduction

We would like to present program scheme technique (PST) for decidability of pro-

gram and polymodal propositional logics. This technique leads to one-exponential time

upper bounds usually.

Second-order propositional dynamic logic (SO-PDL) of program schemata is a vari-

ant of propositional dynamic logic (PDL) [6,8] with program schemata and second-

order quantifiers. Unfortunately it is undecidable, but the validity in Herbrand models

(HM) is decidable with a one-exponential upper bound. This is based on a polyno-

mial reduction of the validity problem in HM to the same problem but for sentences

in the special form. The original one-exponential algorithm solves the last problem.

The syntax and semantics of SO-PDL together with some results on the expressive

power and the undecidability of this logic are presented in Section 1 of this paper. The

decidability of SO-PDL in HM is proved in Section 2.

We have to remark that some authors have introduced and investigated second-order

variants of program logics - quantified propositional temporal logic (QPTL), which is

propositional linear temporal logic equipped with quantification over propositions. In

contrast to the results mentioned above, QPTL [151 is decidable with a non-elementary

complexity and is as expressive as the monadic second-order logic SlS. The complete

calculus for QPTL has been presented quite recently [9]. In fact, the completeness

* E-mail: shilov@isi.itfs.nsk.su.
’ This work was supported by the Russian Basic Research Fund (Project 93-01-00986) and the International

Association for the Promotion of Cooperation with Scientists from the Independent States of Former Soviet

Union (INTAS contract IOIO-CT93-0048).

0304-3975/97/$17.00 @ 1997 - Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00168-S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82031376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

16 N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27

proof is based on the reduction of a QPTL formula into a Biichi automaton, and

performing equivalence transformations on these automata, formally justifying these

transformations.

As an example of applicability of PST, we would like to consider Mu-calculus

(MuC) [10, 121 - a propositional polymodal logic with the least (p) and the greatest

(v) fixed points. In [161 a triple-exponential upper bound for MuC is proved on the

basis of automata theoretical technique (ATT). We recall the syntax and semantics of

MuC in Section 1 of this paper. In Section 3 the validity problem for MuC is reduced

to the validity problem for SO-PDL in HM with a linear complexity. So, PST leads to

decidability of MuC with a one-exponential upper bound and to a new proof of small

model property (SMP) for MuC [161.

Another algorithmic problem for MuC is axiomatization. In the original paper [lo] a

very natural sound axiomatization for MuC was proposed, but the completeness of the

axiomatization was proved for the fragment of MuC - for aconjunctive formulae only.

A complete axiomatization of MuC and completeness of the axiom system from [lo]

were open problems during 10 years. The first problem was solved by Walukiewicz in

1993 [171 and the second one in 1994 by him too. As a “side effect” of the application

of PST to MuC we get another sound axiomatization of MuC which is complete for

two fragments of MuC: for the so-called diamond formulae and the so-called v-free

formulae. This axiomatization is presented in Section 3 too. The completeness of this

axiomatization for MuC itself is an open question.

1. Syntax, semantics and expressive power of mu-calculus

and second-order propositional dynamic logic

The propositional mu-calculus (MuC) is a propositional program - a polymodal logic

with constructions for the least and the greatest fixed points [10, 121. The syntax of

MuC is constructed from a countable alphabet of (program) symbols and a countable

alphabet of (propositional) variables as follows. Propositional variables are (elementary)

formulae. Propositional combinations (negations, conjunctions and disjunctions, etc.) of

formulae are formulae. Modalities in MuC are associated with program symbols: If a

is a symbol then [a] and < a > is the pair of modalities associated with this symbol.

Fixed point constructions are associated with propositional variables: If p is a variable

then ,LL~. and vp. is the pair of fixed point constructions associated with this variable

and applicable to formulae with positive instances of the variable only. The semantics of

MuC is defined in Kripke structures where program symbols are interpreted as binary

relations and propositional variables - as unary predicates. Propositional operations

have the usual semantics. For a program symbol a the semantics of the associated

modalities [a] and < a > is the same as the usual K-modalities semantics but with

respect to an interpretation of the symbol a. The semantics of fixed point constructions

is straightforward from their names - the least and the greatest fixed points with respect

to the inclusion as a partial order on interpretations of propositional variables. But

N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27 17

this semantics can be defined constructively too in accordance with the Tarski-Knaster

theorem for the least and the greatest fixed points of a monotonic function over subsets

of a set.

The second-order propositional dynamic logic (SO-PDL) is an extension of propo-

sitional dynamic logic (PDL) [6,8] with quantifiers over propositional variables. The

syntax of SO-PDL is constructed from a countable alphabet of (program) symbols and

a countable alphabet of (propositional) variables too. The syntax consists of (program)

schemata and (logical) formulae which are defined by mutual induction.

Schemata: Let us use the natural numbers extended by ~;i as labels. The label 0 is

called the start-label and the label cc is the exit-label. An assignment is an expression

of the form 1 : a goto L, where 1 is a label, a is a program symbol and L is a finite

set of labels. A test is an expression of the form I : if A then L + else L-, where I

is a label, A is a formula and L+,L- are finite sets of labels. A (program) scheme is

a finite set of assignments and tests.

Formulae: Propositional variables are (elementary) formulae. Propositional combina-

tions (negations, conjunctions and disjunctions, etc.) of formulae are formulae. Some

modalities are associated with program schemata (similarly to MuC), but others are

not: If S is a program scheme then [S] and < S > is the pair of modalities associated

with this scheme as well as q and v are modalities too. Strong and weak quantifiers

over propositional variables are admissible too: If p is a propositional variable then

Vp. , Vfp., 3p and 3fp. are quantifier prefixes with this variable.

The semantics of SO-PDL is defined in Kripke structures where program symbols

are interpreted as binary relations and propositional variables - as unary predicates. The

semantics of a program scheme in a Kripke structure is its input-output (IO) binary

relation which can be defined in the usual manner [8]. Propositional operations have

the usual semantics. For a program scheme S the semantics of the associated modal-

ities [S] and < S > is the same as the usual K-modalities semantics but with respect

to an IO-relation of the scheme S. Modalities q and o are the usual SS-modalities,

so their semantics is traditional. The semantics of quantifiers is straightforward from

their names ~ for all/some (finite) interpretation of a propositional variable as a unary

predicate.

A traditional algorithmic problem for logics is the decidability. For MuC and SO-

PDL this problem can be formulated as follows: Is there an algorithm deciding for any

formula its validity in each Kripke structure on each state. For MuC the answer (on

principle) is “Yes” because MuC can be interpreted in Rabin’ second-order logic of

several monadic successor functions [13]. But the next question arises for MuC: what

about lower and upper bounds for the decidability of MuC? A one-exponential low

bound for propositional dynamic logic (PDL) [6,8] is well known but a traditional

reduction of PDL to MuC [161 is exponential. In [161 a triple-exponential time upper

bound for MuC is proved on the basis of a polynomial reduction to a certain emptiness

problem for finite automata on infinite trees. So an effective procedure for the emptiness

problem mentioned above can improve the upper time bound for MuC too. It seems

interesting and important to develop a self-contained technique oriented for decidability

18 N. V Shilovl Theoretical Computer Science 175 (1997) 15-27

of a variety of program-polymodal logics in general and of MuC in particular. The

program scheme technique (PST) introduced in [l I] is a good candidate for these.

Lemma 1. The expressive power of A4uC is less than or equal to the expressive

power of SO-PDL.

Proof. Let us consider a combined logic MuCfSO-PDL - with united syntax and

semantics. For any formulae A and B, for any program scheme S, for any program

symbol a and for any propositional variable p the following formulae are valid:

(A --+ B) * ((1A) v B),

(31.4)) H 4

(l(A A B)) * ((7A) V (lB)),

(3 < s ’ A)) * ([m~A))T
(3 < a > A)) c-) ([aI(-
(30‘4)) * @(7A)),
(33P.A)) ++ (VP.(lA)),

(-WP.4) * WP.W)),

-PP.B(P) H VP.~B(TP).
So it is sufficient to consider so-called normal formulae of MuCfSO-PDL only - i.e.

those formulae without equivalences and implications in which negations are applied

to the proposition variables only. Similarly to MuC those formulas are monotonous

[161. Hence for any normal formulae B and C, for any propositional variable p the

following formulae are equivalent:

B(PP.~(P)) and ~P.(o(~(P) + P) + B(P)).

Similarly, for any normal formulae B and C, for any propositional variable p (i.e.

p is absent in B and C) the following formulae are equivalent:

B(vP.~(P)) and ~P.(o(P + C(P)) A B(P)).

So all fixed points can be eliminated. 0

For any program schemata Sl and S2 let EQ(S1, S2) be a formula with the following

semantics: EQ(S1, S2) is valid in a state s of a Kripke structure iff {t 1 (s, t) E ZO(Sl)}=

{t I(& t) E w=)).

Lemma 2. PDL extended by EQ is undecidable.

Proof (sketch). EQ permits to check that in a Kripke structure the interpretations

of some program symbols are commutative, some inverse. Those properties are

sufficient for a simulation of counter-machines in terms of PDL, so PDL with EQ

is undecidable. 0

Since PDL is expressible in MuC [10,161, we get as a consequence of Lemmas 1

and 2 the following theorems.

N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27 19

Theorem 1. SO-PDL is undecidable.

Proof. For any program schemata Sl and S2 the formula EQ(S1, S2) is equivalent to

Vp.(< Sl > p H < S2 > p) where p is a new propositional variable (i.e. p is absent

in Sl and S2). 0

Theorem 2. The expressive power of MuC is less then the expressive power of

SO-PDL.

Proof (sketch). Let us consider the following SO-PDL formula Vp.(< (a) > p H

< (b) > p), where p is a propositional variable, a and b are program symbols and

(a) and (b) are notations for program schemata (0 : a goto {m}} and (0 : a goto {cQ}}

respectively. If this formula is equivalent to a formula A of MuC then (since it is equiv-

alent to @((a), (b))) for any schemata Sl and S2 the formula EQ(S1, S2) is equivalent

to the formula A(Sl/a, S2/b) which is expressible in MuC. (Here A(Sl/a, S2/b) is the

result of the substitution of the program schemata Sl and S2 on places of the program

symbols a and b respectively.) So the formula Vp.(< (a) > p * < (b) > p) is not

expressible in MuC. 0

2. Program scheme technique and decidability

A Herbrand model (HM) for a formula or a scheme is a Kripke structure whose

domain is the set T of all strings (including the empty string ;I) over the alphabet of

program symbols which occur in this formula or this scheme and the interpretation for

those program symbols is the concatenation, i.e. for any program symbol a and any

string s the following holds: a(s) = as.

A (halting) assertion is a formula of SO-PDL in the form PREF < S > TRUE, where

PREF is a quantifier prefix and S is a program scheme with simple tests only, i.e. all

conditions are propositional variables.

Lemma 3. In Herbrand models, any formula of SO-PDL is equivalent to a halting

assertion which can be constructed in linear time.

Proof. Let us present the following reduction algorithm which transforms any formula

into a halting assertion. We would like to describe this algorithm in general in terms

of global steps and give some remarks on a feature of each step.

The first step is an elimination of all complex tests as follows: for formulae B and C,

for a new propositional variable p (i.e. which is absent in B and C) the formula B is

equivalent to the formula 3p.(o(p H C) A B(p/C)) where B(p/C) means substitution

of p on place of each instance of C.

The next step is a so-called normalization, i.e. the elimination of all equivalences and

implications and the filtration of the negation upto propositional variables in accordance

with the traditional equivalences mentioned in the proof of Lemma 1.

N. V. Shilovi Theoretical Computer Science 175 (1997) 15-27

The third step is a replacement of all elementary subformulae (i.e. all instances of

propositional variables which are not tests) by so-called halting formulae as follows:

a formula B is equivalent to the halting formula < B? > TRUE, where B? is the

abbreviation for the program scheme (0 : if B then {IX} else @}.

The last step of the reduction consists in an interpretation of propositional op-

erations and box-modalities in terms of diamond-modalities and second-order quan-

tification. Let us use the traditional structured operation; for sequential composition

of schemata, if-then-else-j for deterministic choice of schemata, while-do-od for

deterministic loop of a scheme, U for non-deterministic choice of schemata and *

for non-deterministic loop of a scheme. For a program symbol a we denote by (a)

the program scheme (0 : a goto {cm}}. Let HALT and LOOP be the following

schemata: (0 : if TRUE then {co} else (0)) and (0 : if TRUE then (0) else {co}}

respectively.

Then the elimination of propositional operations for V and A can be done as follows.

For any disjoint quantifier prefixes PREFl and PREF2 (i.e. PREFl and PREF2 have no

common propositional variables), for any program schemata Sr (disjoint with PREF2)

and S2 (disjoint with PREF,) the following formulae are equivalent in Herbrand

models:

((PREF, < S1 > TRUE) V (PREF2 c SZ > TRUE)) and

PREFlPREF23p.(< iJ’ p then SI else S2 ji > TRUE),

((PREF, < SI > TRUE) A (PREF2 < S2 > TRUE)) and

PREFlPREF2Vp.(< if p then S1 else S2 ji > TRUE),

where p is a new propositional variable.

The modalities q and v can be simulated in Herbrand models by modalities [UNI]

and < UNI > respectively, where UN1 is the program scheme (U,,&a))* and ACT

is the set of all program symbols of the formula.

The elimination of modalities associated with program schemata can be done as

follows. For any quantifier prefix PREF, for any program schemata Sr and S2 let

dS1 be a deterministic scheme which simulates non-deterministic constructions

got0 . . .) then . and else.. . of Sr by deterministic choice with respect to values

of a vector of new propositional variables P and aborts this simulation and halts in the

case when all variables from P are falsified. For example, the non-deterministic goto-

construction in the assignment 1 : a goto {II, 12) is simulated by the following

fragment:

1 : a got0 (1’)

1’ : ij” p1 then {I,} else {I”}

I” : if p2 then { 12) else {m},

N. V. Shilovl Theoretical Computer Science 175 (1997j 15-27 21

where I’ and 1” are new labels and p1 and p2 are new propositional variables. Then

the following formulae are equivalent in Herbrand models:

(< St > (PREF < S2 > TRUE)) and

(3P. PREF (< dS1 ; if (VP) then S2 else LOOP ji > TRUE)),

([S,](PREF < S2 > TRUE)) and

(V’.fP. PREF (< dS, ; if (VP) then S2 else HALT ,fi > TRUE)). II

Lemma 4. The validity in Herbrand models for halting assertions is decidable in

one-exponential time.

Proof. Let us choose and fix a halting assertion Qt pl . . . Q,,p,(< S > TRUE) where

Qt,. . . , Q,, are quantifiers, PI,. . . , pn are different propositional variables and S is a

program scheme. Without loss of generality we can suppose that

the start-label 0 marks an assignment in S,

each label marks the unique operator in S,

each propositional variable occurring in S occurs among ~1,. , p,, .

Let VI,. . . , v, be different boolean variables. For any labels 11 and 12, for any evaluation

of vI, . . . , v, (by boolean values) let us write 11 -+ (vt . . . v,) --, 12 iff there exists a

logical path (i.e. across tests) which is consistent with the evaluation. Let us define

the notion of the type for a label as follows: if the label marks an assignment in S

then its type is the program symbol from this assignment; the label cx has all possible

types; otherwise the type of the label is undefined. Let us define SPACE as the set of

all L where L is a set of labels of one and the same type. For any sets L1 and L2, for

any evaluation of VI,. . . , v, let us write LI -+ (III . . v,) -+ L2 iff for any label 12 E L2

there exists a label 11 ELI such that 11 -+ (~1 . . v,) -3 12.

The decision procedure for validity of the halting assertion Qt p1 . Q,,p,

(< S > TRUE) consists of the following two steps and the validation criterion.

The jirst step: For any i (0 < i < n) let (QiPi)’ be

the quantified boolean variable Qin, iff Qi E {V’, I},

or the evaluation of Vi by FALSE iff Q; E {Yf, If }.

Now we are going to define the sequence Do C D1 C . C SPACE which may be in-

finite but stabilizes after an exponential number of steps. Let Do be {{cx}}. For any

j 3 0 let Dj+l be Dj U {Ll E SPACEl(Q,v,)’ . . . (Qnvn)‘: there exists L2 E Dj such that

L1 -+ (VI . ..v.) -~j L2). Let D, be U/>ODj.

The second step: For any i (0 < i d n) let (Qipi)” be the quantified boolean variable

Vri iff Ql E {v,v,f>,

or 3, iff Q, E (33“ }.

Now we are going to define the sequence Eo g El C . C SPACE which may be infinite

but stabilized after an exponential number of steps. Let Eo be D,. For any j 2 0 let

22 N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27

Ej+l be Ej U {Ll ESPACE~(Q~UI)” . . .(Qnu,)“: there exists L2 E Ej such that Li -+

(~1 . . II,) y-, L2). Let E, be Uj>aEj.

Then the validation criterion is: the assertion Ql pl . . . Q,,pn(< S > TRUE) is valid

iff (0) E E, holds.

Indeed, let us consider the following subsets of the Herbrand domain T: for any

k b 0 the set Tk consists of all strings of length less than k. So To = 0. For any

k (k 2 0) and any i (0 6 i 6 n) let (Qipi)k be the quantified interpretation for the

proposition variable pI :

Qipi C T iff Qi E {v’, 3},

or Qipi C Tk iff Qi E {Vf gf} 5 .

Then for any j 3 0 and for any L E SPACE

L E Dj iff (Qi ~1)’ . . . (Qnpn)‘: there exists a label I EL and a path from 1 to 00 with

j assignments at most which is consistent with an interpretation of ~1,. . . , pn by subsets

of Herbrand domain chosen with respect to the quantifier prefix (Qi p1)O . f . (Qnp,)O;

L E Ej iff (Qlpl)' .(Q,,p,,)‘: there exists a label Zg L and a path from I to co

which is consistent with an interpretation of ~1,. . . , pn by subsets of Herbrand domain

chosen with respect to the quantifier prefix (Qi p1)j . . . (Qnpn)j.

Both facts can be proved by induction. Since T= Ukao T then the validation criterion k

follows from the above facts. 0

As a consequence from Lemmas 3 and 4 we get

Theorem 3. The ualidity problem for SO-PDL in Herbrand models is decidable in

one-exponential time.

3. Application of PST to MuC

Lemma 5. The decidability problem for MuC is equivalent to the ualidity problem

in countable Kripke structures.

Proof (sketch). A formula B is said to be a subformula of a formula A iff the string

B is a substring of A. Let us enumerate formulae of MuC with respect to the natural

partial order for formulae, i.e. any formula A appears in the enumeration after all its

subformulae: Ao, . . . A,, Then the lemma follows from the proposition:

For any natural number n, for any model A4 with domain D, for any countable set

of states D’ CD there exists a countable set D” such that D’ CD” CD and for all

0 d m < n the relation N(A,) n D’ = M(A,) n D’ holds, where N is the restriction of

A4 by D”.

(The proposition can be proved by induction on n.) 0

N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27 23

Lemma 6. The validity problem for MuC in countable Kripke structures is reducible

to the validity problem for SO-PDL in Herbrand Models, and the time complexity

of this reduction is linear.

Proof (sketch). Let A be a formula of MuC. Let us consider a combined logic MuC+

SO-PDL - with united syntax and semantics and the formula A as a formula of this

logic.

For any program symbol a which occurs in A let b,, c, and pa be new program

symbols and a new propositional variable. We would like to use the structured op-

erations * , ; and ? again (see the proof of Lemma 3). Finally, let us denote by BA

the result of the replacement of each program symbol a in A by the program scheme

pa? ; (bn)* ; c,. Then the formula A is valid in all countable Kripke structures iff the

formula BA is valid in all countable Kripke structures where all program symbols are

interpreted as graphics of general functions. This proposition is an analog of the re-

duction of PDL to deterministic PDL and is proved similarly [S]. At the same time a

quantifier-free and SS-modalities-free (o and 0) formula of MuC+SO-PDL is valid in

all countable Kripke structures where all program symbols are interpreted as graphics

of general functions iff it is valid in all Herbrand models. This proposition is an analog

of similar reductions from arbitrary models to Herbrand models in the classical theory

of program schemata and can be proved with usage of the notion of the associated

Herbrand model [7].

Since for any formulae B the following formulae

-pp.B(p) and vp.~B(~p)

are equivalent then we can suppose without loss of generality that the formula A is a

normal formula. Since normal formulae of combined logic are monotonous (similarly

to MuC [161) then for any normal formulae B and C, for any propositional variable

p the following formulae are equivalent:

B(~P.C(P)) and ~P.(o(C(P) + P) --) B(P))

B(vp.C(p)) and ~P.(o(P + C(P)) AB(p)).

So, we can eliminate all fixed points in BA and get a formula of SO-PDL which is valid

in all Herbrand models iff the initial MuC formula is valid in all countable models.

0

As a consequence from Theorem 4 and Lemmas 5 and 6 we get

Theorem 4. A4uC is decidable in one-exponential time.

At the same time as a corollary of the proof of Lemma 4 we can get a new proof

of the finite model property [161.

24 N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27

Theorem 5. A4uC has the jinite model property: a formula is valid @ it is valid in

all finite Kripke structures.

Proof (sketch). Let A be a formula of MuC. Let B be the correspondent formula of

SO-PDL which is constructed from A in accordance with the sketch of the proof of

Lemma 6. Let Qlpl . . . Qnpn(< S > TRUE) be the halting assertion which is equiv-

alent to B and is constructed in accordance with the proof of Lemma 3. As fol-

lows from the justification of the validation criterion from the proof of Lemma 4

Qlpl . . . Qnpn(< S > TRUE) is valid in all Herbrand models iff (Q~pl)~. . (Qnpn)k:

there exists a path from 0 to co with 2k assignments at most which is consistent with

the interpretation, where k is an exponential function of the size of S. So (without

loss of the validity) it is possible to restrict the Herbrand domain T till T2*k where

k = exp IAl is an exponential function of the size of the formula A. 0

In the original paper [lo] a very natural sound axiomatization for MuC was proposed,

but the completeness of the axiomatization was proved for the fragment of MuC - for

aconjunctive formulae only. A complete axiomatization of MuC and completeness of

the axiom system from [lo] were open problems for 10 years. Both problems were

solved by Walukiewicz in 1993 [171 and 1994, respectively.

We would like to present an alternative research approach to a complete axiomati-

zation of MuC. The idea of this approach is similar to [14] and consists in the design

of a sound axiomatic system and a deductive strategy which establish the deductive

equivalence of PDL and some fragments of MuC.

Let us consider another combined logic PDLfMuC and accept as the start point

a complete axiomatization of PDL [8]. Let us denote this axiomatization by AS. We

would like to add to AS the new axiom scheme and two new inference rules. The

axiom scheme is the equivalence mentioned above in the proof of Lemma 1 and in

the sketch of the proof of Lemma 6.

AXlpp.A(p) t-f vp.~A(lp).

The first inference rule is a PDL+MuC version of the equivalence

A(PP.~(P)) and ~P.(o(~(P) + P) + A(P))

mentioned in the proof of Lemma 1 and in the sketch of the proof of Lemma 6:

IR1 W~UB(P) + P) AA(P)

A(PP.B(P)) .

So the new axiom and the first inference rule are some steps of application of PST

to MuC. The second new inference rule is not inspired by PST, but is some variant

of induction

IR2 A(@ue), WWWP) + P) ---) WWA(P) + PWAP(P)))
A (vP.B(P))

N. V Shilovl Theoretical Computer Science 175 (1997) 14-27 25

In the inference rules UNI is the same program scheme as in the proof of Lemma 3,

p is a propositional variable, A(C) is a normal formula (i.e. negations may be applied

to variables only) with instances of a subformula C, A(D) is result of the substitution

of a formula D for C in A.

Let us denote by AS1 the extension of the complete axiomatization AS for PDL by

the inference rule IRl. Let us denote by AS2 the extension of AS1 by the inference

rule IR2. Let us denote by pAS1 and pAS2 the result of the translation of all PDL-

constructions of AS1 and AS2, respectively, in terms of MuC with respect to the

standard procedure [10, 161. Finally let us define

a p-formula as a normal v-free formula and

a diamond formula as a normal box-free formula.

Theorem 6. 1. The axiom systems ASl, AS2, p AS1 and ,u AS2 are sound.

2. The axiom systems AS1 and pAS1 are complete for p-formulae of PDLf MuC

and MuC, respectively.

3. The axiom systems AS2 and pAS2 are complete for diamond jbrmulae oj

PDL-tMuC and MuC, respectively.

Proof (sketch). Since the inference rule IRl is a quantifier-free version of the equiv-

alence then this rule is invertible. So the application of this rule

preserves the validity in both directions (up-down and down-up),

introduces instances of p in up-down direction,

eliminates instances of p in up-down direction.

So the strategy which consists in the application of IRl in down-up direction is to

nest the least fixed points of a p-formula of PDL+MuC, this strategy leads from a

p-formula of PDLfMuC to a validity equivalent formula of PDL. Since the axiomati-

zation AS is complete then AS1 = AS+IRl is complete for ~-formulae of PDL+MuC.

Since each formula of MuC can be considered as a formula of PDL+MuC and AS1

is complete for PDLfMuC then pAS1 - the translation of AS1 in terms of MuC - is

complete for p-formulae of MuC.

The last item of the theorem can be proved similarly based on the following fact:

IR2 is invertible for diamond formulae of PDL+MuC. 0

Question: Are AS2 +AX and pAS2 +AX complete?

4. Conclusion

Decidability and axiomatization are not the only algorithmic problems for program

logics. A new algorithmic problem for program logics is the model-checking problem,

i.e. the evaluation of the validity set of a formula in a finite model. For MuC and SO-

PDL this problem is decidable because the semantics of those logics can be defined

constructively. But the next question arises: what about lower and upper bounds for

this problem?

26 N. V. Shilov I Theorrrical Cornpurer Science I75 (I 997) 15-27

The model-checking problem as a mathematical problem originated as an approach

to specification and verification of finite state systems. A stream of publications on

applied model-checking is very wide now and can be a subject for a separate survey.

We would like to point out [3] because of the importance of this paper for the verifi-

cation practice. Furthermore, [3] demonstrates the following typical feature of applied

computer-aided model-checking: MuC is an internal representation of external speci-

fications and verification is done in terms of MuC’ model-checking. The time bound

for the direct model checking algorithm based on the constructive semantics of MuC

is exponential on the length of a formula, and it turns out that the model-checking

problem for MuC is an NP and co-NP problem [5], in contrast with a lot of program

logics which are decidable with a one-exponential time bound as MuC itself but have

a polynomial model-checking algorithm. So, the problem of finding an expressive frag-

ment of MuC with a polynomial model-checking algorithm arises. In [5] one of such

fragments is presented and generalized: this fragment consists of normal formulae of

MuC such that in each conjunction only one subformula has instances of propositional

variables. The class of such fragments introduced in [4] has the following restriction:

the alternation of the fixed points have to be bounded in each class. The new fragment

of such kind is presented and generalized in [2].

Another fragment of MuC with a polynomial model-checking algorithm is presented

in [l]. This fragment consists of normal formulae such that all inner least fixed points

are syntactical independent of all outer greatest fixed points. So, these formulae have

no restrictions on the alternation of fixed points, neither on the discipline of modal

operators or boolean connectives, but have the restriction on the dependence of fixed

points. This fragment is more expressive than CTL [3] and PDL [6]. The correctness

of this polynomial model-checking algorithm can be proved in terms of SO-PDL too.

Acknowledgements

PST was designed in collaboration with Prof. V.A. Nepomniaschy and the first pre-

sentation of PST was given in [111. The author is very appreciative to Sergey Berezine

and Dilian Gurov for a kind reading of the draft of the paper and comments, to Prof.

Vladimir A. Zaharov for the information on second-order variants of program logics

and to Prof. Larisa L. Maksimova for the kind attention to researches whose results

are presented in the paper.

References

(13 S.A. Berezin and N.Y. Shilov, An approach to effective model-checking of real-time finite-state machines

in mu-calculus, Internat Symp. on Logical Foundation of Computer Science LFCS’94, Lecture Notes

in Computer Science, Vol. 813 (Springer, Berlin, 1994) 47-55.

[2] G. Bhat and R. Cleaveland, Efficient local model-checking for fragments of the modal-~-calculus, 2nd
Internat. Workshop TACAS’96, Lecture Notes in Computer Science, Vol. 1055 (Springer, Berlin,
1996) 107-126.

N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27 27

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang, Symbolic model checking: 10zo

states and beyond, Inform. and Comput. 98 (1992) 142-170.

[4] R. Cleaveland, M. Klain and B. Steffen, Faster model checking for the modai mu-calculus, Znrernat.
Conf: on Computer-Aided Verification CA V’92, Lecture Notes in Computer Science, Vol. 663

(Springer, Berlin, 1993) 410422.

[5] E.A. Emerson, C.S. Jutla and A.P. Sistla, On model-checking for fragments of mu-calculus. Znternat.
Co@ on Computer-Aided Verijcation CA V’93, Lecture Notes in Computer Science, Vol. 698

(Springer, Berlin, 1993) 385-396.

[6] M.J. Fisher and R.E. Ladner, Propositional dynamic logic of regular programs, J. Compuf. Sysrem Sci.
18 (1979) 194-211.

[7] S.A. Greibach, Theory of’ Program Structures: Schemes, Semuntics, Verijication, Lecture Notes in

Computer Science, Vol. 36 (Springer, Berlin, 1975).

[8] D. Hare], Dynamic logic, in: Handbook of Philosophical Logic, Vol. 2 (Reidel, Dordrecht, 1984).

[9] Y. Kosten and A. Pnueli, A complete proof system for QPTL (an extended abstract), IEEE proc
LZCS’95 (1995) 2-12.

[IO] D. Kozen, Results on the propositional mu-calculus, Theoret. Compur. Sci. 27 (I 983) 333-354.

[I I] V.A. Nepomniaschy and N.V. Shilov, Non-deterministic program schemata and their relation to dynamic

logic, Internal. Co@ on Math. Logic and its Applications (Plenum Press, New York, 1986).

[121 V.R. Pratt, A decidable mu-calculus: preliminary report, 22nd IEEE Symp. on Foundation qf‘ Computer
Science (1982) 421427.

[I31 M.O. Rabin, Decidability of second order theories and automata on infinite trees, Trans. Amer. Muth.
Sot. 141 (1969) 1-35.

[141 N.V. Shilov, Proving halting in first-order dynamic logic, in: Vichislifelnie systemi, Novosibirsk, Institute

of Mathematics, Vol. 124 (1988) 72-83.

[I51 A.P. Sistla, M.Y. Vardy and P. Wolper, The cotnplementation problem for Buchi automata with

application to temporal logic, Theoret. Comput. Sci. 49 (1987) 217-237.
[I61 R.S. Streett and E.A. Emerson, An automata theoretic decision procedure for the propositional mu-

calculus, Inform. and Comput. 81 (1989) 2499264.

[171 I. Walukiewicz, A complete deduction system for the p-calculus, Doctoral Thesis, Warsaw, 1993.

