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Abstract—The basic problem involved in determining where the ship can not go is an
attempt to reconstruct the sea bed. The interpolation of points necessary to reconstruct
the sea bed was done using a bicubic spline. This method was chosen because of the
similarities between the boundary conditions believed to be characteristic of the mod-
eling problem and those of the natural spline. These include the continuity of the first
and second derivatives, and the minimum curvature exhibited by the spline method
which is characteristic of the sea bottom. The major problem faced in modeling the sea
bed was selecting the extra data points needed in order to find a meaningful solution.
This selection was done both by intuition and by constructing splines to model the
possible behavior along a straight line. The results were two different models: a ridge
model, characterized by a single shallow ridge in the center of the region; and a hill
model, characterized by two smaller ridges. By varying one of these extra data points
(called critical points), several models of both these extremes as well as intermediate
models were generated. However, it was found that the number of given points did not
permit a definitive model. Data was needed inside the region, especially at the critical
points and at the exterior points in order to better define the boundary. The boundary
could not be reliably determined since our spline model does not allow for accurate
extrapolation. Thus, the model, although close to what is believed to be the correct
model, is not good enough to allow for navigation because of the limited number of
given data points.

INTRODUCTION

The model studied in this paper is the detailed determination of the depth of a body of
water. Initial data consists of 14 (x, y) water surface coordinates and respective z coor-
dinate depths. Applying spline interpolation techniques to this data, a detailed three-
dimensional construction of the sea bed is obtained. The construction is obtained in the
form of contour maps which can be used as depth navigational charts. We will focus our
attention on a particular boat with a 5 ft draft.

ASSUMPTIONS

In constructing the contour map, an interpolation, based on 14 given depths must be
made to other regions within the (x, y) domain of the initial data. Thus we are faced with
the problem of finding a surface z = F(x, y) which represents the sea bed. This function
does not have to be smooth or continuous (i.e. there can exist sharp peaks, rock for-
mations, coral reefs, etc). These possibilities will be excluded and it will be assumed that
the sea bed is smooth and continuous. To be more rigorous, the first and second derivatives
of F(x, y) are continuous with no jump discontinuities. Physically, this would correspond
to a fine gravel or sand bottom, which is common in shallow water. It now remains to
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find a physical principle that gives us insight into the general shape of a surface acted
upon by water. Since the region being considered is shallow. it will be assumed that the
water is flowing over the sea bed. Therefore the water will erode any structures which
perturb the flow from its minimum lateral kinetic energy (i.e. the kinetic energy of motion
perpendicular to the direction of flow). This implies that the most favorable sea bed that
minimizes this function is a plane surface. The direction of motion is not perturbed except
by otherwise negligible friction effects between water and the sea bed. Therefore any sea
bed which is not a plane surface will tend towards one through erosion effects. This model
is of course idealized and does not take into account such factors as sedimentation or
large unerodible structures. Thus, there are two conditions imposed on the sea bed:

(1} At least the first two derivatives are continuous.

(2) Given the initial structure, the surface constructed is of minimum curvature.

CHOICE OF INTERPOLATING SCHEME

Interpolation is the fitting of a curve through a given set of data points; in this instance,
by the use of polynomial approximations. Such a polynomial would have to be of fairly
low degree to reflect the fact that the sea bed is flat, and the method of cubic splines does
this well. The idea of a spline through a set of data points is best illustrated by imagining
a straight flexible rod being placed over a set of points and putting weights on the rod to
force it to pass through all the points. It is the straightest line through the points. This is
precisely one of the conditions of the model. Cubic splines are differentiable piecewise
polynomial functions on an interval [ Xy, X,,] where X, < X, < - < X, are called nodes.
The function is obtained by fitting a cubic polynomial between each successive pair of
nodes. This is accomplished by fitting a cubic on [X,. X,] agreeing with the function at
Xo and X, another cubic on [X,. X-] agreeing with the function at X and X, etc. A
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Fig. 1. Initial data coordinates for spline analysis.
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general cubic polynomial involves four constants. Thus there is sufficient flexibility to
ensure that not only the interpolant is continuously differentiable on the interval, but also
that it has continuous second derivatives on the interval, even at the nodes. Thus, cubic
splines satisfy the two conditions of the model; they have continuous first and second
derivatives and can furnish the straightest curve fitting the given data points. For this
model the natural spline boundary condition is chosen. This corresponds to the second
derivatives being zero at the end points X, and X,,. Such a condition allows for the max-
imum flexibility in determining the straightest curve through the given nodes.

BICUBIC SPLINE PROCEDURE

Since the sea bed has two independent variables, it requires generalization of the one-
dimensional spline method to two dimensions. This is called a bicubic spline. It is nec-
essary to arrange the data points in an m X n grid formation = {(X;, ¥) |0<i<n,0<j
< m}. From this it is possible to find the value of the interpolating surface F(X, ¥) at (X,
Y’) by running one-dimensional cubic spline interpolations along the grid lines X = X;

Table !. Initial grid data (nodes)

(a) The data are given as (v coordinate. depth).
The points A, B and C are critical points which determine the form of the model. A = CR (145.30) is the
dominant critical point. with 3 < Z < 7 the depth taken at the critical point.
The points B = CR (125,115) and C = CR (185.~-20) are milder constraints on the model. BZ may vary
between 5 and 7.5, and C is generally taken as shown (although it can be moved and have its ; coordinate
changed).
The columns correspond to the x coordinates: Col. 1: X = 85:Col. 2: X = 105: Col. 3: X = 125;:Col. &: X =
145; Col. 5: X = 165:Col. 6 X = 183

No\Col no t 2 3 4 5 6

1 (—80.9) (-81,9) (=75.9) (—70,9) (-63.9) (—659
2 (3.7.9) (28.6) (—40,9) (=259 (~6.5.9) C

3 (56.5.8) (85.5.8) (7.5,4) A (84.4) (22.5.6)
4 (147.8) (145.8) B (141.5.8) (146.8) (140,8)
5 (145.8)

(b) Example: of spline calculations for determination of depth of A(30.Z)

The three one-dimensional spline calculations:
1. Line A: Ridge model result CR (143.30), Z = 3:2. Line B: Hill model result CR (145,50). Z = 6.9; 3. Line
C:result CR(145,60). Z = 4. 30r CR(145,70) = Z = 4

Coordinates

Line X Y Depth Description
A 117.5 -38.5 9  Given value
129 7.5 4 Given value
162 84 4 Given value
185 140 8  Modified value
1435 50 3.02  Spline resuit
B 185.5 225 6  Given value
105 85.5 Given value
1435 50 6.87  Spline result
C 75 -3 8  Modified value
108.5 28 6  Given value
162 84 4 Given value
215 140 8  Modified value

145 40 4.0t Spline result
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through the data F(X;, ¥;), 0 <j < m and evaluating each spline at ¥ = Y'. Then a cubic
spline interpolation is performed along ¥ = Y, through the values obtained above, and
then this is evaluated at X = X".

A one-dimensional cubic spline program{!] was modified so as to peuorm the bicubic
spline interpolation as outlined above. The program listing is given in the Appendix. The
region (75,200) x (—350, 150) was divided into six columns parallel to the y-axis. This
orientation was chosen because the maximum number of nodes (given data points) could
be obtained and they were better distributed along this direction [refer to Fig. 1 and Table
I{a)]. The node grid input into the program consists of initial data points along the ap-
propriate columns. The position values assigned to the columns are given in Table [, along
with the y and z coordinates of the nodes and their grouping into columns. Most of the
nodes used are given data points, or given data points slightly extrapolated to correspond
to the center of the column. The program then performed a spline analysis down the x

calnmne nd toarn, i
columns and interpolated 41 equally spaced points per column. These points were then

used to construct a spline along v = constant with 20 equally spaced points interpolated.

The output was in the form of a contour map with a resolution of 20 x 41 extrapolated
points. The contour map resolution 20 X 41 was selected because it is the compromise
between tolerable computation time and maximum resolution.

MODEL PARAMETERS

The data given is not sufficient. Extra points must be given in order to clarify the
possible nature of the sea bed surface. Observing the general form of the surface based
of the given data, it becomes apparent that two possible structures exist. These structures
are centered about the two given data points with depths z = 4. These structures can be
either a long ridge or two smaller hills each centered about the points (129, 75) and (162,

84). The point that discriminates between these two models is the critical point CR(145,
50). A variation in depth of this point will decisively alter the results. To determine the

Table 2. Impassable area sensitivity analysis [for depths (5f1)]
(Total grid area = 820 sq. units)

Depth Central Total Percent
Model % peak Other area of 820
Ridge 30
CR185,—20) -840 140 6 146 17.80
CR(185.-20) 9.0 141 14 135 18.90
CR(185.-83) 8.0
CRi(192.84) 6.4 137 22 137 19.15
CR(192.84) 6.0 113 9 122 14.88
CR(192.84) 7.0 108 14 122 14.88
CR(185.-20 7.3 0.00
CRi192.85) 6.0 113 7 i20 14.63
CR(125,3.5) 53 5 163 19.88
Intermediate
CR(145 30) 4.0 130 4 134 16.34
CRil43 50) 3.0 113 3 116 14.15
CR(1345 30) 6.0 85 0 85 10.37
Hill
CR(145 30) 7.0 86 0 86 10.49

**CR(X.Y) = critical point at position x.y Other peak centralized at +200.25) *Standard model CR(183, ~20)
= 8, CRUI25. 115y %% = 7.5
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possible range of depths for this point a one-dimensional spline analysis was carried out
along the major trend lines of the sea bed. Trend lines for the critical point CR(145, 50)
are the lines between the two points where - = 4 (trend A) and the line that is perpendicular
to this direction and passes through (185.5, 22.5) and (103, 85.3) (trend B. see Fig. 1). A
spline analysis is performed along these two lines to determine the range of variation of
depth at the critical point {see Table [(b)]. Two other milder critical points exist at CR(123.
115) and CR(185. —20). Analysis similar to the one performed on CR(145, 50) gave depth
ranges as indicated in Table 1(a). These two critical points are less sensitive to variations.

SPLINE DEPTH ANALYSIS
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Fig. 2. (a) Spline depth analysis contour map. Depths in % ft: X. ¥ coordinates in vards. Ridge Model: CR(145.
50) Z = 3; (b) Intermediate Model: CR(143. 30) Z = 3: (¢) Hill Model: CR(145. 50y Z = 7.
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Thus, for the analysis of the main critical point variations, they are assigned values: for
CR(125, 115), z = 7.5 and for CR(185, —~20), z = 8.

ANALYSIS

Thirteen bicubic spline analyses were run. The results are summarized in Table 2. Most
runs were performed with the aim of determining the effects from the variation of the
depths of the mild critical points. These effects were not the main purpose of the analysis
but were used to determine sensible values of the depths of the milder critical points. The

SPLINE DEPTH ANALYS!S
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Fig. 2. (continued)
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primary analysis was the variation of the depth of the main critical point. Figures 2(a).
{(b), (c) are contour maps that represent the topological features of the sea bed. Fig. 2(a)
is the ridge model (i.e. z = 3) in which the main feature is a large central ridge. The area
within the dashed contour line represents the area impassable to the boat. This area
represents about 17.8% of the total area in consideration. Figure 2(c) is the hill model
with z = 7. It is observed that there are two distinct impassable shallow regions with a
small passable ridge between them. Figure 3 is a plot of the percent of the area impassable
to the ship as a function of depth of the main critical point CR(i45, 50). Note that the
contour map for the ridge model shows a second shallow region at (200, 30). This result
was totally unexpected and further analysis [variation of critical point CR(185, —20) and

SPLINL DEPTH ANALYSIS
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X- COORDINATE
Y 73 88 1ot 118 128 141 154 187 180 193 Y

150 |80 80 80 79 75 80 80 80 80 80 WJ 83 84 89 0 89 87 83 ax,/v 150
145 Jao 80 80 80 80 80 80 80 3 84 33 8§12 79) 145
140 a0 a0 80 80 80 79 80 80 80 80 30 80 80 30 3gd 140
135 |79 80 o 80 79 79 79 78 77 75 75 75 77 78 80 Ai] 133
130 |79 30 0.79 78 78 78 7% 130
125 §78 79 0 78 78 78 77 7% 123
120 §78 79 077 76 77 76 73 120
11s {78 79 9 76 75 76 75 72 115
110 110
105 s 105
100 56 100
95 \kq 95
90 4 90
85 85
80 80
75 75
70 49 70
65 45
60 60
55 i
50 50
4s 4s
10 Iy
35 s
30 30
5 25
20 20
15 15
10 10
H 5

0 0
-5 -5
~10 -10
~15 -15
~120 -20
~25 .25
~30 -310
~35 93 94 94 91188 S
-0 91 93 94 94 2887 a3 -40
-4 91 92 93 93 92 \ay -45
~50 97 91 92 Y
¥ 82 95 108 121 134 147 et 174 187 100 ¥

T- COORDINATE
(c)

Fig. 2. (continued)



592 ANDREW Davies er al.

{ Standard model : CR{185,-20)z=8)

40

35

Percentage of total area

0 T T T T T
3 4 5 6 7

Depth of CR(145,50) (ft)
Fig. 3. Impassable area vs. depth of CR(145, 50).

other points in column 6] showed it to be stable to variations. Thus this must be a real
result.

CONCLUSION

The single largest source of error in the analysis is the lack of sufficient data. If a larger
set of depth measurements are systematically made, then we would feel more confident
telling the captain of the boat to use our contour maps. As it stands, a decision as to
which model is correct, the ridge or hill model, could be obtained by making a depth
measurement at the critical point CR(145, 50). Further analysis with larger sets of data
would determine whether the overall assumptions made are valid. We were in the process
of running the spline program on data taken from real contour maps and making further
comparisons before time ran out.
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APPENDIX

Program listing

3curze Line IIM Pecsonal Computer

BASIC Compiler Vi

90

RLM T4C DIMENISIONAL SPLINE WITH NATUAAL SOUNDARY CONDITICNS

Rpx
AEM
REM
RZM
L34.}
RENM
REM
OLUNNS
REM XT- X POSITION ALONG Y-COLUMNS
REM NX,NY. NUMBER OF DEPTHS CALC ALONG X AND Y ALIS
REM XIOL- CENTER POSITION OF I-COLUMNS

QEFINT 1-M

DEFDEL A-K, 0-2

DIM CXY(4,18),2XY 04,18
L

OIM YTU44) , ITU24) NCYNE4) , UL 44}, 2C0LEH)

CLY-INPUTTED GAILD

IXY- INPUTTED DEPTH

Ih~ SPLINE CALCULATED DEPTH

11- CALCULATED SECOND DERIVATIVE

RT.1.U- TEMP VARIARLE USED TOR CALC OF SPLINE
NCI- NUMBER QF DEPTH MIASUREMENTS ALONG 3-COLUMNS

REM RUN PROGRAM BLOCK
WIDTH "LPT1-",335%
cosus 100
REM CALCULATE SPLINE FOR COLUMNS (-4
INCYls 20071¢HY-1)
INCX's 125/¢(NZ-1)
FOR JL=1 TO 4
NzNGYR(JL)
fOR JJsy TO N
RTCJII=CIYCIL, J)
cosus t2¢
T= -30
FOR JJ=1 TO NY
6osy Y

(28]

TEdd = IXY(JIL, IS NEIT 10
'CALC SECOND DERIVATIVE ROUTINE I

IXTOIL,J3) =l

YT(JJ)= RT

RT=RT + INCY!
NEIT J3J

REN CALCULATE SPLINE ALONC Y=GONST
Nz4
FOR JL=x1 TG NY
FOR JJat TO N
RT(JIJ)=s ICOLCJ):
NEXT J9
cosus 110
RT= 75
FOR JJ=t TO NI
GCOsUB 143 "SPLINE CALC ROUTINE
TALIT JLr=2
IT(Jd)= RT
RT=RT.INCE!
NEXT JJ
REIT JL
REM QUTPUT
LPRINT

LPRINT

T4Jdr= XTCIE, L)

“CALC SECOND DERIVATIVES ROQUTINE 21

ROUTINE
CHRS (27),°0,4
LPRINT “SPLINE DEPTH

LPRINT "CONTOUR MAP-
CPRINT as LPRINT LPRINT

ANALYSIS®

LPRINT - X- COORDINATE"
CPRINT 73 LR ] 191 13 128 141

7 180 173~
LPRINT -

$TLR

NY T2t
CHR3(27);"0Q,4,8",

fOR K2

LPRINT

LPRINT USING

FOR Tt TO NI

IF ZACI, X)C20 THEN LPRINT CHRS(17).%0,2,8~,
YO LPRTINT CHR4(27);%Q,4,8",:COSUB $$ COTO 96

IF ZACT.X)(s3 04 THEN LPRINT CHRS$(27),7Q.1,8"; :COSUR
0 %4

-1
B L LIS 8 4% $19

COsuR 8o

TF ZACE,X)(=4 04 THEN LPRINT CHR$(27),Q.1,$", GOSUR
UR #0 LPRINT CHR$(27),°0Q.2,8%;:C05U8 95 COTO 94

IT ZAC1.K)¢«5 04 THEN LPRINT CHRS(27).70.2,%,:GOSUR
o s

IF ZACI,K3(=4.04 THEN LPRINT CHR$(27),°Q.1.1%,:GOSUR
UB 90 LPRINT CHRS(217);Q,3,5%; :GOSUB %3 GOTO ¥4

If ZACI.R3€a7.04 THEN LPRINT CHR$(17),7°G,3,3~, COSUR

o 1

154

IXT,.YT- TEMPORARY CALCULATED DEPTH AND Y POSITION ALONGC t.C

IBSI1OS113S /14971457108

TLoZAL26,44) RT(A4) , 20441, 22¢44), 2ITH(S

593

LF ZACI,K) (=8 84 THEN LPRLINT CHR$(27),7Q,1,%7; COSUB &6 COS

UB PO LPRINT CHRAS(17),%0Q,1.8°,
I8 ZACLI,X)¢(=100

Q 1
(1]

WIDTH
LERLINT USING”

S08UB 93 SCTO 14
THEN LPRINT CHR$(27).%G,4,5",:COSUB 8¢ COT

v, 138
LLRES 7R3 34 4L AV N

“LPTY

AETURN

"0

VIOTH

“LPTL 7,295

LPRINT CHR$(8),  LPRINT CHASLS),

WIOTH

“LPTY 7,139

AETURN

141
LPR

VIDTH "LPT

" 133
INT USINC #e™ . ZA(1.K)e2d,

RETURN

94

WIDTH

“LPTH ", 139

NEXT I

Len

LFR

INT CHR#CI7), "0

USIRG " !

INT

NELIT X

LPR

LPR

PR
174
LPR
LPR
LPR
LER
STO

REM
1900

INP
BRI
INg
INP
NP
Rt
FOR
PRI
FaR
eR1
iNE
PRI
EOR
PRI
NEX
NETX
Leat
110 RET

HEM SEC
Y COND!
120 z1¢
130 FOR
g

P=

21

L'y

1) -RT(1
REX
11t
FOR
2

14¢

INT " Y

INT ~

134 7

INT =

187 100"
INT: LPRINT
INT"®4DEPTHS IN 1/10 FRET "

INT* T,Y COORDINATES IN YARDS.™
INT CHRs(12)

4

YT VARIMBLES ROUTINE
NT “10 NATURAL SPLINE PROGRAN"
UT “TITLE “;As
UT “NUMBER OF PONTS ALONG I AXIS 1-23: ", NX
UT “NUMBER OF PONTS ALONG Y AIIS 1-40: *; NY
MT “IMPUT CENTER PASITION FOR I-COLUMNS®
J=1 TO ¢
NT J;:INPUT"",300L(J) NEXT
el TO ¢
NT:PRINT

“COLUNMN
Ut " o ©

ER

“INPUT Y POSITION, DEPTH™
1 TO NCGYw([)

INPUT ", GRYCT, KD, ZTYCE,K)

NT
X
NT X,
T K
T 1
NT LBRINT
URN
OND DERIVATIVE CALCULATION (Z2) ROUTINE, NATURAL SOUNDAR
TIONS

Dis0: Ut1)=0

T« 2 TO N-1L

e (RTCII-RTCI-1) )/ tRTILL1ILRTITI 1))

S1C*Z2(0-1)02

tly= (SIG-1)/P

Dx (402 0Le1)=TLIIJCRTCIA 1) -ATCII I (TCII-2CI- 13 1 (RTS
SV IRT(I+ 1) -RTHI-1))-81CRUCTI-1)2P
Ti
N)= @

Xs N-1 TO 1 STEP -}

(K¥= Z2(XKIPZT(Ke1)eU(K)

NEIT K

RET

REM
14%

SPL
Lo
KHI
183
tr
GoT
Hs
183
As
|:E
1=

14

o

URN

INE CALCULATION ROUTINZ (GIVEN RT.2)

= 1

= N

(RHI~XLQ)?» | THEN Kx (KHISKLO)»/2 ELSE 140
RT(K)» AT THEN KHI= X ELSE XLO= X

0 130
RT(KHI)-RT(KLO}
Had THEN PRINT
(RT(XHI}-RTIIH
(RT-RT(KLO) }tH
AYZ(KLO)+BTZCKHI o (tA 3-AIRZ2(KLOY+(B3-BI*22(KKHIDII2(H"2

“Errar Bad tnput* STCP

RETURN

END



