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Abstract

Sufficient conditions for controllability of nonlinear neutral evolution integrodifferential
systems in a Banach space are established. The results are obtained by using the resolvent
operators and the Schaefer fixed-point theorem. An application to partial integrodifferential
equation is given.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The problem of controllability of nonlinear systems represented by ordinary
differential equations in infinite-dimensional spaces has been extensively studied
by several authors [2,3,13,14]. Zhang [16] studied the local exact controllabil-
ity of semilinear evolution systems by means of the contraction mapping princi-
ple. Klamka [9] considered the dynamical control systems described by nonlinear
abstract differential equations and derived the sufficient conditions for controlla-
bility of nonlinear systems by using the Schauder fixed point theorem. Bian [5]
investigated the approximate controllability for a class of semilinear systems. Bal-
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achandran et al. [1] established the local null controllability of nonlinear func-
tional differential systems in Banach spaces by using the fractional power oper-
ators and the Schauder fixed point theorem. Controllability of nonlinear Volterra
integrodifferential systems in abstract spaces has been studied by Naito [11]. Re-
cently Balachandran et al. [4] derived a set of sufficient conditions for the con-
trollability of neutral functional integrodifferential systems in Banach spaces by
using the semigroup theory. The purpose of this paper is to study the controllabil-
ity of nonlinear neutral evolution integrodifferential systems in Banach spaces by
using the resolvent operators and the Schaefer fixed-point theorem. The nonlin-
ear neutral evolution integrodifferential systems with resolvent operators consid-
ered here serves as an abstract formulation of partial integrodifferential equations
which arises in various applications such as viscoelasticity, heat equations and
many other physical phenomena [8,10,12].

2. Preliminaries

Consider the nonlinear neutral evolution integrodifferential system of the form

d

dt

[
x(t) + g(t, xt )

]
= A(t)x(t) +

t∫
0

B(t, s)x(s) ds

+ (Gu)(t) + f

(
t, xt ,

t∫
0

h(t, s, xs) ds

)
, t ∈ J = [0, b],

x0 = φ, on [−r,0], (1)

where the statex(·) takes values in a Banach spaceX with the norm‖ · ‖, and
the control functionu(·) is given in L2(J,U), a Banach space of admissible
control functions withU as a Banach space. HereA(t) andB(t, s) are closed
linear operators onX with dense domainD(A) which is independent oft , G is a
bounded linear operator fromU into X, h :J × J ×C → X, f :J ×C ×X → X

and g :J × C → X, are continuous functions. HereC = C([−r,0],X) is the
Banach space of all continuous functionsφ : [−r,0] → X endowed with the norm
‖φ‖ = sup{|φ(θ)|: −r � θ � 0}. Also for x ∈ C([−r, b],X) we havext ∈ C for
t ∈ [0, b], xt (θ) = x(t + θ) for θ ∈ [−r,0].

We shall make the following assumptions [7]:

(I) A(t) generates a strongly continuous semigroup of evolution operators in the
Banach spaceX.

(II) SupposeY is the Banach space formed fromD(A) with the graph norm.
A(t) and B(t, s) are closed operators it follows thatA(t) and B(t, s) are
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in the set of bounded operators fromY to X, B(Y,X), for 0 � t � b and
0 � s � t � b, respectively. FurtherA(t) and B(t, s) are continuous on
0 � t � b and 0� s � t � b, respectively, intoB(Y,X).

Definition 2.1. A resolvent operator for (1) is a bounded operator valued function
R(t, s) ∈ B(X), 0� s � t � b, the space of bounded linear operators onX, having
the following properties:

(a) R(t, s) is strongly continuous ins andt , R(s, s) = I , 0� s � b,‖R(t, s‖ �
Meβ(t−s) for some constantsM andβ .

(b) R(t, s)Y ⊂ Y , R(t, s) is strongly continuous ins andt onY .
(c) For eachx ∈ D(A), R(t, s)x is strongly continuously differentiable int and

s and

∂R

∂t
(t, s)x = A(t)R(t, s)x +

t∫
s

B(t, r)R(r, s)x dr,

∂R

∂s
(t, s)x = −R(t, s)A(s)x −

t∫
s

R(t, r)B(r, s)x dr

with ∂R
∂t

(t, s)x and ∂R
∂s

(t, s)x strongly continuous on 0� s � t � b. HereR(t, s)

can be extracted from the evolution operator of the generatorA(t). The resolvent
operator is similar to the evolution operator for nonautonomous differential
equations in a Banach space. It will not, however, be an evolution operator because
it will not satisfy an evolution or semigroup property. Because a number of results
follow directly from the definition of the resolvent operator.

Definition 2.2. A solution x ∈ C([−r, b],X) is a mild solution of the prob-
lem (1) if the following holds:x0 = φ on [−r,0] and s ∈ [0, t), the function
A(s)R(t, s)g(s, x(s)), is integrable and the integral equation

x(t) = R(t,0)
[
φ(0) + g(0, φ)

]− g(t, xt ) −
t∫

0

R(t, s)A(s)g(s, xs ) ds

−
t∫

0

R(t, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

+
t∫

0

R(t, s)

[
(Gu)(s) + f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)]
ds (2)

is satisfied.
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Schaefer’s theorem [15]. Let E be a normed linear space. LetF :E → E be
a completely continuous operator, i.e., it is continuous and the image of any
bounded set is contained in a compact set, and let

ζ(F ) = {x ∈ E;x = λFx for some0< λ< 1}.
Then eitherζ(F ) is unbounded orF has a fixed point.

Definition 2.3. The system (1) is said to be controllable on the intervalJ

if for every continuous initial functionφ ∈ C, x1 ∈ X, there exists a control
u ∈ L2(J,U) such that the mild solutionx(t) of (1) satisfiesx(b) = x1.

Further we assume the following hypotheses:

(i) The resolvent operatorR(t, s) is compact and there exist constantsMi >

0, i = 1,2,3, such that|R(t, s)| � M1, |R(t, s)A(s)| � M2 and|B(t, s)| �
M3.

(ii) The linear operatorW :L2(J,U) → X defined by

Wu =
b∫

0

R(b, s)Gu(s) ds

has an induced inverse operatorW̃−1 which takes values inL2(J,U)/kerW
and there exist positive constantsM4,M5 such that|G| � M4 and|W̃−1| �
M5 (see [6]).

(iii) The functiong :J ×C → X is completely continuous and for any bounded
setD in C([−r, b],X) the set{t → g(t, xt ): x ∈ D} is equicontinuous in
C([0, b],X) and there exists a constantL> 0 such that∣∣g(t, φ)∣∣� L, t ∈ J, φ ∈ C.

(iv) For eacht, s ∈ J × J, the functionh(t, s, ·) :C → X is continuous and for
eachx ∈ C the functionh(·, ·, x) :J × J → X is strongly measurable.

(v) For eacht ∈ J the functionf (t, ·, ·) :C × X → X is continuous and for
each(x, y) ∈ C×X the functionf (·, x, y) :J → X is strongly measurable.

(vi) For every positive integerk there existsαk ∈ L1(0, b) such that for a.e.
t ∈ J

sup
‖x‖,|y|�k

∣∣f (t, x, y)
∣∣� αk(t).

(vii) There exists an integrable functionm : J × J → [0,∞) such that∣∣h(t, s, x)∣∣� m(t, s)Ω
(‖x‖), t, s ∈ J, x ∈ C,

whereΩ : [0,∞) → (0,∞) is a continuous nondecreasing function.
(viii) There exists an integrable functionp :J → [0,∞) such that∣∣f (t, x, y)

∣∣� p(t)Ω0
(‖x‖ + |y|), t ∈ J, x ∈ C, y ∈ X,
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whereΩ0 : [0,∞)→ (0,∞) is a continuous nondecreasing function.
(ix)

∫ b

0 m̂(s) ds <
∫∞
c

ds
Ω(s)+Ω0(s)

, wherec = M1(‖φ‖ + L) + L + M2Lb +
M1M3Lb2 + M1Nb, m̂(t) = {M1p(t),m(t, t)} and

N = M4M5

[
|x1| + M1

(‖φ‖ + L
)+ L+ M2Lb + M1M3Lb2

+M1

b∫
0

p(s)Ω0

(
‖xs‖ +

s∫
0

m(s, τ )Ω
(‖xτ‖)dτ

)
ds

]
.

Then the system (1) has a mild solution of the following form

x(t) = R(t,0)
[
φ(0) + g(0, φ)

]− g(t, xt ) −
t∫

0

R(t, s)A(s)g(s, xs ) ds

−
t∫

0

R(t, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

+
t∫

0

R(t, s)

[
(Gu)(s) + f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)]
ds.

3. Controllability result

Theorem. If the hypotheses(i)–(ix) are satisfied, then the system(1) is
controllable onJ .

Proof. Consider the spaceCb = C([−r, b],X), with the norm

‖x‖1 = sup
{∣∣x(t)∣∣: −r � t � b

}
.

Using the hypothesis (ii) for an arbitrary functionx(·), define the control

u(t) = W̃−1

[
x1 − R(b,0)

[
φ(0) + g(0, φ)

]+ g(b, xb)

+
b∫

0

R(b, s)A(s)g(s, xs) ds

+
b∫

0

R(b, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds
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−
b∫

0

R(b, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

]
(t).

DefineC0
b = {x ∈ Cb: x0 = φ on [−r,0]} and we now show that when using

the controlu(t), the operatorF :C0
b → C0

b, defined by

(Fx)(t) = R(t,0)
[
φ(0) + g(0, φ)

]− g(t, xt ) −
t∫

0

R(t, s)A(s)g(s, xs) ds

−
t∫

0

R(t, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

+
t∫

0

R(t, η)GW̃−1

[
x1 −R(b,0)

(
φ(0) + g(0, φ)

)+ g(b, xb)

+
b∫

0

R(b, s)A(s)g(s, xs) ds

+
b∫

0

R(b, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

−
b∫

0

R(b, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

]
(η) dη

+
t∫

0

R(t, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

has a fixed point. This fixed point is then a solution of Eq. (1).
Clearly x(b) = x1 which means that the controlu steers the system (1) from

the initial functionφ to x1 in time b, provided we can obtain a fixed point of the
nonlinear operatorF .

In order to study the controllability problem of (1), we introduce a parameter
λ ∈ (0,1) and consider the following system

d

dt

[
x(t) + λg(t, xt )

]
= A(t)x(t) + λ

t∫
0

B(t, s)x(s) ds + λ(Gu)(t)
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+ λf

(
t, xt ,

t∫
0

h(t, s, xs) ds

)
, t ∈ J = [0, b],

x0 = λφ, on [−r,0]. (3)

First we obtain a priori bounds for the mild solution of Eq. (3). Then from

x(t) = λR(t,0)
[
φ(0) + g(0, φ)

]− λg(t, xt ) − λ

t∫
0

R(t, s)A(s)g(s, xs) ds

− λ

t∫
0

R(t, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

+ λ

t∫
0

R(t, η)GW̃−1

[
x1 − R(b,0)

(
φ(0) + g(0, φ)

)+ g(b, xb)

+
b∫

0

R(b, s)A(s)g(s, xs) ds +
b∫

0

R(b, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

−
b∫

0

R(b, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

]
(η) dη

+ λ

t∫
0

R(t, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds,

we have∣∣x(t)∣∣� M1
(‖φ‖ + L

)+ L+ M2Lb + M1M3Lb2

+
t∫

0

∣∣R(t, η)
∣∣M4M5

×
[
|x1| + M1

(‖φ‖ + L
)+ L+ M2Lb + M1M3Lb2

+ M1

b∫
0

p(s)Ω0

(
‖xs‖ +

s∫
0

m(s, τ )Ω
(‖xτ‖) dτ)ds

]
dη

+ M1

t∫
0

p(s)Ω0

(
‖xs‖ +

s∫
0

m(s, τ )Ω
(‖xτ‖) dτ]ds.
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Consider the functionµ defined by

µ(t) = sup
{∣∣x(s)∣∣: −r � s � t

}
, 0 � t � b.

Let t∗ ∈ [−r, t] be such thatµ(t) = |x(t∗)|. If t∗ ∈ [0, b] by the previous
inequality we have

µ(t) � M1
(‖φ‖ +L

)+ L + M2Lb + M1M3Lb2 + M1Nb

+M1

t∗∫
0

p(s)Ω0

[
µ(s) +

s∫
0

m(s, τ )Ω
(
µ(τ)

)
dτ

]
ds,

µ(t) � M1
(‖φ‖ +L

)+ L + M2Lb + M1M3Lb2 + M1Nb

+M1

t∫
0

p(s)Ω0

[
µ(s) +

s∫
0

m(s, τ )Ω
(
µ(τ)

)
dτ

]
ds.

If t∗ ∈ [−r,0] thenµ(t) = ‖φ‖ and the previous inequality holds sinceM1 � 1.
Denoting byv(t) the right-hand side of the above inequality, we have

c = v(0) = M1
(‖φ‖ + L

)+ L+ M2Lb + M1M3Lb2 + M1Nb,

µ(t) � v(t), 0 � t � b

and

v′(t) = M1p(t)Ω0

[
µ(t) +

t∫
0

m(t, τ )Ω
(
µ(τ)

)
dτ

]

� M1p(t)Ω0

[
v(t) +

t∫
0

m(t, τ )Ω
(
v(τ )

)
dτ

]
.

Let w(t) = v(t) + ∫ t

0 m(t, τ )Ω(v(τ )) dτ. Thenw(0) = v(0), v(t) � w(t), and

w′(t) = v′(t) + m(t, t)Ω
(
v(t)

)
� M1p(t)Ω0

(
w(t)

)+ m(t, t)Ω
(
w(t)

)
� m̂(t)

[
Ω0
(
w(t)

)+ Ω
(
w(t)

)]
.

This implies

w(t)∫
w(0)

ds

Ω0(s) + Ω(s)
�

b∫
0

m̂(s) ds <

∞∫
c

ds

Ω0(s) + Ω(s)
, t ∈ J.

This inequality implies thatw(t) < ∞. So there is a constantK such that
v(t) � K, t ∈ J and henceµ(t) � K, t ∈ [0, b]. Since‖xt‖ � µ(t), we have

‖x‖1 = sup
{∣∣x(t)∣∣: −r � t � b

}
� K,
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whereK depends only onb and on the functionsm, Ω , andΩ0.

Next we must prove that the operatorF is a completely continuous operator.
Let Bk = {x ∈ C0

b : ‖x‖1 � k} for somek � 1. We first show that the set
{Fx: x ∈ Bk} is equicontinuous. Letx ∈ Bk and t1, t2 ∈ J . Then if 0< t1 <

t2 � b,∣∣(Fx)(t1) − (Fx)(t2)
∣∣

�
∣∣R(t1,0) − R(t2,0)

∣∣∣∣φ(0) + g(0, φ)
∣∣+ ∣∣g(t1, xt1) − g(t2, xt2)

∣∣
+
∣∣∣∣∣

t1∫
0

[
R(t1, s) − R(t2, s)

]
A(s)g(s, xs) ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
t1

R(t2, s)A(s)g(s, xs) ds

∣∣∣∣∣
+
∣∣∣∣∣

t1∫
0

[
R(t1, s) − R(t2, s)

] s∫
0

B(s, τ )g(τ, xτ ) dτ ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
t1

R(t2, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

∣∣∣∣∣
+
∣∣∣∣∣

t1∫
0

[
R(t1, η) − R(t2, η)

]
GW̃−1

[
x1 − R(b,0)

(
φ(0) + g(0, φ)

)

+ g(b, xb) +
b∫

0

R(b, s)A(s)g(s, xs) ds

+
b∫

0

R(b, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

−
b∫

0

R(b, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

]
(η) dη

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
t1

R(t2, η)GW̃−1

[
x1 − R(b,0)

(
φ(0) + g(0, φ)

)+ g(b, xb)

+
b∫

0

R(b, s)A(s)g(s, xs) ds +
b∫

0

R(b, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds
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−
b∫

0

R(b, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

]
(η) dη

∣∣∣∣∣
+
∣∣∣∣∣

t1∫
0

[
R(t1, s) − R(t2, s)

]
f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
t1

R(t2, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

∣∣∣∣∣
�
∣∣R(t1,0)− R(t2,0)

∣∣∣∣φ(0) + g(0, φ)
∣∣+ ∣∣g(t1, xt1) − g(t2, xt2)

∣∣
+ L

t1∫
0

∣∣[R(t1, s) − R(t2, s)
]
A(s)

∣∣ds + L

t2∫
t1

∣∣R(t2, s)A(s)
∣∣ds

+ L

t1∫
0

∣∣R(t1, s) − R(t2, s)
∣∣ s∫

0

∣∣B(s, τ )
∣∣ dτ ds

+ L

t2∫
t1

∣∣R(t2, s)
∣∣ s∫

0

∣∣B(s, τ )
∣∣ dτ ds

+
t1∫

0

∣∣R(t1, η) − R(t2, η)
∣∣M4M5

[
|x1|

+ M1
(‖φ‖ + L

)+ L+ M2Lb + M1M3Lb2 + M1

b∫
0

αk(s) ds

]
dη

+
t2∫

t1

∣∣R(t2, η)
∣∣M4M5

[
|x1| + M1

(‖φ‖ + L
)+ L + M2Lb

+ M1M3Lb2 + M1

b∫
0

αk(s) ds

]
dη

+
t1∫

0

∣∣R(t1, s) − R(t2, s)
∣∣αk(s) ds +

t2∫
t1

∣∣R(t2, s)
∣∣αk(s) ds.

The right-hand side is independent ofx ∈ Bk and tends to zero ast2 − t1 → 0,
sinceg is completely continuous and the compactness ofR(t, s) for t, s > 0
implies the continuity in the uniform operator topology.
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Thus the set{Fx: x ∈ Bk} is equicontinuous.
Notice that we considered here only the case 0< t1 < t2, since the other cases

t1 < t2 < 0 or t1 < 0< t2 are very simple.
It is easy to see that the familyFBk is uniformly bounded. Next we showFBk

is compact. Since we have shownFBk is an equicontinuous collection, it suffices
by the Arzela–Ascoli theorem to show thatF mapsBk into a precompact set inX.

Let 0< t � s � b be fixed andε a real number satisfying 0< ε < t . Forx ∈ Bk

we define

(Fεx)(t) = R(t,0)
[
φ(0) + g(0, φ)

]− g(t − ε, xt−ε)

−
t−ε∫
0

R(t, s)A(s)g(s, xs) ds

−
t−ε∫
0

R(t, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

+
t−ε∫
0

R(t, η)GW̃−1

[
x1 − R(b,0)

(
φ(0) + g(0, φ)

)

+ g(b, xb) +
b∫

0

R(b, s)A(s)g(s, xs) ds

+
b∫

0

R(b, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

−
b∫

0

R(b, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

]
(η) dη

+
t−ε∫
0

R(t, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds.

Since R(t, s) is a compact operator, the setYε(t) = {(Fεx)(t): x ∈ Bk} is
precompact inX for everyε, 0< ε < t . Moreover for everyx ∈ Bk we have∣∣(Fx)(t) − (Fεx)(t)

∣∣
�
∣∣g(t, xt ) − g(t − ε, xt−ε)

∣∣+ t∫
t−ε

∣∣R(t, s)A(s)g(s, xs )
∣∣ds
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+
t∫

t−ε

∣∣∣∣∣R(t, s)

s∫
0

B(s, τ )g(τ, xτ )

∣∣∣∣∣dτ ds

+
t∫

t−ε

∣∣∣∣∣R(t, η)GW̃−1

[
x1 − R(b,0)

(
φ(0) + g(0, φ)

)+ g(b, xb)

+
b∫

0

R(b, s)A(s)g(s, xs) ds +
b∫

0

R(b, s)

s∫
0

B(s, τ )g(τ, xτ ) dτ ds

−
b∫

0

R(b, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)
ds

]
(η)

∣∣∣∣∣dη
+

t∫
t−ε

∣∣∣∣∣R(t, s)f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)∣∣∣∣∣ds
�
∣∣g(t, xt ) − g(t − ε, xt−ε)

∣∣+ L

t∫
t−ε

∣∣R(t, s)A(s)
∣∣ds

+ L

t∫
t−ε

∣∣R(t, s)
∣∣ s∫

0

∣∣B(s, τ )
∣∣ dτ ds

+
t∫

t−ε

∣∣R(t, η)
∣∣M4M5

[
|x1| + M1

(‖φ‖ + L
)+ L+ M2Lb

+ M1M3Lb2 + M1

b∫
0

αk(s) ds

]
dη +

t∫
t−ε

∣∣R(t, s)
∣∣αk(s) ds.

Therefore there are precompact sets arbitrarily close to the set{(Fx)(t): x ∈ Bk}.
Hence the set{(Fx)(t): x ∈ Bk} is precompact inX.

It remains to show thatF : C0
b → C0

b is continuous. Let{xn}∞0 ⊆ C0
b with

xn → x in C0
b . Then there is an integerr such that|xn(t)| � r for all n andt ∈ J ,

soxn ∈ Br andx ∈ Br .
By (v) f (t, xnt ,

∫ s

0 h(s, τ, xnτ ) dτ ) → f (t, xt ,
∫ s

0 h(s, τ, xτ ) dτ) for almost
eacht ∈ J and since|f (t, xnt ,

∫ s

0 h(s, τ, xnτ ) dτ ) − f (t, xt ,
∫ s

0 h(s, τ, xτ ) dτ)| �
2αr(t) and alsog is completely continuous, we have by dominated convergence
theorem
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‖Fxn − Fx‖

= sup
t∈J

∣∣∣∣∣[g(t, xnt ) − g(t, xt )
]+

t∫
0

R(t, s)A(s)
[
g(s, xns ) − g(s, xs)

]
ds

+
t∫

0

R(t, s)

s∫
0

B(s, τ )
[
g(τ, xnτ ) − g(τ, xτ )

]
dτ ds

+
t∫

0

R(t, η)GW̃−1

[
g(b, xnb) − g(b, xb)

+
b∫

0

R(b, s)A(s)
[
g(s, xns − g(s, xs)

]
ds

+
b∫

0

R(b, s)

s∫
0

B(s, τ )
[
g(τ, xnτ ) − g(τ, xτ )

]
dτ ds

+
b∫

0

R(b, s)

[
f

(
s, xns ,

s∫
0

h(s, τ, xnτ ) dτ

)

− f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)]
ds

]
(η) dη

+
t∫

0

R(t, s)

[
f

(
s, xns ,

s∫
0

h(s, τ, xnτ ) dτ

)

− f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)]
ds

∣∣∣∣∣
�
∣∣g(t, xnt ) − g(t, xt )

∣∣+ b∫
0

∣∣R(t, s)A(s)
∣∣∣∣g(s, xns ) − g(s, xs )

∣∣ds
+

b∫
0

∣∣R(t, s)
∣∣ s∫

0

∣∣B(s, τ )
∣∣∣∣g(τ, xnτ ) − g(τ, xτ )

∣∣dτ ds

+
b∫

0

∣∣R(t, η)
∣∣M4M5

[∣∣g(b, xnb) − g(b, xb)
∣∣
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+ M2

b∫
0

∣∣g(s, xns ) − g(s, xs)
∣∣ds

+ M1M3

b∫
0

s∫
0

∣∣g(τ, xnτ ) − g(τ, xτ )
∣∣dτ ds

+ M1

b∫
0

∣∣∣∣∣f
(
s, xns ,

s∫
0

h(s, τ, xnτ ) dτ

)

− f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)∣∣∣∣∣ds
]
dη

+
b∫

0

∣∣R(t, s)
∣∣∣∣∣∣∣f
(
s, xns ,

s∫
0

h(s, τ, xnτ ) dτ

)

− f

(
s, xs,

s∫
0

h(s, τ, xτ ) dτ

)∣∣∣∣∣ds
→ 0 asn → ∞.

ThusF is continuous. This completes the proof thatF is completely continuous.
Finally the setζ(F ) = {x ∈ C0

b : x = λFx,λ ∈ (0,1)} is bounded, as we proved
in the first step. Consequently by Schaefer’s theorem the operatorF has a fixed
point in C0

b . This means that any fixed point ofF is a mild solution of (1) onJ
satisfying(Fx)(t) = x(t). Hence, the system (1) is controllable onJ . ✷

4. Application

Consider the following partial integrodifferential equation of the form

∂

∂t

[
z(y, t) + µ1

(
t, z(y, t − r)

)]
= a(t, y)

∂2

∂y2z(y, t)+
t∫

0

b(t, s)z(y, s) ds

+ µ(t, y)+ µ2

(
t, z(y, t − r),

t∫
0

µ3
(
t, s, z(y, s − r)

)
ds

)
,

0� y � 1, t ∈ J, (4)
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z(0, t) = z(1, t) = 0, t � 0,

z(t, y) = φ(y, t), −r � t � 0,

whereφ anda(t, y) are continuous and satisfy certain smoothness conditions and
b(t, s) is continuous such that|b(t, s)| � k.

Let g(t,wt )(y) = µ1(t,w(t − y)), h(t, s,ws)(y) = µ3(t, s,w(s − y)) and
f (t,wt , v)(y) = µ2(t,w(t − y), v(y)).

TakeX = L2(J ) and defineA(t) :X → X by A(t)w = a(t, y)w′′ with domain
D(A) = {w ∈ X: w,w′ are absolutely continuous,w′′ ∈ X, w(0) = w(1) = 0},
generates an evolution system andR(t, s) can be extracted from the evolution
system [7,12] such that|R(t, s)| � n1 and|R(t, s)A(s)| � n2.

Let Gu :J → X be defined by

(Gu)(t)(y) = µ(t, y), y ∈ (0,1).

With the choice ofA(t),B(t, s), g,h andf , (1) is the abstract formulation of (4).
Assume that the linear operatorW is given by

(Wu)(y) =
b∫

0

R(b, s)µ(s, y) ds, y ∈ (0,1),

has a bounded invertible operator̃W−1 in L2(J,U)/kerW .
Further the functionµ1 :J ×[0,1] → [0,1] is completely continuous and there

exists a constantk1 > 0 such that∣∣µ1
(
t,w(t − y)

)∣∣� k1.

Also, the functionsµ3 :J ×J ×[0,1] → [0,1] andµ2 :J ×[0,1]×[0,1] → [0,1]
are measurable and there exist integrable functionsl :J × J → [0,∞), q :J →
[0,∞) such that∣∣µ3(t, s,w)

∣∣� l(t, s)Ω1
(‖w‖),

and ∣∣µ2(t, v,w)
∣∣� q(t)Ω2

(‖v‖ + |w|),
whereΩ1,Ω2 : [0,∞) → (0,∞) is continuous, nondecreasing and

b∫
0

n̂(s) ds <

∞∫
c

ds

Ω1(s) + Ω2(s)
,

wherec = n1(‖φ‖ + k1) + k1 + n2k1b + n1kk1b
2 + n1Nb. HereN depends on

µ1,µ2 andµ3. Further all the conditions stated in the above theorem are satisfied.
Hence the system (4) is controllable onJ .
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