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a b s t r a c t

Tortuosity is one of the key parameters to characterize the transport properties of porous media. There
are many models for tortuosity estimation based on some definitions: geometric, hydraulic, electric, and
diffusive definitions. However, relationships among those tortuosities remain unclear due to the lack of di-
rect comparison on the same porousmedia. Here we focus on hydraulic and electric tortuosities and have
conducted a series of finite element simulations with the Navier–Stokes equation and the equation for
electric current to directly compare tortuosities. The results revealed that: (1) on average, hydraulic tortu-
osity is 15% greater than that of the electric one; (2) the proposedmodel based on the van Genuchten-type
function successfully approximates both hydraulic and electric tortuosities; (3) tortuosities obtained from
the porous media packed with circular particles and square particles show quantitatively similar trends.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
c

Tortuosity is one of the key parameters to represent com-
plex microstructure in porous media and much affects the macro-
scopic transport properties characterized by parameters such as
permeability, electric conductivity, and diffusion conductivity. For
instance, permeability derived from the Kozeny–Carman equa-
tion [1] is expressed as a function of porosity, shape factor, and
tortuosity. Also, Archie’s law [2], which is an experimental model
for electric conductivity of porousmedia, incorporates the effect of
tortuosity by a parameter referred to as tortuosity factor.

There aremanymodels for tortuosity estimation based on some
definitions [3,4]: geometric models [5,6] (Tg), hydraulic models
[7,8] (Th), electric models [9,10] (Te), and diffusive models [11,12]
(T]d). Those models are different in terms of their basic concepts:
geometry, fluid mechanics, electrodynamics, and diffusion equa-
tion. However, it should be noted that most of those models for
each tortuosity are a function of porosity despite of the difference
between the background concepts. Besides, themagnitude relation
among those tortuosities is considered to hold Tg < Td ≈ Te < Th
from the viewpoint of dimensional analysis for the local hydraulic
and electric conductivities at a point on a flow path [13–15]. How-
ever, the relationships among those magnitude are quite qualita-
tive and remain unclear due to the lack of direct comparison on

∗ Corresponding author.
E-mail address: h-saomoto@aist.go.jp (H. Saomoto).

http://dx.doi.org/10.1016/j.taml.2015.07.001
2095-0349/© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese So
BY license (http://creativecommons.org/licenses/by/4.0/).
the same porous media. One of the few investigations of the com-
parison for hydraulic and electric tortuosities is demonstrated by
Ghanbarian et al. [4] using the Wheatstone bridge circuit, but it
seems difficult to model complicated pore structure with a single
Wheatstone bridge.

Here we focus on the differences between hydraulic and
electric tortuosities and have conducted a series of finite element
simulations to directly compare hydraulic and electric tortuosities
on the same finite element mesh. Using the simulation results,
we have discussed the relation between hydraulic and electric
tortuosities and have newly proposed an empirical model for both
tortuosities. Note that it is difficult to experimentally measure the
tortuosity inside the porous media.

Figure 1 shows the porous models used in this study. Here,
two series of porous media are prepared: one is composed of
circular particles having the diameter of 2.0 mm (Fig. 1(a)), the
other is composed of square particles having the edge length of
1.772 mm (Fig. 1(b)). Since it is known that tortuosity depends on
the value of porosity, we produced several porosity levels ranging
from 0.5 to 0.9 by means of the Monte Carlo computation without
intersection of each particle. Next, we need to solve two types
of partial differential equations defined on those porous models
to obtain tortuosities; one is for porous flow and the other is for
electric current.

The governing equation of porous flow is the stationary
Navier–Stokes equation described as follows:
∇ · u = 0, (1)
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Fig. 1. (a) Porous media composed of circular particles having diameter of 2.0 mm (porosity: 0.70). (b) Porous media composed of square particles having edge length of
1.772 mm (porosity: 0.70).
Table 1
Physical properties of pore fluid.

Name Symbol Value

Density/(kg · m−3) ρ 1.0 × 103

Viscosity/(Pa · s) µ 1.0 × 10−3

Electric conductivity/(�−1
· m−1) σ 1.0 × 10−2

ρ(u · ∇)u = −∇p + µ∇
2u, (2)

where u, ρ, p, and µ are velocity of the pore fluid, density
of the pore fluid, pore pressure, and the viscosity of the pore
fluid, respectively. Physical parameters of the pore fluid, which is
assumed to be water, are listed in Table 1. The no-slip boundary
condition (u = 0) is adopted at the solid boundaries in the porous
media. The constant normal fluid velocity (5.0 × 10−4 m/s) is set
at the inlet, which satisfies a condition concerning the Reynolds
number (Re) expressed byRe = 1. Thepressure free boundary is set
at the outlet (p = 0). The other governing equation for stationary
electric current is given as follows:

∇ · J = ∇ · σE = ∇ · (−σ∇V ) = 0, (3)

where V , E , J , and σ are electric voltage, electric field, current den-
sity, and the electric conductivity of the pore fluid, respectively.
The insulated boundary conditions (n · J = 0) are applied on the
edges of the solid region except the boundarieswhere electric volt-
age is defined. Electric voltages at the boundaries are set to 1.0 V
for the inlet and to 0 V for the outlet, respectively.

In order to solve the above partial differential equations, the fi-
nite element based software COMSOL Multiphysics R⃝ is employed.
During the triangular mesh generation, the maximum edge length
of a triangle is limited to less than 0.1 mm so the very dense flux
vectors indicating u and J are expected over the computational do-
main. Using these flux vectors, the streamlines for each physics are
independently obtained by solving ordinary differential equations
for streamlines. Since the COMSOL Multiphysics R⃝ can export a set
of coordination data of streamlines, we then perform a series of
statistical analyses for the data to estimate some parameters such
as the average and the variance of the length of the streamlines.
From the average length of the streamlines and the model length L
(50 mm), the tortuosities are defined for each physics as follows:

Th =
Lh
L

, Te =
Le
L

, (4)

where Th and Te denote hydraulic tortuosity and electric tortuos-
ity, respectively. The symbols Lh and Le mean the average lengths
of hydraulic streamlines and electric streamlines.

Figures 2 and 3 respectively show hydraulic and electric
streamlines for the porous media having porosity of 0.7 with
Fig. 2. Streamlines of hydraulic flow (porosity: 0.70).

Fig. 3. Streamlines of electric flow (porosity: 0.70).
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circular particles. As can be seen in Fig. 2, some localized flowpaths
are clearly produced, in which relatively higher fluid velocities are
observed. In contrast to the result of the hydraulic streamlines,
electric streamlines (Fig. 3) seem to be quite homogeneous.
It is emphasized that these tendencies were always observed
irrespective of the particle shapes and porosity. To understand
those phenomena, the dimensional analyses for hydraulic and
electric conductivities are useful. Friedman and Seaton [13]
derived proportional relations for those conductivities via the
dimensional analyses such that gh ∝ r4 and ge ∝ r2, where gh
and ge denote hydraulic and electric conductivities, respectively.
Also, r indicates the radius of a cylinder regarded as a part of fluid
path. Since various sizes of r will be found in the porous media,
the heterogeneity of those conductivities will arise. We can thus
easily comprehend that the higher exponent of r leads to strong
heterogeneity, which results in highly tortuous streamlines.

Figure 4 shows the relationship between tortuosities and the
porosity for the circle packed porousmodel, in which five different
cases were simulated at each porosity level. Note that the variance
of tortuosities among five cases is simply caused by the five
different pore structures. We can find some features. (1) In a large
sense, both hydraulic and electric tortuosities have linearity with
respect to porosity. (2) The ratio Th/Te reaches almost 1.2 when
porosity equals 0.5. (3) The variance among five cases at a porosity
for hydraulic tortuosity is higher than that of the electric one.
Yazdchi et al. [16] simulated almost the same problem of porous
flow with circular particle packed porous model and they also
indicated the linear relationship for the hydraulic tortuosity, which
is nearly identical to our results. Nevertheless, the linear relation
seems difficult to hold the fundamental boundary condition:
Th (or Te) → ∞ at φ = 0, Th (or Te) → 1 at φ = 1, where φ
represents porosity.

Now we discuss the relationship between our numerical
results and the models for both hydraulic and electric tortuosities
considered as a function of porosity. One of the most used models
for the estimation of both hydraulic and electric tortuosities (T ) is
the logarithmic function of porosity [7,11,17–20], which is given
by

T = 1 − P lnφ, (5)
where P is a parameter to be determined by experiments or sim-
ulations. Evidently, the logarithmic function satisfies T → ∞ at
φ = 0 and T → 1.0 at φ = 1. According to Comiti and Re-
naud [7], the value of P for hydraulic tortuosity ranges from 0.86
to 3.2 for plate-packed porous media with different particle aspect
ratio. For two dimensional porous flow problem, Matyka et al. [19]
derived P = 0.77 for the hydraulic tortuosity from the lattice
Boltzmann simulation for a porousmodel composed of freely over-
lapping squares. We also fitted our results by Eq. (5) and found
good agreements with P = 0.50 for the hydraulic tortuosity and
with P = 0.20 for the electric tortuosity (Fig. 4). Presence of over-
lapping particles in the porous media is thought to be the major
cause of the difference between our fitted result and the result re-
ported by Matyka et al. [19]. In other words, the aggregated parti-
cles are easily apt to generate long flow channels due to their large
diameter, resulting in a larger value of P . It should be noted that the
logarithmic function cannot precisely trace the higher porosity re-
gion (φ ≥ 0.7) of the hydraulic tortuosity due to the tangent trend
being convex upward. In fact, this convexed tendency of the hy-
draulic tortuosity is commonly observed in most of simulation re-
sults [16,19,21]. On the other hand, the electric tortuosity is clearly
approximated by the logarithmic function.

To improve the accuracy of the fitting with the boundary
conditions and the convexed region mentioned above, we newly
propose a function to evaluate the tortuosity based on the van
Genuchten-type function [22]. That is,

T = 1 + α(φ−
1
m − 1)(1−m), (6)
Fig. 4. Relationship between tortuosities and porosity for circular particle packed
porous media.

Fig. 5. Relationship between tortuosities and porosity for square particle packed
porous media.

whereα (positive value) andm (0 ≤ m ≤ 1) are fitting parameters.
As the van Genuchten function is originally designed for moisture
characteristic curve of soils having the changing tangent, it is suit-
able for locally convexed trend as indicated in the hydraulic tor-
tuosity. Although there are two parameters, geometric meanings
of those are quite clear; parameter α regulates the location of the
inflection point on the curve and parameterm controls the increas-
ing trend of the curve. Also, the proposed model may be simple to
use because the parameter m is a normalized parameter. The up-
per and lower bounds for the parameters are important when we
determine the parameters via the non-linear least square fitting.
Using α = 0.217 and m = 0.572, the proposed function well
approximates the plot of hydraulic tortuosity distributed within
0.5 ≤ φ ≤ 0.9 (Fig. 4). In addition to hydraulic tortuosity, the pro-
posed function can also fit the plot of the electric tortuosity with a
high degree of accuracy.

Figure 5 shows the relationship between tortuosity and
porosity for the square particle packed porous media. Similarly,
the proposed model can also fit both tortuosities precisely. By
comparing Fig. 4 with Fig. 5, we can discuss the effect of
particle shape to tortuosities. According to the regression equation
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proposed by Comiti and Renaud [7], they argued that a higher
aspect ratio leads to a higher value of P . Since the difference in
the aspect ratio between a circle and a square is small, similar
tortuosity trends are formed in each model.

The knowledge obtained from this study is summarized as fol-
lows. (1) In two-dimensional problem, the ratio composed of hy-
draulic and electric tortuosities (Th/Te) is less than 1.2 with φ ≥

0.5. (2) The logarithmic function fails to fit hydraulic tortuosity in
the higher porosity region (φ ≥ 0.7) due to the tangent trend be-
ing convex upward. (3) We proposed an empirical model to es-
timate both hydraulic and electric tortuosities based on the van
Genuchten-type function. The model successfully approximates
tortuosities distributed within 0.5 ≤ φ ≤ 0.9. (4) Both the log-
arithmic function and our model clearly approximate the electric
tortuosity. (5) Tortuosities obtained from the porousmedia packed
with circular particles and square particles show similar trends,
suggesting that the particleswith high aspect ratiowill be required
to discuss the shape effect to tortuosity.

Future work on our tortuosity model is to estimate the
applicability of the proposed model based on the van Genuchten-
type function to the three-dimensional porousmodel composed of
realistic irregular-shaped particles such as sand grains.
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