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Abstract

We compute a time-dependent non-commutativity parameter in a model with a time-dependent background, a spacetime
metric of the plane wave type supported by a Neveu—Schwarz two-form potential. This model is the open string version of the
WZW model based on a non-semi-simple group previously studied by Nappi and Witten. Like its closed string counterpart, it
is exactly conformally invariant to all orders irf. We quantize the sigma-model in light-cone gauge, compute the worldsheet
propagator, and use it to derive the non-commutativity parameter.

0 2002 Elsevier Science B.V. Open access under CC BY license.

1. Introduction

Non-commutativity in string theory is a very interesting topic, as it may have important implications for the
structure of spacetime. Non-commutativity has emerged in the context of open strings, starting from the treatment
of open string field theory in [1]. More recently, it has reappeared in the context of Matrix theory compactified on
atorus [2,3], and in the low energy description of strings in an electromagnetic background [4,5].

It is interesting to find other models in which non-commutativity emerges. In most of the examples currently
known, the non-commutativity parameter is constant. An obvious task is to look for time-dependent non-
commutativity parameters, especially given the recent interest in strings on time-dependent backgrounds [6—19].

In this Letter we study an exactly conformally invariant open string model, whose target space has a plane
wave metric supported by a time-dependent Neveu—Schwarz two-form potential. This background was studied
by Nappi and Witten [20] for closed strings. Here we are looking at the open string version, and by computing
the worldsheet propagator we can derive a time-dependent non-commutativity parameter. It is important that the
background is of the Neveu—Schwarz type: plane waves with Ramond fields remain commutative as the Ramond
background amounts to the addition of a mass term to the action in light-cone gauge. In our case, for large values
of the time parameter, our model reduces to a neutral string in a constant backgrdiett[4,21], hence, itis a
good candidate for spacetime non-commutativity.
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In Section 2, we show the open string model is conformally invariant to all orders and quantize the model
in light-cone gauge. The mode expansion of a closed string version of this model has been explicitly exhibited
in [22,23]. We compute the open mode expansion as a power series in a suitable pararfiéisrexpansion is
adequate to show non-commutativity. In Section 3 the worldsheet propagator is derived on the disk. In Section 4
we evaluate the propagator on the boundaries and compute a time-dependent non-commutativity parameter. The
techniques used in this calculation are similar to those of [21] which analyzes stringgIn & U (1) background.

2. An exactly conformally invariant time-dependent background
The Polyakov action coupling a string to a general metric and background Neveu—Schwarz field is

= /dtda[«/—y yPGunda XMop XM + Byne®P 3, XM X" ] (2.1)
X

where we choose the string worldshegtwith Lorentz signature, and have rescaled the scalar worldsheet fields

by (2v/ma’)~1 so that thex™ are dimensionless. We consider the time-dependent background provided by the

Nappi—Witten WZW model based on a non-semi-simple group, and adopt the same notation as in [20], with
= (a1, az, u, v), andu being identified with the time in the target space

1 0 %2 o0 0 u 00
0 1 -%2 0 —u 0 0 0

Guv=|g _g 7 1| Baw={g o 0 0 2.2)
0O O 1 o0 0O 0 0 O

The Lorentz signature target space mefttig;y can be recognized as a plane wave metric [20]. The time-
dependence is the-dependence aB1,. Nappi and Witten checked that this model is exactly conformally invariant
(i.e., to all orders inx’) by showing the one-loop function equations for the closed string backgrounds were
satisfied, and then proving there were no higher order graphs.

In this Letter, since we are interested in non-commutativity, we consider open string boundary conditions. We
can show exact conformal invariance also in this case. Indeed, the background (2.2) satisfies the Born—Infeld field
equations

—1LM
(DyFyp)(1- F?)
where (1 — F2)"UM — (1 + F)y"1LPGpnA — F) "M and (1 — F)yny = Guy — 27’ Fyy. In our case
Fyun = BMN For (2.2) the non-vanishing components of the Ricci tensor and affine connectioﬁ,g,afe—%,
F’ = 26 I} =—4%. ltfollows that(Dy Fy.)(1 — F2)~M = ¢;;(1 — F?)~%" = 0. Moreover the higher order
in a contrlbutlons vanish as in the closed string case [20,24].

As in [20], the sigma model action is (2.1):

=0, (2.3)

/dtdo[«/ % (aaa 8;341 + 20,udpv + bdyudgu +el]8au8;3a a )+6"‘56”u8aa 8561/] (2.4)
z

Although this action has a cubic interaction, if one treats it as a closed string theory, it is possible to find an
exact mode expansion in the light-cone gauge [22,23]. However, in considering it as an open string theory, one has
different boundary conditions which make the solution more complicated. Consequently, we will solve the theory
in light-cone gauge only via a power series expansion. For simplicity, we work to lowest ordewineren is a
dimensionless constant, as this is sufficient to prove non-commutativity. It is quite possible that another version of
this model, differing from (2.4) via boundary terms, would lead to an exact mode expansion.
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To implement light-cone gauge, we find the Virasoro constraints from varying (2.4) with respggf.tin
orthonormal gauge.s = 1qp, they are given by

1
a,,xMaﬂxMGMN—énaﬁny‘sayxMaaxNGMN=o (2.5)

for the background (2.2). Herg*® is the Minkowski worldsheet metrig®™® = —1,7°° = 1. We will use
0= —82 4+ 92. In orthonormal gauge, (2.1) becomes

S = /dr da[n“ﬁ (8aa58,3ai + 204u0pv + boqudgu + €;; 8au8,3aiaj) + e“ﬁe,-juaaaiaﬁaj] (2.6)
>

wheree™ = 1, and for the open stringoo < 7 < 00, 0< o < 7. The equations of motion and Neumann boundary
conditions obtained by extremizing (2.6) with respeckty (o, 7) are

, 1 , ,
Oa' + Eeija/Du + e,-j(n“ﬁ + e“ﬁ)aauaﬁa-/ =0,

1 . .
LT o] .. J _
O0sd; + Zaaue,ja €judca ’U:O,n =0,

1 .1 o
Ov +b0u + Seija’Oa’ — Ee,-je“/’aaa’aﬁaf =0,

o=0,7
=0. 2.7)
As in flat target space, here we can use the residual worldsheet gauge invariance to choose the light-cone gauge

condition:u = ut, for p is a dimensionless constant. In this gauge we can solve the constraints (2.5) for the
dependent variable:

1 . .
80v+b80u+ Ee,-ja-/aga’| :0,
Ou =0, 8(,u|

o=0,7

1o, i i b5 1 i j
Mafu=—§ara d0ra’ — ana dya' — EM —é,ueijara a’l,

UV = —0.a' 9,0 — %eijaoaiaj. (2.8)

The equations of motion and boundary conditions for the transverse dieldstten in terms ofX = a! + ia? and
X =a' — ia® become:

OX — i (8, X — 3:X) =0, OX +ip(9,X —3.X) =0,
[0 X +intd: X)lozor =0,  [0X —iptd X]| =0, (2.9)

o=0,7

whered = —92 + 92 = 4770, 9.

For larger (so thatr can be considered constant), notice the similarity of the boundary condition in (2.9) with
the boundary condition for an open string in a backgroBriield. Since in the latter case the non-commutativity
parameter is proportional to the background, this suggests we should expect here a non-commutativity parameter
which depends on time. _

The solution of (2.9) is given by the normal mode expansion for the transverse coordinatetsX, to first
orderinpu:

X(o, 1) =xo+ao|:1’ —i—,u(—ito + %r2>i|

s i 1 T\ . i (0 —1) 5
+Zan€ znr|:;cosmr+u<<—ﬁ—l;)smn0+<W+ » )COS’!U)]-I—O(M ),

n#0
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2
+ Z&ne*i’” ‘ cosno — i —i — iE sinno + l— + (-7 cosno | | + O(Mz).
n 2n2 n 2n? 2n

n#0
(2.10)

i(a, T) =Xo +Zzo|:t - ,u(—ito + l—rz)j|

We have derived (2.10) as follows. In (2.9) substititer, 7) = ¢/ 2"+ ¢ (o, 7), and find
O¢ =0,

[(a(, +i;u8,)¢+i%(1+i,ur)¢} —0. (2.11)

o=0,7

One such solution i¢ (o, 7) = xoe*i%(””), corresponding to the constant maxiés, t) = xo. A general solution
to the wave equationly =0 is

¢(0.1)=f(t+0)+g(t —0). (2.12)

So the constant solution above corresponds(tg t) = f(t + o) = xoe*"%(”“), andg(r — o) =0. To generate
the solutions which provide the coefficientsaqf anda, in the normal mode expansion &f(o, 7), we will try

to find solutionsp (o, ) = f(t + o) + g(r — o) satisfying the boundary conditions (2.11) via the power series
expansions

fe+0)=) Cp(t+0)?

p=0

gt —0)=) Dyt —o)’ (2.13)
p=0

and

Fa(t+0) =MD Y T Con)(T +0)7
p=0

gn(t—0) =" " D,(n)(x —0)”, (2.14)
p=0

respectively. A solution of (2.11), in the form of (2.13) is

3 M1 1 9 3
up(o,t)=put + ,u2|:—i§ro:| + ,u3 51:20 + 603 - éraz — §r3 - %(1:2 + 02)i|

3 5 9 5
—i—i,u4|:——t + =170 — 10"+ —t0"— <0 +7 ——13+—120——t02+—03>

6 ' 16 16 6 8" "8 8 24
) ]
+ 72T_4(f2 +0%) [+ 0(1), (2.15)

where the functiong andg are given by

3 T 5 31 b4
uf(t):%r—iéuzrz—u?’gtz—Eu3t3+i.—u T —l—i,u4(——t +—12>+0(u5),

3 n 13 95 n n?
ug(t) = %r + iéuzrz — ,u3§1:2 - 4—8M313 —i——utt i,u4<——r3 + —7:2) + O(Ms). (2.16)
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These expressions are derived iteratively, by considering the solution of (2.11) to someu6rdend then
integrating the boundary condition to find the solution to ordét!. Since finding a general form inarbitrary
p, and summing these series to a closed form is difficult, we work to first orderiote that although, o could

be rescaled to essentially elimingie we keep it here to track the order in the power series solution of (2.11).
The series in (2.16) are reminiscent of hypergeometric functions. To derive the coefficignivef use the ansatz
(2.14) to find

. j 1
bu(o,T) = ie~i"" |:coSn0 + /L((—‘L’ + 21—) sinno + (—io + 2—) COSna) + O(MZ)} (2.17)
n n
whereg, (o, 1) = fu(t +0) + g,(t — o) with
. T1 i
fu(r) = ie’”’[é + M<—l§f) + O(MZ)]’
o T1 j 1
gn(v) =ie "7 [E + u(%r + 5) + 0(#2)]. (2.18)
We then construct the normal mode expansion that satisfies (2.9) from

X(o,7)=x0+ ei%(r+a)ao¢(0, 7))+ ¢l 2T+ Za”¢” (0, 7). (2.19)
n#0

From (2.15) and (2.17), we see théfo, 1) is given by an expansion where the coefficientsgt:, are themselves
a double power series inandz. Although our open string model satisfies an equation of motion that can be simply
related to the one-dimensional wave equation (2.9), the particular boundary condition that is required substantially
complicates the form of the solution. (2.10) is reproduced by expanding (2.19) to first opdensing (2.15) and
(2.17). Letu — —p to find X (0, 7).

To quantize the theory in standard form, we reinsert the scaled? so thatX, X become fields with length
dimension, and find the canonical momenta:

P(o, 1) o5 (0.8 +i4% —ipca, X

o, T)=— = — — T

’ 50.X  dma/ 77 T TIHTGR )

- 58 1 NI

P(o,7)= _ﬁ = ol (8,X — IEX +l,bL‘L'80X). (2.20)

To first order inu, we can invert the normal mode expansions in (2.10) as:

17 . . N
(1+ 2n> rmofda COSna[—zn[X(U, 0) + X(—0,0)] + [47a/[ P(0,0) + P(—o, 0)]]],

(1— %)an - Zml/ﬂofda cOSna[—in[)?(a, 0) + X(—0,0)] + [4nd/[ P(0,0) + P(~o0, 0)]]] (2.21)

forn # 0 and

X0 —Zif [X(0,0) 4+ X(—0,0)],
0

1 T
—f X(o 0) + X(—o, 0].
0

I\)
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T
vmqugmzmjﬁqﬁwm+ﬁ@mm}
0

T
~ 20 ag + i%io =2 / dU[P(G, 0) + P(—o, O)]. (2.22)
0

~The co~mmutation relations which follow from canonical quantizatigho, 7), P(c’, )] = ié(c — o),
[X(0,7), P(c/,7)]=i8(0c —o’) are:

lam, an] =2(m — M)‘Sm,fnv [am, an] = [Gm, an] =0,

[xO, 550] = 07 [anv XO] = [aﬂ’ X~O] = [&nv XO] = [&ﬂ’ x~0] = 0 forn 7é O’

[x0, do] = i2v 2o’ = [Xo, aol, [x0, a0l = [Xo, do]l = 0. (2.23)

3. Thepropagator on the disk

Having found a mode expansion, we compute the propagator, along the lines of [2 doordinates (where

z is in the upper half plane, sinceQo < ), the equation of motion and boundary conditions for the propagator
are:

4770.0:X — 2uz0:X =0,  4770,0:X +2uz9:X =0,

(0. — 3)X + % INZZ(0. + 9)X |z =0, (9. — 0:)X — % IN2Z(; + 8:)X |.—z =0,

43.0:(X (2. DX (. D)) — 2uz 10:(X (2, DX (£, O)) = =27/ 8(z — {),

[(az — )X (2, DX, D) + % Inzz(3, + 8:)(X (z, ) X (¢, E))]

=0 (3.1)

=
We will compute the propagator on the disk, and will use ¢!(7+9) | 7 = ¢i(T=9) ¢ = ¢{(T'+0") and; = ¢/(7'~9"),
In the above boundary conditions, the notatien; denotesz = |z|,z = |z| at theo = 0 endpoint and: =
|z|e™,z = |zle™™ ato = . Assuming the commutation relations in (2.23), then |fgr> |¢|, the propagator
to orderu is
(X(z. 29X, 0)
i
=+/2a' [ag, Xo] <r + u(—ito + §r2)>

00
+ 24/ Z[a”’ &m]efinrefimr’
n=1
1COS’£ cosm /+'MCOS’)1 ! ! i sin + : +(U—T) cosn
X | —— — —_—— - — no —+— o
nm “ “ lm “ 22 n 2n? 2n

W 1 i\ . , i (o' = 1) ,
—l; cosno _ﬁ — E SiInmo + ﬁ + 7 cosmo + M(Cll’ + CO)
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= —i4a’<t + u(—ira + %1'2))

00
+ 4o/ Z e—in(r—r’)
n=1

1 ;o , 1 iT\ . i (0 —1)
X | —COsSno COsno” + 1 COSno — +—|Sihno — | — + ———— ) COSno
n 2n?2  n 2n2 2n

j 1L COS L _ i sinno’ + i _-7) cosna’ | — X cosno cosno’
- o|ll=—=—-— o — - o )l-= o
H 2n2 n " 2n2 2n n? 7
+ (et + co). (3.2)

We are free to add the functign(c1t + cg) to the expression since it does not affect the equation of motion or
the boundary condition for the propagator to first orderirFor|z| > ||, the expression fotX (z, DX, 7)) is
given by lettingu — —u in the above propagator. In the— 0 limit, these propagators reduce to the open bosonic
string propagator lim_.o(X (z,2) X (¢, O)y=-2d'(njz—=¢|+In|z —¢]).

4. Time-dependent non-commutativity

To evaluate the non-commutativity parameter as defined from time ordering [4,25], we consider the propagator
on the worldsheet boundary at= 0, thenz = |z| = ¢/* = 7, and¢ = ¢! +9) = |¢| = ¢/ =T, 507,7’ > 0.
We will also consider the propagatorat= 7, thenz = |z|e'™ =7 and¢ = |¢|e'™ =7’ so hereT, 7’ < 0. Note
that7 is different from the worldsheet time

(XX, D),

= —i4o/(1: + u%rz) + u(c1t +co) — 4’ In(1— e_i(r_r/)) —2dpi(r — ) In(1— e_i(r_r/))

=—4d'InN(T -7+ ,LL(—ZO/ In>7T — 2o/ In(;) In(l — ;) + (—=c1ilnT + co))
(X(z.2X¢. D), _
= —i40/<1’ — M%‘L’z) — u(crt +co) — 4o’ In(l — e*i(rfr’)) + 20 pi(r — 1) In(l — e*i(r—r’)). (4.2)
Then ato =0:
[X(T), X(D]=T(XMX(T") - X(DX(T"))
= Iimo((X(T))?(T )= (X(T +e)X (7)) (fore>0)
= ju(—4ie)(mInT —iIn?T)
= pdd' (1t +1%) =0, (4.2)

where we chose; = 27a’, co = 0, and use lira.o(In(1 + €) Ine) = 0. The non-commutativity parametér is
time-dependent.
Ato =

(XX, 0)|,_, = —i4d (r + M(—itn + %t2>> + pu(c1t + co)

— 4o’ In(l — ei(r,fr)) —2d'pi(r =1 In(l — eii(r*r,)), (4.3)
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(X(z,2)X(, gy = — i4o/<r - /L(—i‘L’JT + ér2>> + u(c1t + co)

—4a/In(1— €7D 4 20/ pi(z — ) In(1— ),
[X(D).X(D)]=T(XMX(T") - XDX(T"))
= EliLno((X(T))?(T —O)— (X(T +e)X(T))) (fore>0)
= (—ido)u[-7InT —iIn?T]
= pda' (—m T +77). (4.4)
Thus for smallx, we have:
@:,u4o/(m:+12) ato =0,
O = ,u4o/(—rrr + rz) ato =m. (4.5)

For smallr, the theta parameter at the= 0 end of the string is minus that at the= 7 end. This is the case for
the neutral string in a constant backgroundield as well. In fact, although we have worked only to lowest order
in u, we can see directly from the equations of motion and boundary conditiopszivariables in (3.1), that in
the limit of largez, i.e., largei 7, a limit for whichz=1 — 0, that the system reduces to the neutral string with the
identification—ut = B, a constant. (In the largelimit, we note that Irjiz| is approximately constant, in the sense
that it is changing slowly, i.e., its derivative| ~* is small. Therefore, for large the non-commutativity parameter
becomes constant, and our model is similar to the neutral string.) Fordatggng the neutral string expressions,
we find the non-commutativity parameter be time-dependent:

O =—-4'rB=4'urt ato =0,
O =40'7B=—4d'unt ato =m. (4.6)

We have shown that our model exhibits non-commutativity for both small and targlee expectation is that the
model will remain non-commutative with a time-dependent non-commutativity parameter for all times.
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