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SUMMARY

Meiotic recombination hotspots are associated with
histone post-translational modifications and open
chromatin. However, it remains unclear how his-
tone modifications and chromatin structure regulate
meiotic recombination. Here, we identify acetylation
of histone H4 at Lys44 (H4K44ac) occurring on the
nucleosomal lateral surface. We show that H4K44
is acetylated at pre-meiosis and meiosis and dis-
plays genome-wide enrichment at recombination
hotspots in meiosis. Acetylation at H4K44 is
required for normal meiotic recombination, normal
levels of double-strand breaks (DSBs) during
meiosis, and optimal sporulation. Non-modifiable
H4K44R results in increased nucleosomal occu-
pancy around DSB hotspots. Our results indicate
that H4K44ac functions to facilitate chromatin
accessibility favorable for normal DSB formation
and meiotic recombination.
INTRODUCTION

Modulating accessibility of the nucleosomal DNA is critical

for transcription, replication, recombination, and DNA damage

repair (Bell et al., 2011). In these processes, histone modifica-

tions are key players, functioning either as docking sites for

recruiting trans-acting proteins or to directly influence the chro-

matin structure, thus affecting DNA accessibility. In their trans-

acting role, histone modifications commonly recruit effectors to

influence chromatin function via association with specialized

protein domains, such as PHD domains (Wysocka et al., 2006)

or bromodomains (Musselman et al., 2012). In contrast, modifi-

cations on the histone globular cores directly modulate

chromatin structure. For example, lysine acetylation on the

nucleosome lateral surface, including H3K56, H3K64, H3K115,

H3K122, H4K77, and H4K79, can regulate DNA accessibility

by facilitating nucleosome mobility or histone eviction (Trop-

berger and Schneider, 2013). These findings support a model
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whereby lateral surface modifications alter nucleosome mobility

and stability (Cosgrove et al., 2004).

An important biological function regulated by DNA accessi-

bility is meiotic homologous recombination. In most sexual spe-

cies, meiotic recombination ensures accurate chromosome

segregation and generates genetic diversity in gametes. Meiotic

recombination is triggered by the formation of programmed

DNA double-strand breaks (DSBs), catalyzed by the conserved

topoisomerase-related Spo11 (Keeney, 2001). In S. cerevisiae,

at least nine additional factors are required for DSB formation

(Keeney, 2008). After DSB formation, Rad51 and Dmc1 recom-

binases are involved in the repair of meiotic DSBs (Hunter,

2007).

Multiple chromatin features are associated with meiotic

recombination in S. cerevisiae. Meiotic recombination occurs

preferentially at specific sites (hotspots), which often reside

in open regions at most gene promoters (Pan et al., 2011);

the open configuration is believed to contribute to initiation of

recombination (Wu and Lichten, 1994). Some hotspots exhibit

increased nuclease sensitivity shortly before DSB formation

(Ohta et al., 1994), indicative of active chromatin remodeling to

increase DNA accessibility. DSB hotspots are also enriched for

specific histone modifications (Zhang et al., 2011), including

H3K4me3, which may be a major determinant of DSB location

(Borde et al., 2009; Sollier et al., 2004). The mechanistic link

between histone methylation and DSB formation is achieved

by the complex proteins associated with Set1 subunit Spp1 (Ac-

quaviva et al., 2013; Sommermeyer et al., 2013); however, it re-

mains unclear how chromatin structure is regulated to favor DSB

formation.

In a previous study, we carried out a mutational screen of

modifiable residues on histones H3 and H4 to uncover substitu-

tions that affect sporulation efficiency in S. cerevisiae (Govin

et al., 2010a). A number of modifications were located on the

nucleosome lateral surface, indicating an important function for

chromatin structure regulation. Here, we describe an acetylation

site on Lys44 on histone H4 (H4K44ac) on the nucleosome lateral

surface. We show that H4K44ac is associated with meiotic

recombination, and our results suggest an important role for

H4K44ac in promoting an accessible chromatin environment

for efficient programmed DNA recombination.
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Figure 1. Histone H4K44 Is Acetylated in Sporulation and Is Important for Normal Sporulation Efficiency

(A) Mass spectrometry analysis of histones during sporulation. Fragmentation of the parent ion (histone H4 41-GGVKacR-45) with m/z = 307.688. The arrows

bracket the peaks that define the presence of acetyl-lysine (Kac).

(B) Representative western blot (left) of FLAG-tagged histone H4 immunoprecipitated with FLAG antibody from WT and H4K44 mutants probed with antibodies

against H4K44ac (top) or total H4 (bottom). H4K44ac is detectable in WT after cells are transferred into acetate (pre-sporulation) medium; H4K44ac is not

detectable in H4K44A or H4K44R mutants. Quantification (right) was performed using two biological replicates.

(C) Presence of pre-sporulation H4K44ac, followed by peak of H4K44ac duringmeiosis (4 hr) and then loss of H4K44ac. Representative western blot (left) for each

histone modification throughout sporulation; quantification of eachmodification (right; mean ± SEM of three independent experiments). SPM, sporulation media.

(D) H4K44mutants, which have reduced sporulation efficiency as measured by the percentage of tetrads from an initial population of cells induced to sporulation

(mean ± SEM of three independent experiments). The difference is statistically significant: **p < 0.01.

(E) H4K44R spores, which are mostly inviable. Four-spore tetrads from three different yeast isolates were dissected for WT and H4K44R strains; distribution of

spore viabilities was plotted per tetrad for each strain. n = 100.

See also Figure S1.
RESULTS

H4K44ac Is Important for Yeast Sporulation
We previously identified several modifiable residues on histones

H3 and H4 required for yeast sporulation, including residues that

reside on the nucleosome globular core (Govin et al., 2010a). To

determine which of these residues are modified in meiosis, we

purified histones from S. cerevisiae meiotic cells and subjected

them to chemical derivization via propionylation and nano-liquid

chromatography-tandem mass spectrometry analyses. Tandem

mass spectrometry revealed a small peptide from the histone H4

core that was acetylated at K44 (prGGVKacR) (Figure 1A). Accu-

rate mass (307.688 m/z) matched the calculated mass of this

peptide as acetylated (307.685 m/z), as opposed to tri-methyl-

ated (307.703 m/z), and retention time indicated an acetylated

rather than a tri-methylated peptide (Figure S1A).
Cell Re
To characterize the H4K44ac modification, we raised an anti-

body against a synthetic peptide containing acetylated H4K44.

Antibody specificity was measured by western blot and dot

blot analyses (Figures 1B and S1B). Using this antibody, we

observed enrichment of H4K44ac during growth in the pre-spor-

ulation medium and at prophase I in meiosis (Figures 1C and

S1C). This pattern is unique compared to other meiosis-associ-

ated histone modifications, such as H4S1ph that increases

following meiosis or H3K4me3 that is constant through sporula-

tion (Figure 1C) (Govin et al., 2010a; Krishnamoorthy et al., 2006).

To characterize the function of H4K44ac during sporulation,

we engineered H4K44 mutant strains harboring non-modifiable

H4K44R. Wild-type (WT) and H4K44R strains were sporulated,

and cells were collected throughout sporulation to determine

the overall sporulation frequency. H4K44R sporulation was

significantly lower than WT (63% of WT) (Figure 1D). Most of
ports 13, 1772–1780, December 1, 2015 ª2015 The Authors 1773



Figure 2. H4K44ac Facilitates Meiotic Recombination

(A) Top: Schematic diagram of intragenic recombination at his4G and his4R

heteroalleles. Bottom left: Random spore analysis from WT and H4K44R

strains. Spores were plated on control YPD plates (left) and �HIS selection

plates (right); ten times as many spores were plated on �HIS. H4K44R shows

reduced recombination compared to WT. Bottom right: Intragenic recombi-

nation was calculated as the percentage of HIS+ colonies relative to total

viable colonies on the YPD plate (mean ± SEM of three independent experi-

ments). The difference is statistically significant: **p < 0.01.

(B and C) H4K44R strains exhibiting fewer DSBs thanWT (sae2D background).

Top: Schematic map of the FRS2-GAT1 (left) andBUD23-ARE1 (right) loci. The

positions of the HindIII restriction sites and the sizes of the DSB fragments are

indicated; probe locations are marked by the black bars. Bottom: Represen-

tative Southern blot for DSB formation across a meiotic time course in WT and

H4K44R. n = 3. Arrows indicate the HindIII fragment without DSBs and frag-

ments corresponding to meiotic DSBs. Quantification of DSB levels appear at

the bottom of each blot. SPM, sporulation media.

(D)Pie chart representationofRad51peak loss inH4K44R (78%loss, 330of423).

(E) Boxplot representation of Rad51 enrichment (relative to input) at Rad51

peaks. Rad51 reduction in H4K44R is significant at the 330 lost peaks
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the resulting tetrad spores in the H4K44R mutant were inviable

(Figure 1E). H4K44R spore inviability suggests a defect in chro-

mosome segregation (Keeney, 2001), implicating that meiotic

recombination may be compromised in H4K44R.

H4K44ac Is Important for Meiotic Recombination
H4K44ac enrichment during meiosis (Figure 1C) and the

extremely low spore viability in H4K44R (Figure 1E) led us to

focus on the role of H4K44ac during meiotic recombination.

First, we examined the effect of H4K44R in a random spore anal-

ysis assay measuring recombination frequency between hetero-

alleles of the HIS4 locus during meiosis. H4K44R displayed a

significant decrease in meiotic recombination events at HIS4,

compared to less than 50% of WT H4 recombination (Figure 2A,

bottom panels).

We next analyzed whether DSB formation was affected in

H4K44R. We directly analyzed meiotic DSB formation at two

well-studied DSB hotspots, FRS2-GAT1 and BUD23-ARE1 (Fig-

ures 2B and 2C) (Acquaviva et al., 2013; Yamashita et al., 2004).

Meiotic DSBs at each hotspot were reduced in H4K44R

compared to WT, determined by Southern blot using hotspot

probes (Figures 2B and 2C). We also performed pulsed-field

gel electrophoresis (PFGE) to detect genome-wide meiotic

DSBs (EtBr stain) (Figure S2A) and DSBs on chromosome 3

(Southern blot using probe to CHA1) (Figures S2B and S2C).

These analyses confirmed that fewer DSBs form in H4K44R

compared to WT.

To advance this observation and to compare genome-wide

DSB formation and repair, we performed Rad51 chromatin

immunoprecipitation sequencing (ChIP-seq) (Smagulova et al.,

2011). Recombinases Rad51 and Dmc1 form nucleoprotein

filaments on single-stranded DNA at processed DSBs and are

required for repair (Neale and Keeney, 2006); thus, we used

Rad51 enrichment as an independent marker for DSB formation

and repair. Rad51 ChIP-seq data were highly reproducible be-

tween biological replicates (Figure S2D) and showed reproduc-

ible reduction of Rad51 enrichment in H4K44R compared to

WT (Figures 2F, S2E, and S2F).

To more specifically determine differences in Rad51 peaks

between WT and H4K44R, we identified 423 Rad51 peaks in

WT (Table S1) using model-based analysis of ChIP-seq (see

Experimental Procedures). Of these, 330 (78%) were undetected

in H4K44R, with 93 Rad51 peaks maintained in H4K44R (Figures

2D and 2E), indicating significant Rad51 reduction in the mutant.

Consistent with Rad51 enrichment at DSBs (Neale and Keeney,

2006), Rad51 peaks were highly correlated with Spo11 DSB hot-

spots (WT, p = 0.018; H4K44R, p < 0.001) (Figure S2F). The 153

Rad51 peaks were identified in H4K44R only; however, Rad51

enrichment at these peaks is lower than at Rad51 peaks in

only WT or shared between WT and H4K44R (Figures S2G and

S2H). Thus, H4K44R-only Rad51 peaks may be an artifact of
(Wilcoxon test: **p < 2.23 10�16), while there is no significant change in the set

of 93 retained peaks (p = 0.1702). The area under the curve over the Rad51

peaks is used to estimate the p value.

(F) UCSC track showing decreased Rad51 at DSB hotspots in H4K44R relative

to WT. Black bars represent DSB hotspots (Pan et al., 2011).

See also Figure S2 and Table S1.
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Figure 3. H4K44ac Is Enriched at Recombination Hotspots

(A) Metaplot representation of the distribution of H4K44ac around all TSSs in S. cerevisiae.

(B) Metaplot representation of the distribution of H4K44ac around meiotic recombination hotspots.

(legend continued on next page)
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MACS, due to the low Rad51 signal in H4K44R (Figure S2E), or

they may mark regions of transient Rad51 binding in H4K44R.

The overall observation of significant Rad51 reduction in

H4K44R, taken together with the Southern blot and PFGE anal-

ysis, indicate that DSB formation and meiotic recombination are

reduced in H4K44R and suggest that H4K44ac is required for

normal levels of DSB formation.

H4K44ac Marks Meiotic DSB Hotspots
Based on our observations, we postulated that H4K44acmay be

specifically enriched at DSB hotspots. To test this, we performed

H4K44ac ChIP-seq in WT meiotic cells at peak DSB formation

(4 hr) to determine the genomic distribution of the modification.

Strikingly, H4K44ac mapped preferentially to intergenic regions

containing promoters (Figure 3A), indicating a possible associa-

tion with DSB hotspots, which generally are formed in intergenic

promoters (Pan et al., 2011). To address this directly, we exam-

ined the H4K44ac enrichment at DSBs, using a recent high-

resolution genome-wide DSB map (Pan et al., 2011). H4K44ac

showed significantly strong enrichment at hotspot centers (Fig-

ure 3B, p < 0.01). H4K44ac enrichment at DSB hotspots is partly

because of the co-occurrence of DSBs at promoters. To deter-

mine whether H4K44ac is more specific to the promoters with

DSB hotspots, we divided promoters into two classes: those

overlapping (4,350) or not overlapping (2,367) DSB hotspots

(defined as the region 400 bp upstream from transcription start

sites, or TSSs) (Tischfield and Keeney, 2012). On average,

promoters with hotspots showed obvious and significantly

higher H4K44ac enrichment than non-hotspot promoters (Fig-

ures 3C and 3D). This observation was validated by ChIP-

qPCR, randomly examining two promoters from each class

(Figure S3A).

To further determine a quantitative relationship between

H4K44ac levels and DSBs, we subdivided promoter hotspots

into five quintiles based on Spo11 enrichment (Figure 3E, right

panel). Average H4K44ac enrichment profiles (Figure 3E, left

panel) show that H4K44ac correlates to DSB ‘‘hotness’’; we

observe higher H4K44ac enrichment in the hottest DSB quintile

(most Spo11) relative to the coldest (least Spo11) (Figure 3F).

The difference in H4K44ac enrichment across quintiles is

modest relative to the extreme difference in Spo11 enrichment

per quintile (�20-fold difference in medians) (Figure 3E, right
(C) Metaplot representation of the distribution of H4K44ac around TSSs with a

maximum value for the H4K44ac profile for each gene between 500 bp upstream

(D) Boxplot representation of the distribution of H4K44ac enrichment at a 500 b

significantly different at TSSs with a DSB hotspot versus those without (Wilcoxo

(E) H4K44ac enrichment for promoter hotspots divided into quintiles by Spo11 s

(F) Boxplot representation of H4K44ac enrichment at each quintile from (E). H4K44

(Wilcoxon test: **p = 1.5 3 10�9). The p value was estimated from areas under th

(G) UCSC track showing the distribution of H4K44ac enrichment at selected DSB

(Pan et al., 2011).

(H) ChIP-qPCR validation of H4K44ac enrichment at DSB hotpots. PCR primers ar

experiments. The difference is statistically significant: **p < 0.01.

(I) Scatter plot of H4K44ac enrichment intensities over 3,600 Spo11 DSBs betwee

correlation (R2 = 0.89).

(J) Boxplot representation of H4K44ac over 3,341 fragile nucleosomes and 58,673

sites. H4K44ac enrichment is significantly different between fragile and stable nu

See also Figure S3.
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panel); correlation between H4K44ac levels and DSB strength

is small (R2 = 0.003) when measuring H4K44ac enrichment at

individual promoter hotspots (Figure S3B). Thus, our results

indicate that H4K44ac is a histone modification that occurs

specifically at DSB hotspots. However, enrichment of the

modification alone is unlikely to be predictive of levels of DSB

formation, as is the case for H3K4me3 (Tischfield and Keeney,

2012).

We further determined whether non-modifiable H4K44R has

an impact on other important meiotic histone modifications,

thus acting indirectly through other modifications. We analyzed

H3K4me3, important for meiotic recombination and enriched

at DSB hotspots (Acquaviva et al., 2013; Borde et al., 2009;

Sollier et al., 2004; Sommermeyer et al., 2013), and H3K56ac

associated with meiosis (Figure 1C) (Govin et al., 2010a; Recht

et al., 2006). We performed western blots to examine levels

of H3K4me3 and H3K56ac during sporulation in WT and

H4K44R, and we found no obvious change in timing and relative

abundance of each modification (Figure S3C). We also investi-

gated genome-wide distributions of H3K4me3 and H3K56ac

using ChIP-seq, following the same time profiling as in the

H4K44ac studies. We observed a modest decrease (less than

20%) of either H3K4me3 or H3K56ac enrichment at gene pro-

moters or DSB hotspots in H4K44R compared to WT (Figures

S3D–S3H), which may be due to a secondary effect of abnormal

DSB formation in H4K44R cells. The H3K4me3 and H3K56ac

analyses indicate that H4K44ac appears to function in meiotic

recombination independent of a known chromatin pathway.

H4K44ac enrichment perplexingly appears almost directly

over the DSB hotspots, which are previously defined promoter

nucleosome-depleted regions (Pan et al., 2011). To address

this possible paradox, we first validated the ChIP-seq data and

confirmed the specificity of the H4K44ac antibody for ChIP.

We randomly examined by ChIP-qPCR three DSB hotspots:

BIO2, ELO1, and PYC1 (track views shown in Figure 3G), which

are within gene promoters. As expected based on ChIP-seq re-

sults, H4K44ac is enriched at these DSB promoters relative to

control loci within gene bodies. H4K44ac enrichment was greatly

reduced in H4K44R mutants at all measured loci (Figure 3H). To

further validate H4K44ac ChIP-seq enrichment, we performed

an independent biological H4K44ac ChIP-seq replicate, which

yielded consistent results (Figure 3I).
DSB hotspot (blue, n = 4,350) versus those without (green, n = 2,367). The

and TSSs was calculated for the p value.

p window upstream of TSSs from each group in (C). H4K44ac enrichment is

n test: **p < 2.2 3 10�16). The p value was estimated as in (C).

trength. Boxplots (right) show the distribution of Spo11 within each quintile.

ac enrichment is significantly different at the lowest and highest Spo11 quintiles

e curve of 400 bp around the Spo11 peak centers.

hotspots (left) and control regions (right). Black bars represent DSB hotspots

e designed within the regions marked in (C). Mean ± SEM of three independent

n two independent H4K44ac ChIP-seq experiments, showing a high degree of

stable nucleosomes (Xi et al., 2011), showing enrichment at fragile nucleosome

cleosomes (Wilcoxon test: **p < 1 3 10�16).
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Figure 4. H4K44ac Contributes to the Chromatin Openness

(A) Nucleosome image of the full histone octamer. The side chain containing

H4K44 is shown in both unmodified and acetylated states (PyMOL, PDB:

1ID3).

(B and C) Nucleosome occupancy profiles of WT (red) and H4K44R (blue) at

peri-TSS regions (B) and DSB hotspots (C), indicating significantly increased

occupancy in H4K44R. p values were estimated from the maximum value

500 bp downstream of TSSs and 500 bp around Spo11 hotspots for (B) and

(C), respectively.

(D) Nucleosome occupancy profiles of WT (red) and H4K44R (blue) at TSSs

with a DSB hotspot (top) versus those without (bottom). Nucleosome occu-

pancy is significantly increased in H4K44R at promoters with DSBs only.

p values were estimated as in (B).

(E) Nucleosome occupancy profiles of WT (red) and H4K44R (blue) at Spo11

quintiles. Boxplots (right) show distribution of Spo11 enrichment within quin-

tiles. p values were estimated as in (C).

(F) Example overlaid the MNase-seq track of WT (orange) and H4K44R (blue),

showing increased nucleosome occupancy of H4K44R (blue over black curve)

Cell Re
We then considered how H4K44ac enrichment occurs in re-

gions expected to be nucleosome depleted. Previous reports

have described highly sensitive nucleosomes located within

nucleosome-depleted regions, suggesting that these regions

are not devoid of nucleosomes but are associated with ‘‘fragile

nucleosomes’’ (Weiner et al., 2010; Xi et al., 2011). Wemeasured

H4K44ac enrichment in regions of fragile and stable nucleo-

somes and observed significantly higher H4K44ac at fragile

versus stable nucleosomes in both biological replicate ChIP-

seq datasets (Figure 3J). This observation suggests that

H4K44ac may be associated with nucleosome fragility at certain

sites and may contribute to nucleosome instability or weak his-

tone-and-DNA interaction, as investigated later.

H4K44ac Influences Chromatin Structure
Lateral surface histone modifications generally influence nucleo-

some stability (Tropberger and Schneider, 2013). H4K44 exists

at the L1 loop linking a helix1 and a helix2 of histone H4, located

close to the DNA entry-exit region of the nucleosome (Figure 4A),

and thus could contribute to chromatin organization. Meiotic

micrococcal nuclease (MNase) digestion analysis has shown

that some recombination hotspots exhibit an increase in MNase

accessibility prior to the appearance ofmeiotic DSBs (Ohta et al.,

1994). Therefore, we tested whether H4K44ac regulates chro-

matin accessibility during meiosis using meiotic micrococcal

nuclease sequencing (MNase-seq) to determine nucleosome

positioning in WT and H4K44R during peak meiotic DSB forma-

tion (4 hr) compared to vegetative growth (YPD media) and pre-

sporulation (0 hr; YPA media). Overall nucleosome occupancy

was elevated in H4K44R compared to WT in the regions sur-

rounding all TSSs (Figure 4B) and DSB hotspots at 4 hr (Fig-

ure 4C). No detectable nucleosome occupancy changes

were observed between H4K44R and WT in YPD or at 0 hr

(Figures S4A–S4D), suggesting that H4K44ac promotes chro-

matin accessibility when meiotic recombination is initiated. The

increased nucleosome occupancy observed at 4 hr in H4K44R

is more clearly visualized in overlaid WT and H4K44R tracks at

representative DSB hotspots (Figure 4F).

We further investigated the correlation between nucleosomal

occupancy changes and DSB hotspots between H4K44R and

WT. As with the H4K44ac analyses (Figures 3C and 3E), we

divided all promoters into those with and those without hotspots

and then divided all hotspot promoters into quintiles of DSB

strength. We observed that nucleosome occupancy in H4K44R

at 4 hr is specifically increased at promoters with DSB hot-

spots (Figure 4D) and that increased nucleosome occupancy
around DSB hotspots. Black bars represent DSB hotspots; the track was

smoothed with 15 pixels.

(G) MNase-accessibility assay indicating increased chromatin accessibility in

H4K44Q (right) compared to WT (left) and H4K44R (middle). A representative

of three biological replicates is shown. The quantitative densitometric analysis

of the indicated lanes is shown on the right.

(H) Spot dilutions of WT, H4K44R, and H4K44Q strains carrying URA3 at the

silent mating locus HMR indicate a growth defect in H4K44Q on 5-FOA (right)

compared to YPD control (left). A representative result of two biological rep-

licates is shown. The H4K91A mutant (Ye et al., 2005) is a positive control.

See also Figure S4.
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correlates with DSB strength (Figure 4E). Taken together, these

observations support a function for H4K44ac in facilitating or

maintaining chromatin accessibility at DSB hotspots in meiosis.

In contrast to H4K44R, we speculated that the H4K44Q

constitutive acetylation mimic mutant should exhibit decreased

nucleosome density. H4K44Q cells displayed severe growth lim-

itation under pre-sporulation acetate conditions and failed to

initiate pre-meiotic DNA replication or enter meiosis (Figures

S4E–S4G; compare to H4K44R). Thus, we could not address

the consequence of H4K44Q during meiosis and sporulation;

the failure of meiotic induction may result from a deleterious

effect of mimicking constitutive acetylation. As an alternative,

we characterized H4K44Q in logarithmically growing cells. First,

we examined nucleosome accessibility by MNase digestion in

H4K44Q, H4K44R, and WT strains. Equal numbers of nuclei

from cycling cells were treated with an increasing concentration

of MNase, and the resulting digestion profiles were compared

between strains. H4K44Q cells showed extensive digestion

compared toWT and H4K44R cells (Figure 4G, lane 5), indicating

a more accessible chromatin structure in the constitutive acety-

lation-like state at H4K44.

Finally, we tested functional effects of H4K44 substitutions

using a classic heterochromatin silencing assay (van Leeuwen

et al., 2002), reasoning that increased accessibility would de-

silence a reporter placed in normally closed chromatin. We

examined effects of H4K44R and H4K44Q substitutions on

expression of URA3 integrated (1) near the left telomere of chro-

mosome VII (Tel VII-L), (2) within the silentMAT loci, and (3) within

the rDNA repeats. Expression of URA3 causes conversion of

5-fluoroorotic acid (5-FOA) in the growth medium into toxic

5-fluorouracil. Based on our other observations, we predicted

that H4K44Qwould display defective silencing, and de-silencing

occurred in H4K44Q at Tel VII-L, HMR (the effect was subtle at

HML), and rDNA loci (Figure 4H). Silencing was not affected in

the H4K44Rmutation (Figure 4H), as expected because acetyla-

tion is not likely occurring at silenced heterochromatin (Richards

and Elgin, 2002) and because H4K44ac is not enriched in mitotic

cells (Figures 1B and S1C). For comparison, we tested H4K91A,

which has a strong silencing phenotype and is important

for chromatin structure (Ye et al., 2005), and we found similar

silencing defects between H4K44Q and H4K91A (Figure 4H).

Thus, constitutive acetylation mimic at H4K44 results in

increased MNase accessibility, compromised heterochromatin

maintenance, and failure to induce sporulation. Together with

the preceding data, these results underscore an important role

for acetylation at H4K44 in regulating chromatin accessibility

during meiosis.

DISCUSSION

In this study, we identified and characterized the function of

H4K44ac, a previously undiscovered histone modification en-

riched in pre-meiotic andmeiotic yeast and located on the nucle-

osomal lateral surface adjacent to the DNA backbone. Substitu-

tion of this residue to non-modifiable H4K44R confers reduction

in meiotic recombination rate (Figure 2A) and DSB formation

(Figures 2B, 2C, and S2A–S2C), and it manifests in severe spore

inviability (Figure 1E). In addition, genome-wide H4K44ac enrich-
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ment shows high correlation with DSB hotspots (Figures 3A–3F)

and with locations of fragile nucleosomes (Figure 3J). H4K44R

mutants show specific increased nucleosome occupancy

around DSB hotspots during meiosis (Figures 4B–4E and S4A–

S4D); in contrast, H4K44Q mutants show increased MNase

accessibility during mitosis (Figure 4G). Together, these data

support a model in which acetylation at H4K44 on the histone

globular core results in increased chromatin accessibility during

meiosis.

This role is distinct from our previous study of post-meiotic

histone H4 tail acetylation in chromatin compaction (Govin

et al., 2010a). H4K44ac peaks during meiotic DSB formation

and repair, which may be favorable for chromatin accessibility

of key DSB-associated complexes to initiate and complete

meiotic recombination. We propose that H4K44ac may play an

important role in increasing chromatin accessibility via nucleo-

some-DNA destabilization, as has been shown for H3K64ac

and H3K122ac on the histone H3 globular domain (Di Cerbo

et al., 2014; Tropberger et al., 2013), whereas H4K16ac on the

histone H4 tail inhibits inter-fiber interaction (Shogren-Knaak

et al., 2006).

We observed preferential enrichment of H4K44ac at gene

promoters with DSB hotspots compared with at those without

hotspots and an increase of nucleosome occupancy around

hotspot promoters in H4K44R at 4 hr rather than in YPD or

0 hr, in support of a direct role of H4K44ac in meiosis. However,

H4K44ac alone is an insufficient indicator of the quantitative

levels of DSB activity (Figure S3B). Likewise, the overall nucleo-

some occupancy increase in H4K44R, while significant, is not as

high as may be expected given the significant reduction in DSB

formation compared to WT. This observation is likely due to the

average effect of analyzing nucleosome occupancy at hotspots

over the cell population, obscuring larger changes that may be

occurring in individual H4K44R mutant cells. There are thou-

sands of Spo11 binding sites across the yeast genome, but

only an estimated �160 actual DSBs occur per meiotic cell

(Pan et al., 2011).We speculate that general increased chromatin

accessibility at 4 hr in meiosis, mediated in part by acetylation at

H4K44, is likely a prerequisite for DSB formation, and local chro-

matin structural changes at individual hotspots may vary within a

population due to cell-to-cell variability.

While our observations highlight a role for H4K44ac during

meiosis, H4K44ac is not meiosis specific but is observed in

pre-meiosis (Figures 1B and 1C). The reduction between 0 and

4 hr during meiosis is possibly caused by passive loss via DNA

replication during the meiotic S phase. H4K44ac is observed

only after switching the yeast into pre-sporulation acetate me-

dium, indicative of a potential response from the absence of

normal glucose growth conditions. H3K4me3, which is important

for meiotic DSB formation, is present in exponentially growing

cells and is maintained at all sporulation stages (Figure 1C)

(Borde et al., 2009), and the switch between the vegetative and

the meiotic functions may be due to its binding factor Spp1

(Acquaviva et al., 2013; Sommermeyer et al., 2013). Thus, we

speculate that H4K44ac may be associated with pre-meiotic

transcriptional changes upon the switch into acetate medium.

Considering that we observe no difference in nucleosome occu-

pancy in H4K44R at 0 hr when H4K44ac is enriched (Figures S4C
hors



and S4D), another possibility is that the enzyme for H4K44ac

is activated upon pre-meiotic induction (described later) but

an additional Spp1-like factor may regulate the function of this

modification.

Although K-to-R/Q substitution is a widely used strategy to

characterize the function of lysine acetylation, these mutants

may still cause unrelated phenotypes from differences in the

amino acid structures. To overcome this limitation, it is important

to determine the enzyme that acetylates H4K44 in meiosis to

further characterize the modification. Based on previous yeast

meiotic transcriptome data (Primig et al., 2000), we surveyed

expression of known histone acetyltransferases (Gcn5, Hat1,

Hat2, Hpa1, Hpa2, Hpa3, Sas2, Sas3, Sas4, Sas5, Rtt109,

Spt10, and Esa1). We identified only Rtt109 as having a similar

expression pattern to that of H4K44ac during meiosis. However,

Rtt109 does not show enzymatic activity on histone H4 (Driscoll

et al., 2007; Han et al., 2007); thus, further investigation is

required to identify the specific enzyme for H4K44ac.

Our observations provide additional insight into the direct role

of histone modifications on meiotic recombination and support

previous studies of chromatin openness at DSB hotspots

(Pan et al., 2011). Furthermore, H4K44ac occurs near the DNA

entry-exit point of the nucleosome and may play a role in nucle-

osome stability, supported by H4K44ac enrichment at fragile

nucleosomes (Figure 3J). The other known acetylated lysine res-

idues located on the lateral surface, H3K64 and H3K122, affect

nucleosome dynamics and regulate gene transcription (Di Cerbo

et al., 2014; Tropberger et al., 2013). These functions appear to

be distinct from H4K44ac, which contributes to normal pro-

grammed recombination in sporulation. Hence, acetylation at

different sites on the nucleosome lateral surface may exhibit

specificity in molecular function based on location. It is of great

interest to further characterize the mechanisms of these modifi-

cations in regulating distinct biological processes.

EXPERIMENTAL PROCEDURES

Yeast Strains

The genotypes of all yeast strains and applications are listed in Table S2.

ChIP and ChIP-Seq Analysis

ChIP assays were performed as described (Govin et al., 2010b). Sequences of

primers used for ChIP-qPCR can be found in Table S3. ChIP-seq libraries were

prepared with the NEBNext ChIP-seq Library Prep Reagent Set for Illumina

and were single-end sequenced with Illumina HiSeq 2000 or NextSeq 500

platforms.

MNase Digestion and Preparation of Mononucleosomal DNA for

Sequencing

MNase digestion assays were performed as described previously (Rando,

2010). Mononucleosomal DNA was isolated and end repaired for library

preparation; libraries were constructed with the NEBNext Ultra DNA Library

Prep Kit for Illumina and single-end sequenced using Illumina HiSeq 2000 or

NextSeq 500 platforms.

Raw sequenced data were produced via Illumina sequencing (Hi-Seq for

WT and H4K44R MNase-seq, histone post-translational modification, and

H4 data; NextSeq 2000 for all others). ChIP-seq and MNase-seq data were

aligned to the yeast sacCer2 assembly using bowtie v.1.0 (parameters �m 1

and �best). All sequencing data are supplied on GEO: GSE59005. Detailed

experimental methods and data analyses are provided in the Supplemental

Experimental Procedures.
Cell Re
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