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1. Introduction

Fractional programming is an fascinating and interesting topic
for research that appeared in several types of optimization prob-
lems. These programming are widely used in different branches
of engineering and sciences, for example it can be used in engi-
neering and economics to minimize a ratio of functions between
a given period of time and utilized resource in order to measure
the efficiency or productivity of a system. In these types of prob-
lems the objective function is usually given as a ratio of functions
in fractional programming form (see Stancu-Minasian [1]).
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Optimization problems with minimax type functions are
arise in the design of electronic circuits, however, minimax
fractional problems appear in formulation of discrete and con-
tinuous rational approximation problem with respect to the
Chebyshev norm [2], in continuous rational games [3], in mul-
tiobjective programming [4], in engineering design as well as in
some portfolio solution problems discussed by Bajaona-Xan-
dari and Martinez-Legaz [5].

Yadav and Mukherjee [6] formulated two dual models
for primal problem and derived duality theorem for convex
differentiable minimax fractional programming, a step for-
ward Chandra and Kumar [7] improved the dual formula-
tion of Yadav and Mukherjee and they provided two
modified dual problems for minimax fractional programming
and proved duality results. Lai et al. [8] proved necessary
and sufficient optimality conditions for nondifferentiable
minimax fractional problem with generalized convexity and
applied these optimality conditions to established a paramet-
ric dual model and also discussed duality results. Many pa-
pers are appeared in this direction (see Yuan et al. [9],

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

http://dx.doi.org/10.1016/j.joems.2014.01.010


https://core.ac.uk/display/82031251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2014.01.010&domain=pdf
mailto:meraj79@gmail.com
mailto:falleh@hotmail.com
mailto:falleh@hotmail.com
http://dx.doi.org/10.1016/j.joems.2014.01.010
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2014.01.010

Sufficiency and duality in nondifferentiable minimax fractional programming 209

Ahmad [10,11], Lai et al. [8], Hu et al. [12] and Lai and Lee
[13]).

In the course of generalization of convex functions, Avriel
[14] first introduced the definition of r-convex functions and
established some characterizations and relations between r-con-
vexity and other generalization of convexity . Antczak [16]intro-
duced the concept of a class of r-preinvex functions, which is a
generalization of r-convex function and preinvex function,
and obtained some optimality results under r-preinvexity. Lee
and Ho [15] established necessary and sufficient conditions for
efficiency of multiobjective fractional programming problems
involving r-invex functions, they also discussed Wolfe and
Mond-Weir duality in this setting, Antczak [16] introduced p-
invex sets and (p, r)-invex functions as a generalization of invex
and preinvex functions. Ahmad et al. [10] worked out the duality
in nondifferentiable minimax fractional programming with
B — (p,r)-invexity. Recently, Jayswal et al. [17] investigated
the duality for semi infinite programming problems involving
(H,, r)-invexity. Motivated by Jyaswal et al. [17] and Ahmad
et al. [10], in this paper we investigate the duality for minimax
fractional programming involving (H,,, r)-invexity.

We consider the following nondifferentiable minimax frac-
tional programming problem

lp(.x) — Sup f(x,y) + ('XTC‘)C)E
Y g(x,y) = (¥ Dx)!
Subject to  A(x) <0,

Minimize (NFP)

where Y is a compact subset of R f(,.),

g(,):R"xR — R, h(.,):R"— R" are C' functions. C

and D are n x n positive semidefinite symmetric matrices.
1

Throughout this paper, we assume that g(x,y) — (x"Dx)> > 0
and f(x,y) + (xTCx)% > 0, for all (x,y) € R" x R'.

2. Preliminaries

We start this section with the following some definitions

Definition 2.1. [18]. The weighted r-mean of a
(a1,a; > 0) is given by

and @

(2d; + (1 — /l)ag)% for r#0,

A l—A

aja, for r =0,

M, (ar,a; 7)) = {

where A € (0,1) and r € R.

Definition 2.2. A subset X C R" is said to be H, — invex set, if
for any x, u€ X, there exists a vector function
H,: X x Xx[0,1] — R", such that

H,(x,u;0) = ¢, Hy(x,u; 1) € R",,

InH,(x,u; ) € X, V2€0,1], peR

Note 2.1. It is understood that the logarithm and the expo-
nentials appearing in the above definition are taken to be
component wise.

Throughout the paper, we take X to be a H,-invex set un-
less otherwise specified, H,-right differentiable at 0 with re-
spect to the variable A for each given pair x, u € X and

f:X— R is differentiable function on X. The symbol
T

H (x,u;0+) = (le (v,u;04), ..., H (X, 15 O+)) denotes the

right derivative of H, at 0 with respect to the variable 4 for

each given pair x, u € X, Vf(x) = (Vif(x),...,V, f(x))" de-

T

notes the differential of fat x, and so % = (vl ) L M) .

ef ey
Note 2.2. All the theorems in the subsequent parts of this paper
will be proved only in the case when r#0 and r > 0 (in the case
when r < 0, the direction of some of the inequalities in the proof
of the theorems should be changed to the opposite one).

Definition 2.3. A differentiable function /: X — R is said to be
(strictly) (H,,r)-invex at u € X, if for all x € X, one of the
relations

1 ! T
;[e"(“")’ﬂ”” -1 = /) H,(x,u;0+)(>) for r#0,

et

VAu)"

et

S(x) = flu) =
hold.

H,(x,u;04) (>) for r=0,

If the above inequalities are satisfied at any point u € X
then f'is said to be (H,,r)-invex (strictly (H,,r)-invex) on X.

Now we define the generalized (H,,r)-invex functions as
follows.

Definition 2.4. A differentiable function f: X — R is said to be
(Hp,r)-pseudo invex at u € X, if for all x € X, the relations

T
1
er#H;’(% w0+H) =0 = ;[er(/(XH(u)) —1] >0,
for r#0,
Vi)' ,
o H,(x,u;0+) =20 = f{x)—flu) 20, for r=0,
hold.

Definition 2.4. A differentiable function /: X — R is said to be
(Strictly) (H,,r)-quasi invex at u € X, if for all x € X, the
relations

| Viu)"
L) _ ) « : o
p e 110, = o H,(x,u;04) (<)
<0 for r#0,
V)"

hold.

3. Notations and preliminaries

Let S = {x € R" : h(x) < 0} denotes the set of all feasible solu-
tions (NFP). An point x € S is called the feasible point of
(NFP). For each (x,y) € R" x R/, we define



210

M.A. Khan, F.R. Al-Solamy

X) = {je M={1,2,...,m}, hjx) :0},
where J = {1,2,...,m},
Y(x) = {y ey [+ (XTCX)EI = sup ,2) & (xTCx)zl}
glx,p) = (XTDx)? =¥ g(x,2) — (x"Dx)*

K(x)={(s,, 7)) ENX R, xR*: 1 <s<n+1, t=(t,0,...1,)
€R,
with Siti=1, 5=, 0) where

JeY(x),i=12.. }

Since fand g are C' functions and Y is compact in R, it fol-
lows that for each x* € S, Y(x*)#¢, and for any y; € Y(x*),
we have positive constant

1
o) + (T Cxy
g(x*,3;) — (x*"Dx")
Generalized Schwartz Inequality

Let 4 be a positive semidefinite matrix of order n. Then, for
all, x, we R",

Ko =(x", i) =

ol—

xTAw < (x7Ax) P (wTaw) .

)
Equality holds if for some 4 > 0,
Ax = AAw.

Evidently, if (wTAw)]/ 2 < 1, we have

12

xTAw < (xT Ax)

If the functions f; g and /1 in problem (NFP) are continuously dif-
ferentiable with respect to x € R". Lai et al. [8] proved the fol-
lowing first order necessary condition for optimality of (NFP),
which will be required to prove the strong duality theorem.

Theorem 1 (Necessary Condition). Let x* be a solution (local
or global) of (NFP) satisfying x*TCx* >0, x*TDx* > 0, and
let Vhi(x*), j € J(x*) be linearly independent . Then there exist
(s*,1*,7") € K(x*), ko € Ry, w, v € R" and p* € R’ such that

Zz f(x",77) + Cw — ko (Ve (x", 77)

~ b))

+ VZH;/?/(X (2)
=

S0 3) + (e Tex) ko (g, 37) = (v TDx)'")

=0, i=1,2,...5 (3)
Zu}‘hj(x ) = (4)
=
o> O,Zz;‘ =1, (5)
wlCw < 1, VTDV <1, (x"TCx*)l/2 =x"Cw,

X (x*TDx ) x*TDv. (6)

s s

r le (fx,7i)+xT Cw—ko (g(x,71)—xT Dv))—

(i )+t T Cw—ko (g(x* 37) —x* T D))
e Li=1 i=1 1

1
7

Now we discuss the sufficiency of the problem in the follow-
ing Theorem

Theorem 2 (Sufficient condition). Le x* be a feasible solution of
(NFP) and there exist a positive integer s, | <s<n+1, t*

ER,, yiey(x), (i=1,2,...5), k€ Ry, w, vER" and
W' € R}, satisfying the relation (2)—(6). Assume that
@) [t () + () Cw = ko(g( 1) — () Do) is

(Hp,r)- invex at x*, and
(i) =7 uhi(.) is (Hp,7)- quasiinvex at x*.

Then x* is an optimal solution of (NFP).

Proof. Suppose x* is not an optimal solution of (NFP). Then
there exists X € s, such that

ol—
ol—

s )+ (7€)

< qup )+ (TCx)
< g(%,7) — (¥7D3)

v g(x,y) — (¢ TDx")

ol—

We note that

ol—

1
* *T * (G «T *\7
supf(x ¥) + (' Cx )] _ S+ (7Gx )] o
eV g(xt,y) = (¢TDxT) g(x, 3i) — (xTDx")’
for y; € Y(x*), i=1,2,...5 and
(X v ety % 1= T = %
supj(y Vi) + (7 CX) < Supf(x,y) + (¥7Cx)

ST g(X.30) — (FTDX) eV g(x,y) — (TDX)
Thus we have
S%,7) + (7 Cx)’
o 1
g(x,3:) — (X"Dx)

0y

., 8, or equivalently,
1 L
A%, 7) + (7€) — ko (05, 7) — (D)) < 0.

From (1), (3), (5)—(7), we obtain

S w55 + 5 Cw — ko (g(%, 71)

i=1

~5Dv)

Zf {10 + (7€) ko (805,70 — (" Dx)' ) |
<0= th {10, 5)+ (e — ko (50730 - (D)) )
=S O ke 5D ()

As 31 (50 + () Cw = ko(g (. 30) = ()'Dv) is (Hp, r)-in-

vex function at x*, we have

(VA7) + Cw—ko(Veg(x*, ;) — Dv))} H;(x,x*70+)
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holds for all x € S and so x = X, the above inequality together

with the inequality (8) gives

e,%{iﬁ(vf(fﬂy;)+Cw—ko(Vg(X*7y;)—DV))} H(%.5',04)

<0.
©)

By the feasibility of X for (NFP), u* > 0 and (4), we get

D hi(%) = wg(x) <0
j=1 j=1

Since r > 0, using the fundamental properties of exponential
function, the above inequality yields

m

1 V'Z(u;’h, (.?)7;1;’/1,(.3(*))
r

e ! ~1| <o. (10)

The inequality (10) together with the assumption (ii) implies

145 7y H/ (x,x*,0+) < 0. (11)

By adding (9) and (11), we have

{Zl {(Vfx", 7i) + Cw — ko(Vg(x", 7;) — Dv)}

T
+ VZ“/ } X, xx,0+) <0,

which contradict (2). Hence the result. [

4. Duality results

In this section, we consider the following dual to (NFP)

max sup k,
(5..0)€K(2) (2 kv w)EH, (s,1,7)

(FD)

where H,(s,t,y) denotes the set of all (z,u k,v,w) € R"x
R x Ry x R" x R" satisfying,

Zt (Vf(z,7)

+ Cw —k(Vg(z,y;) — Dv)} + Vf:yfh,(z) =

(12)
it,{(f(z,)_/i)zTCw — k(g(z,y) — ZTDV)} >0, (13)
=1
Em;#/h./(z)v = 0. (14)
=
(s,t,7) € k(z), (15)
wl'Cw < 1,v"Dv < 1. (16)
If, for a triplet, (s,¢,7) € k(z), the set H,(s,t,y) = ¢, then we

define the supremum over it to be —co

Theorem 3 (Weak Duality). Let x and (z,u,k,v,w,s,t,7)
be feasible solutions of (NFP) and (FD), respectively. Assume
that

@ [0 G3) + () Cw —k(g(70) —
(H,,r)- invex at z, and
(i) D=7 wh;(.) is (Hp,r)- quasiinvex at z.

()" Dv)] is

Then,
1
T 2
Supw >k (17)
<Y g(x,y) — (x"Dx)?

Proof. Suppose to the contrary that

ol—

“u pf(x,y) +

veY g(x,y) —

Then we have

(xTCx)
(xTDx)

< k.

106,50 + (T Cx) = k(g(x, 77) — (x"Dx)) < 0,

for all y; € Y.
It follows from (5) that

Zt { (xTCx)

As same line of proof of inequality (8), from (1), (13), (16) and
(18) , we have

Ol—

— k(g(x,3) = (" Dx))} <0. (18)

i:t,-{f(x,yi) + x"Cw — k(g(x,5;) — x"Dv) }
- zs:ti{f(z,y,v) +z"Cw — k(g(z,5:) — z"Dv)} < 0. (19)

Since >0, (f(, 7)) + (.)TCw —ko(g(.,7:) — (.)TDv) is

invex at z, then we have

s s
r |:Zl,(/(v\’,y,)+x’ Cn'flc(g(x,f,)*.\""DV))*ZI (f(z.51)+zT Cw—k(g(z.71)— ’Dv)):|
e -1

i=1 i=1

(Hpvr)'

~ |-

T
1 u i _ ,
> ;{;zxv.f(z,yi) + Cw—k(Ve(z.7) —Dv))} Hy(x,2,04).
From (19) together with the above inequality, we get

- {ﬁjn(v_f(z,ff) +Cw— k(Ve(z.5i) - Dv))} H)(x,2,04)

< 0.
(20)

By the feasibility of x for (NFP), p > 0 and (14), we get

Zﬂfh/(x) - Zu,g,-(Z)
=1 =1

Since r > 0, using the fundamental properties of exponential
functions, the above inequality yields

m

P> (=)

e /=1 —-1[ <0. (21)

~ =
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The above inequality together with the assumption (ii) implies

;ZVH]

Thus by (20) and (22), we obtain the following inequality

" (x,2,0+) < 0. (22)

T
1 s B B m
eZ{Zn{(Vﬂz,ya +Cw—k(Vg(z,37) — D)} +VZu,,-h,-<z>}
i=1 Jj=1
H,(x,2,0+) <0,
which contradict (12). Hence (17) holds. [

We can prove the following theorem similar as Theorem 3.

Theorem 4 (Weak Duality). Let x and (z,u k,v,w,s,t,y) be
feasible solutions of (NFP) and (FD ), respectively. Assume that
@) |t G + () Cw = k(g (5)

(Hp,r)- psedoinvex at z, and

(i) o7 phy() is

()" Dv) is

(H,,r)- quasiinvex at z.

Then,
o T
up ) (TC0F
veY g(x,y) — (x"Dx)?

Theorem 5 (Strong Duality). Let x* be an optimal solution of

(NFP) and Vhi(x*), j € J(x*) is linearly independent. Then
there exist (5,1,¥) € K(x*) and (x*, i, k, v, w) € H\(5,7,7") such
that (x*, i, k,v,w,5,t,5") is a feasible solution of (FD). In addi-
tion, if the hypothesis of weak duality theorem are satisfied for
all  feasible solutions (z,u,k,v,w,s,t,y) of (FD), then
(x*, i, k, v, w,5,1,5°) is an optimal solution of (FD), and the
two objectives have the same optimal values.

Proof. If x* be an optimal solution and Vh;(
linearly independent, then by Theorem 1, there exist
(5,7,7°) € K(x*) and such that (x*, i, k, 7, %, 5, 7, 7*) is feasible
for (FD) and problem (NFP) and (FD) have same objective
values and

x*), jeJ(x*) is

S )+ (Texy
g(x*,77) — (x*TDx")}

The optimality of this feasible solution for (FD) thus follows
from Theorem 3. [

Theorem 6 (Strict  Converse  duality). Let x* and
(25, wr K" v we s* 1 7)) be optimal solution of (NFP) and
(FD), respectively, suppose that

i) Vh(x g *), j € J(x*) are linearly independent,
i) [ G (3) + OTOw =K (g(57) = (Do) s
H,,r)- invex at z*, and
(iii) D27 45hy(.) is (Hp, r)- quasiinvex at z*.

Then z* = x*,

Proof. We shall assume that x*#z* and reach a contradiction.
From the strong duality Theorem (Theorem 5), it follows that

ol—

S 7)) + (T Cx)
g(x,37) — (xTDx"):
Thus, we have

{f(x*,j/jf) (x*TCx )% k* (g(x*,y;‘) — (x*TDx*)%) <0, (24

for all j; € Y(x*), i=1,2,...,s"
Now, proceeding as in Theorem 3, we get

=k (23)

T
{ZZ V(7)) + Cw' =k (Vg(z, »7) —Dv*))}
H.(x', 2", 0+) < 0, (25)

and

1w hy(z H' (x*,z%,0+) <0, (26)

adding (25) and (26), we get the contradiction of (12), hence
x*=z. U

5. Conclusion and further development

In this paper, we have established, optimality condition for a
class of nondifferentiable minimax fractional programming
problems. Further, weak, strong and strict converse duality
theorems are discussed for nondifferentiable minimax
fractional programming problems in the framework of
(H,,r)—invexity. This paper generalized the results of Jayswal
et al. [17].

The question arises as to whether the results developed in
this paper hold for the following complex nondifferentiable
minimax fractional problem.

Re [f(gy7 v) + (ZTCZ)%]

Minimize /(&) = sup ]
< Reg(¢,v) — (z7D:)f)
Subject to —h(z) €S, &€,
where E=(z,2),v=(w,w) for zeC,wedl,f,.),

g(.,.) : C*" x C* — C are analytic with respect to W, W is a
specified compact subset in C¥, S is a polyhedral cone in C”,
and g: C* — C" is analytic. Also C,D € C™" are positive
semidefinite Hermitian matrices.
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