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Abstract 

A new technique for decidability of program logics is introduced. This technique is applied 
to the most expressive propositional program logic - mu-calculus. 

0. Introduction 

We would like to present program scheme technique (PST) for decidability of pro- 

gram and polymodal propositional logics. This technique leads to one-exponential time 

upper bounds usually. 

Second-order propositional dynamic logic (SO-PDL) of program schemata is a vari- 

ant of propositional dynamic logic (PDL) [6,8] with program schemata and second- 

order quantifiers. Unfortunately it is undecidable, but the validity in Herbrand models 

(HM) is decidable with a one-exponential upper bound. This is based on a polyno- 

mial reduction of the validity problem in HM to the same problem but for sentences 

in the special form. The original one-exponential algorithm solves the last problem. 

The syntax and semantics of SO-PDL together with some results on the expressive 

power and the undecidability of this logic are presented in Section 1 of this paper. The 

decidability of SO-PDL in HM is proved in Section 2. 

We have to remark that some authors have introduced and investigated second-order 

variants of program logics - quantified propositional temporal logic (QPTL), which is 

propositional linear temporal logic equipped with quantification over propositions. In 

contrast to the results mentioned above, QPTL [ 151 is decidable with a non-elementary 

complexity and is as expressive as the monadic second-order logic SlS. The complete 

calculus for QPTL has been presented quite recently [9]. In fact, the completeness 
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proof is based on the reduction of a QPTL formula into a Biichi automaton, and 

performing equivalence transformations on these automata, formally justifying these 

transformations. 

As an example of applicability of PST, we would like to consider Mu-calculus 

(MuC) [ 10, 121 - a propositional polymodal logic with the least (p) and the greatest 

(v) fixed points. In [ 161 a triple-exponential upper bound for MuC is proved on the 

basis of automata theoretical technique (ATT). We recall the syntax and semantics of 

MuC in Section 1 of this paper. In Section 3 the validity problem for MuC is reduced 

to the validity problem for SO-PDL in HM with a linear complexity. So, PST leads to 

decidability of MuC with a one-exponential upper bound and to a new proof of small 

model property (SMP) for MuC [ 161. 

Another algorithmic problem for MuC is axiomatization. In the original paper [lo] a 

very natural sound axiomatization for MuC was proposed, but the completeness of the 

axiomatization was proved for the fragment of MuC - for aconjunctive formulae only. 

A complete axiomatization of MuC and completeness of the axiom system from [lo] 

were open problems during 10 years. The first problem was solved by Walukiewicz in 

1993 [ 171 and the second one in 1994 by him too. As a “side effect” of the application 

of PST to MuC we get another sound axiomatization of MuC which is complete for 

two fragments of MuC: for the so-called diamond formulae and the so-called v-free 

formulae. This axiomatization is presented in Section 3 too. The completeness of this 

axiomatization for MuC itself is an open question. 

1. Syntax, semantics and expressive power of mu-calculus 

and second-order propositional dynamic logic 

The propositional mu-calculus (MuC) is a propositional program - a polymodal logic 

with constructions for the least and the greatest fixed points [ 10, 121. The syntax of 

MuC is constructed from a countable alphabet of (program) symbols and a countable 

alphabet of (propositional) variables as follows. Propositional variables are (elementary) 

formulae. Propositional combinations (negations, conjunctions and disjunctions, etc.) of 

formulae are formulae. Modalities in MuC are associated with program symbols: If a 

is a symbol then [a] and < a > is the pair of modalities associated with this symbol. 

Fixed point constructions are associated with propositional variables: If p is a variable 

then ,LL~. and vp. is the pair of fixed point constructions associated with this variable 

and applicable to formulae with positive instances of the variable only. The semantics of 

MuC is defined in Kripke structures where program symbols are interpreted as binary 

relations and propositional variables - as unary predicates. Propositional operations 

have the usual semantics. For a program symbol a the semantics of the associated 

modalities [a] and < a > is the same as the usual K-modalities semantics but with 

respect to an interpretation of the symbol a. The semantics of fixed point constructions 

is straightforward from their names - the least and the greatest fixed points with respect 

to the inclusion as a partial order on interpretations of propositional variables. But 
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this semantics can be defined constructively too in accordance with the Tarski-Knaster 

theorem for the least and the greatest fixed points of a monotonic function over subsets 

of a set. 

The second-order propositional dynamic logic (SO-PDL) is an extension of propo- 

sitional dynamic logic (PDL) [6,8] with quantifiers over propositional variables. The 

syntax of SO-PDL is constructed from a countable alphabet of (program) symbols and 

a countable alphabet of (propositional) variables too. The syntax consists of (program) 

schemata and (logical) formulae which are defined by mutual induction. 

Schemata: Let us use the natural numbers extended by ~;i as labels. The label 0 is 

called the start-label and the label cc is the exit-label. An assignment is an expression 

of the form 1 : a goto L, where 1 is a label, a is a program symbol and L is a finite 

set of labels. A test is an expression of the form I : if A then L + else L-, where I 

is a label, A is a formula and L+,L- are finite sets of labels. A (program) scheme is 

a finite set of assignments and tests. 

Formulae: Propositional variables are (elementary) formulae. Propositional combina- 

tions (negations, conjunctions and disjunctions, etc.) of formulae are formulae. Some 

modalities are associated with program schemata (similarly to MuC), but others are 

not: If S is a program scheme then [S] and < S > is the pair of modalities associated 

with this scheme as well as q and v are modalities too. Strong and weak quantifiers 

over propositional variables are admissible too: If p is a propositional variable then 

Vp. , Vfp., 3p and 3fp. are quantifier prefixes with this variable. 

The semantics of SO-PDL is defined in Kripke structures where program symbols 

are interpreted as binary relations and propositional variables - as unary predicates. The 

semantics of a program scheme in a Kripke structure is its input-output (IO) binary 

relation which can be defined in the usual manner [8]. Propositional operations have 

the usual semantics. For a program scheme S the semantics of the associated modal- 

ities [S] and < S > is the same as the usual K-modalities semantics but with respect 

to an IO-relation of the scheme S. Modalities q and o are the usual SS-modalities, 

so their semantics is traditional. The semantics of quantifiers is straightforward from 

their names ~ for all/some (finite) interpretation of a propositional variable as a unary 

predicate. 

A traditional algorithmic problem for logics is the decidability. For MuC and SO- 

PDL this problem can be formulated as follows: Is there an algorithm deciding for any 

formula its validity in each Kripke structure on each state. For MuC the answer (on 

principle) is “Yes” because MuC can be interpreted in Rabin’ second-order logic of 

several monadic successor functions [13]. But the next question arises for MuC: what 

about lower and upper bounds for the decidability of MuC? A one-exponential low 

bound for propositional dynamic logic (PDL) [6,8] is well known but a traditional 

reduction of PDL to MuC [ 161 is exponential. In [ 161 a triple-exponential time upper 

bound for MuC is proved on the basis of a polynomial reduction to a certain emptiness 

problem for finite automata on infinite trees. So an effective procedure for the emptiness 

problem mentioned above can improve the upper time bound for MuC too. It seems 

interesting and important to develop a self-contained technique oriented for decidability 
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of a variety of program-polymodal logics in general and of MuC in particular. The 

program scheme technique (PST) introduced in [l I] is a good candidate for these. 

Lemma 1. The expressive power of A4uC is less than or equal to the expressive 

power of SO-PDL. 

Proof. Let us consider a combined logic MuCfSO-PDL - with united syntax and 

semantics. For any formulae A and B, for any program scheme S, for any program 

symbol a and for any propositional variable p the following formulae are valid: 

(A --+ B) * ((1A) v B), 

(31.4)) H 4 

(l(A A B)) * ((7A) V (lB)), 

(3 < s ’ A)) * ([m~A))T 
(3 < a > A)) c-) ([aI(- 
(30‘4)) * @(7A)), 
(33P.A)) ++ (VP.(lA)), 

(-WP.4) * WP.W)), 

-PP.B(P) H VP.~B(TP). 
So it is sufficient to consider so-called normal formulae of MuCfSO-PDL only - i.e. 

those formulae without equivalences and implications in which negations are applied 

to the proposition variables only. Similarly to MuC those formulas are monotonous 

[ 161. Hence for any normal formulae B and C, for any propositional variable p the 

following formulae are equivalent: 

B(PP.~(P)) and ~P.(o(~(P) + P) + B(P)). 

Similarly, for any normal formulae B and C, for any propositional variable p (i.e. 

p is absent in B and C) the following formulae are equivalent: 

B(vP.~(P)) and ~P.(o(P + C(P)) A B(P)). 

So all fixed points can be eliminated. 0 

For any program schemata Sl and S2 let EQ(S1, S2) be a formula with the following 

semantics: EQ(S1, S2) is valid in a state s of a Kripke structure iff {t 1 (s, t) E ZO(Sl)}= 

{t I(& t) E w=)). 

Lemma 2. PDL extended by EQ is undecidable. 

Proof (sketch). EQ permits to check that in a Kripke structure the interpretations 

of some program symbols are commutative, some inverse. Those properties are 

sufficient for a simulation of counter-machines in terms of PDL, so PDL with EQ 

is undecidable. 0 

Since PDL is expressible in MuC [ 10,161, we get as a consequence of Lemmas 1 

and 2 the following theorems. 



N. V. Shilovl Theoretical Computer Science 175 (1997) 15-27 19 

Theorem 1. SO-PDL is undecidable. 

Proof. For any program schemata Sl and S2 the formula EQ(S1, S2) is equivalent to 

Vp.( < Sl > p H < S2 > p) where p is a new propositional variable (i.e. p is absent 

in Sl and S2). 0 

Theorem 2. The expressive power of MuC is less then the expressive power of 

SO-PDL. 

Proof (sketch). Let us consider the following SO-PDL formula Vp.( < (a) > p H 

< (b) > p), where p is a propositional variable, a and b are program symbols and 

(a) and (b) are notations for program schemata (0 : a goto {m}} and (0 : a goto {cQ}} 

respectively. If this formula is equivalent to a formula A of MuC then (since it is equiv- 

alent to @((a), (b))) for any schemata Sl and S2 the formula EQ(S1, S2) is equivalent 

to the formula A(Sl/a, S2/b) which is expressible in MuC. (Here A(Sl/a, S2/b) is the 

result of the substitution of the program schemata Sl and S2 on places of the program 

symbols a and b respectively.) So the formula Vp.( < (a) > p * < (b) > p) is not 

expressible in MuC. 0 

2. Program scheme technique and decidability 

A Herbrand model (HM) for a formula or a scheme is a Kripke structure whose 

domain is the set T of all strings (including the empty string ;I) over the alphabet of 

program symbols which occur in this formula or this scheme and the interpretation for 

those program symbols is the concatenation, i.e. for any program symbol a and any 

string s the following holds: a(s) = as. 

A (halting) assertion is a formula of SO-PDL in the form PREF < S > TRUE, where 

PREF is a quantifier prefix and S is a program scheme with simple tests only, i.e. all 

conditions are propositional variables. 

Lemma 3. In Herbrand models, any formula of SO-PDL is equivalent to a halting 

assertion which can be constructed in linear time. 

Proof. Let us present the following reduction algorithm which transforms any formula 

into a halting assertion. We would like to describe this algorithm in general in terms 

of global steps and give some remarks on a feature of each step. 

The first step is an elimination of all complex tests as follows: for formulae B and C, 

for a new propositional variable p (i.e. which is absent in B and C) the formula B is 

equivalent to the formula 3p.(o(p H C) A B(p/C)) where B( p/C) means substitution 

of p on place of each instance of C. 

The next step is a so-called normalization, i.e. the elimination of all equivalences and 

implications and the filtration of the negation upto propositional variables in accordance 

with the traditional equivalences mentioned in the proof of Lemma 1. 
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The third step is a replacement of all elementary subformulae (i.e. all instances of 

propositional variables which are not tests) by so-called halting formulae as follows: 

a formula B is equivalent to the halting formula < B? > TRUE, where B? is the 

abbreviation for the program scheme (0 : if B then {IX} else @}. 

The last step of the reduction consists in an interpretation of propositional op- 

erations and box-modalities in terms of diamond-modalities and second-order quan- 

tification. Let us use the traditional structured operation; for sequential composition 

of schemata, if-then-else-j for deterministic choice of schemata, while-do-od for 

deterministic loop of a scheme, U for non-deterministic choice of schemata and * 

for non-deterministic loop of a scheme. For a program symbol a we denote by (a) 

the program scheme (0 : a goto {cm}}. Let HALT and LOOP be the following 

schemata: (0 : if TRUE then {co} else (0)) and (0 : if TRUE then (0) else {co}} 

respectively. 

Then the elimination of propositional operations for V and A can be done as follows. 

For any disjoint quantifier prefixes PREFl and PREF2 (i.e. PREFl and PREF2 have no 

common propositional variables), for any program schemata Sr (disjoint with PREF2) 

and S2 (disjoint with PREF,) the following formulae are equivalent in Herbrand 

models: 

((PREF, < S1 > TRUE) V (PREF2 c SZ > TRUE)) and 

PREFlPREF23p.( < iJ’ p then SI else S2 ji > TRUE), 

((PREF, < SI > TRUE) A (PREF2 < S2 > TRUE)) and 

PREFlPREF2Vp.( < if p then S1 else S2 ji > TRUE), 

where p is a new propositional variable. 

The modalities q and v can be simulated in Herbrand models by modalities [UNI] 

and < UNI > respectively, where UN1 is the program scheme (U,,&a))* and ACT 

is the set of all program symbols of the formula. 

The elimination of modalities associated with program schemata can be done as 

follows. For any quantifier prefix PREF, for any program schemata Sr and S2 let 

dS1 be a deterministic scheme which simulates non-deterministic constructions 

got0 . . . ) then . and else.. . of Sr by deterministic choice with respect to values 

of a vector of new propositional variables P and aborts this simulation and halts in the 

case when all variables from P are falsified. For example, the non-deterministic goto- 

construction in the assignment 1 : a goto {II, 12) is simulated by the following 

fragment: 

1 : a got0 (1’) 

1’ : ij” p1 then {I,} else {I”} 

I” : if p2 then { 12) else {m}, 
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where I’ and 1” are new labels and p1 and p2 are new propositional variables. Then 

the following formulae are equivalent in Herbrand models: 

(< St > (PREF < S2 > TRUE)) and 

(3P. PREF (< dS1 ; if (VP) then S2 else LOOP ji > TRUE)), 

([S,](PREF < S2 > TRUE)) and 

(V’.fP. PREF ( < dS, ; if (VP) then S2 else HALT ,fi > TRUE)). II 

Lemma 4. The validity in Herbrand models for halting assertions is decidable in 

one-exponential time. 

Proof. Let us choose and fix a halting assertion Qt pl . . . Q,,p,( < S > TRUE) where 

Qt,. . . , Q,, are quantifiers, PI,. . . , pn are different propositional variables and S is a 

program scheme. Without loss of generality we can suppose that 

the start-label 0 marks an assignment in S, 

each label marks the unique operator in S, 

each propositional variable occurring in S occurs among ~1,. , p,, . 

Let VI,. . . , v, be different boolean variables. For any labels 11 and 12, for any evaluation 

of vI, . . . , v, (by boolean values) let us write 11 -+ (vt . . . v,) --, 12 iff there exists a 

logical path (i.e. across tests) which is consistent with the evaluation. Let us define 

the notion of the type for a label as follows: if the label marks an assignment in S 

then its type is the program symbol from this assignment; the label cx has all possible 

types; otherwise the type of the label is undefined. Let us define SPACE as the set of 

all L where L is a set of labels of one and the same type. For any sets L1 and L2, for 

any evaluation of VI,. . . , v, let us write LI -+ (III . . v,) -+ L2 iff for any label 12 E L2 

there exists a label 11 ELI such that 11 -+ (~1 . . v,) -3 12. 

The decision procedure for validity of the halting assertion Qt p1 . Q,,p, 

(< S > TRUE) consists of the following two steps and the validation criterion. 

The jirst step: For any i (0 < i < n) let (QiPi)’ be 

the quantified boolean variable Qin, iff Qi E {V’, I}, 

or the evaluation of Vi by FALSE iff Q; E {Yf, If }. 

Now we are going to define the sequence Do C D1 C . C SPACE which may be in- 

finite but stabilizes after an exponential number of steps. Let Do be {{cx}}. For any 

j 3 0 let Dj+l be Dj U {Ll E SPACEl(Q,v, )’ . . . (Qnvn)‘: there exists L2 E Dj such that 

L1 -+ (VI . ..v.) -~j L2). Let D, be U/>ODj. 

The second step: For any i (0 < i d n) let (Qipi)” be the quantified boolean variable 

Vri iff Ql E {v,v,f>, 

or 3, iff Q, E (33“ }. 

Now we are going to define the sequence Eo g El C . C SPACE which may be infinite 

but stabilized after an exponential number of steps. Let Eo be D,. For any j 2 0 let 
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Ej+l be Ej U {Ll ESPACE~(Q~UI)” . . .(Qnu,)“: there exists L2 E Ej such that Li -+ 

(~1 . . II,) y-, L2). Let E, be Uj>aEj. 

Then the validation criterion is: the assertion Ql pl . . . Q,,pn( < S > TRUE) is valid 

iff (0) E E, holds. 

Indeed, let us consider the following subsets of the Herbrand domain T: for any 

k b 0 the set Tk consists of all strings of length less than k. So To = 0. For any 

k (k 2 0) and any i (0 6 i 6 n) let (Qipi)k be the quantified interpretation for the 

proposition variable pI : 

Qipi C T iff Qi E {v’, 3}, 

or Qipi C Tk iff Qi E {Vf gf} 5 . 

Then for any j 3 0 and for any L E SPACE 

L E Dj iff (Qi ~1)’ . . . (Qnpn)‘: there exists a label I EL and a path from 1 to 00 with 

j assignments at most which is consistent with an interpretation of ~1,. . . , pn by subsets 

of Herbrand domain chosen with respect to the quantifier prefix (Qi p1 )O . f . (Qnp,)O; 

L E Ej iff (Qlpl)' .(Q,,p,,)‘: there exists a label Zg L and a path from I to co 

which is consistent with an interpretation of ~1,. . . , pn by subsets of Herbrand domain 

chosen with respect to the quantifier prefix (Qi p1 )j . . . ( Qnpn)j. 

Both facts can be proved by induction. Since T= Ukao T then the validation criterion k 

follows from the above facts. 0 

As a consequence from Lemmas 3 and 4 we get 

Theorem 3. The ualidity problem for SO-PDL in Herbrand models is decidable in 

one-exponential time. 

3. Application of PST to MuC 

Lemma 5. The decidability problem for MuC is equivalent to the ualidity problem 

in countable Kripke structures. 

Proof (sketch). A formula B is said to be a subformula of a formula A iff the string 

B is a substring of A. Let us enumerate formulae of MuC with respect to the natural 

partial order for formulae, i.e. any formula A appears in the enumeration after all its 

subformulae: Ao, . . . A,, . . . . Then the lemma follows from the proposition: 

For any natural number n, for any model A4 with domain D, for any countable set 

of states D’ CD there exists a countable set D” such that D’ CD” CD and for all 

0 d m < n the relation N(A,) n D’ = M(A,) n D’ holds, where N is the restriction of 

A4 by D”. 

(The proposition can be proved by induction on n.) 0 
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Lemma 6. The validity problem for MuC in countable Kripke structures is reducible 

to the validity problem for SO-PDL in Herbrand Models, and the time complexity 

of this reduction is linear. 

Proof (sketch). Let A be a formula of MuC. Let us consider a combined logic MuC+ 

SO-PDL - with united syntax and semantics and the formula A as a formula of this 

logic. 

For any program symbol a which occurs in A let b,, c, and pa be new program 

symbols and a new propositional variable. We would like to use the structured op- 

erations * , ; and ? again (see the proof of Lemma 3). Finally, let us denote by BA 

the result of the replacement of each program symbol a in A by the program scheme 

pa? ; (bn)* ; c,. Then the formula A is valid in all countable Kripke structures iff the 

formula BA is valid in all countable Kripke structures where all program symbols are 

interpreted as graphics of general functions. This proposition is an analog of the re- 

duction of PDL to deterministic PDL and is proved similarly [S]. At the same time a 

quantifier-free and SS-modalities-free (o and 0) formula of MuC+SO-PDL is valid in 

all countable Kripke structures where all program symbols are interpreted as graphics 

of general functions iff it is valid in all Herbrand models. This proposition is an analog 

of similar reductions from arbitrary models to Herbrand models in the classical theory 

of program schemata and can be proved with usage of the notion of the associated 

Herbrand model [7]. 

Since for any formulae B the following formulae 

-pp.B(p) and vp.~B(~p) 

are equivalent then we can suppose without loss of generality that the formula A is a 

normal formula. Since normal formulae of combined logic are monotonous (similarly 

to MuC [ 161) then for any normal formulae B and C, for any propositional variable 

p the following formulae are equivalent: 

B(~P.C(P)) and ~P.(o(C(P) + P) --) B(P)) 

B(vp.C(p)) and ~P.(o(P + C(P)) AB(p)). 

So, we can eliminate all fixed points in BA and get a formula of SO-PDL which is valid 

in all Herbrand models iff the initial MuC formula is valid in all countable models. 

0 

As a consequence from Theorem 4 and Lemmas 5 and 6 we get 

Theorem 4. A4uC is decidable in one-exponential time. 

At the same time as a corollary of the proof of Lemma 4 we can get a new proof 

of the finite model property [ 161. 
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Theorem 5. A4uC has the jinite model property: a formula is valid @ it is valid in 

all finite Kripke structures. 

Proof (sketch). Let A be a formula of MuC. Let B be the correspondent formula of 

SO-PDL which is constructed from A in accordance with the sketch of the proof of 

Lemma 6. Let Qlpl . . . Qnpn( < S > TRUE) be the halting assertion which is equiv- 

alent to B and is constructed in accordance with the proof of Lemma 3. As fol- 

lows from the justification of the validation criterion from the proof of Lemma 4 

Qlpl . . . Qnpn( < S > TRUE) is valid in all Herbrand models iff (Q~pl)~. . (Qnpn)k: 

there exists a path from 0 to co with 2k assignments at most which is consistent with 

the interpretation, where k is an exponential function of the size of S. So (without 

loss of the validity) it is possible to restrict the Herbrand domain T till T2*k where 

k = exp IAl is an exponential function of the size of the formula A. 0 

In the original paper [lo] a very natural sound axiomatization for MuC was proposed, 

but the completeness of the axiomatization was proved for the fragment of MuC - for 

aconjunctive formulae only. A complete axiomatization of MuC and completeness of 

the axiom system from [lo] were open problems for 10 years. Both problems were 

solved by Walukiewicz in 1993 [ 171 and 1994, respectively. 

We would like to present an alternative research approach to a complete axiomati- 

zation of MuC. The idea of this approach is similar to [14] and consists in the design 

of a sound axiomatic system and a deductive strategy which establish the deductive 

equivalence of PDL and some fragments of MuC. 

Let us consider another combined logic PDLfMuC and accept as the start point 

a complete axiomatization of PDL [8]. Let us denote this axiomatization by AS. We 

would like to add to AS the new axiom scheme and two new inference rules. The 

axiom scheme is the equivalence mentioned above in the proof of Lemma 1 and in 

the sketch of the proof of Lemma 6. 

AXlpp.A(p) t-f vp.~A(lp). 

The first inference rule is a PDL+MuC version of the equivalence 

A(PP.~(P)) and ~P.(o(~(P) + P) + A(P)) 

mentioned in the proof of Lemma 1 and in the sketch of the proof of Lemma 6: 

IR1 W~UB(P) + P) AA(P) 

A(PP.B(P)) . 

So the new axiom and the first inference rule are some steps of application of PST 

to MuC. The second new inference rule is not inspired by PST, but is some variant 

of induction 

IR2 A(@ue), WWWP) + P) ---) WWA(P) + PWAP(P))) 
A (vP.B(P)) 
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In the inference rules UNI is the same program scheme as in the proof of Lemma 3, 

p is a propositional variable, A(C) is a normal formula (i.e. negations may be applied 

to variables only) with instances of a subformula C, A(D) is result of the substitution 

of a formula D for C in A. 

Let us denote by AS1 the extension of the complete axiomatization AS for PDL by 

the inference rule IRl. Let us denote by AS2 the extension of AS1 by the inference 

rule IR2. Let us denote by pAS1 and pAS2 the result of the translation of all PDL- 

constructions of AS1 and AS2, respectively, in terms of MuC with respect to the 

standard procedure [ 10, 161. Finally let us define 

a p-formula as a normal v-free formula and 

a diamond formula as a normal box-free formula. 

Theorem 6. 1. The axiom systems ASl, AS2, p AS1 and ,u AS2 are sound. 

2. The axiom systems AS1 and pAS1 are complete for p-formulae of PDLf MuC 

and MuC, respectively. 

3. The axiom systems AS2 and pAS2 are complete for diamond jbrmulae oj 

PDL-tMuC and MuC, respectively. 

Proof (sketch). Since the inference rule IRl is a quantifier-free version of the equiv- 

alence then this rule is invertible. So the application of this rule 

preserves the validity in both directions (up-down and down-up), 

introduces instances of p in up-down direction, 

eliminates instances of p in up-down direction. 

So the strategy which consists in the application of IRl in down-up direction is to 

nest the least fixed points of a p-formula of PDL+MuC, this strategy leads from a 

p-formula of PDLfMuC to a validity equivalent formula of PDL. Since the axiomati- 

zation AS is complete then AS1 = AS+IRl is complete for ~-formulae of PDL+MuC. 

Since each formula of MuC can be considered as a formula of PDL+MuC and AS1 

is complete for PDLfMuC then pAS1 - the translation of AS1 in terms of MuC - is 

complete for p-formulae of MuC. 

The last item of the theorem can be proved similarly based on the following fact: 

IR2 is invertible for diamond formulae of PDL+MuC. 0 

Question: Are AS2 +AX and pAS2 +AX complete? 

4. Conclusion 

Decidability and axiomatization are not the only algorithmic problems for program 

logics. A new algorithmic problem for program logics is the model-checking problem, 

i.e. the evaluation of the validity set of a formula in a finite model. For MuC and SO- 

PDL this problem is decidable because the semantics of those logics can be defined 

constructively. But the next question arises: what about lower and upper bounds for 

this problem? 
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The model-checking problem as a mathematical problem originated as an approach 

to specification and verification of finite state systems. A stream of publications on 

applied model-checking is very wide now and can be a subject for a separate survey. 

We would like to point out [3] because of the importance of this paper for the verifi- 

cation practice. Furthermore, [3] demonstrates the following typical feature of applied 

computer-aided model-checking: MuC is an internal representation of external speci- 

fications and verification is done in terms of MuC’ model-checking. The time bound 

for the direct model checking algorithm based on the constructive semantics of MuC 

is exponential on the length of a formula, and it turns out that the model-checking 

problem for MuC is an NP and co-NP problem [5], in contrast with a lot of program 

logics which are decidable with a one-exponential time bound as MuC itself but have 

a polynomial model-checking algorithm. So, the problem of finding an expressive frag- 

ment of MuC with a polynomial model-checking algorithm arises. In [5] one of such 

fragments is presented and generalized: this fragment consists of normal formulae of 

MuC such that in each conjunction only one subformula has instances of propositional 

variables. The class of such fragments introduced in [4] has the following restriction: 

the alternation of the fixed points have to be bounded in each class. The new fragment 

of such kind is presented and generalized in [2]. 

Another fragment of MuC with a polynomial model-checking algorithm is presented 

in [l]. This fragment consists of normal formulae such that all inner least fixed points 

are syntactical independent of all outer greatest fixed points. So, these formulae have 

no restrictions on the alternation of fixed points, neither on the discipline of modal 

operators or boolean connectives, but have the restriction on the dependence of fixed 

points. This fragment is more expressive than CTL [3] and PDL [6]. The correctness 

of this polynomial model-checking algorithm can be proved in terms of SO-PDL too. 
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