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Abstract 

By (l,+k(n))-branching programs (b.p.‘s) we mean those b.p.‘s which during each of their 
computations are allowed to test at most k(n) input bits repeatedly. For a Boolean function 

computable within polynomial time a trade-off is presented between the size and the number 
of repeatedly tested input bits of any b.p. P computing the function. Namely, if at most k(n) 
repeated tests are allowed, where log, n <k(n) < n/( 1000 log, n), then the size of P is at least 
exp(Q(n/(k(n) log, n))“‘). This is exponential whenever k(n) <n” for a fixed CI < 1 and super- 
polynomial whenever k(n) = o(n/ log: n). 

The presented result is a step towards a superpolynomial lower bound for 2-b.p.‘s which is an 
open problem since 1984 when the first superpolynomial lower bounds for I-b.p.‘s were proven 
(Wegener, 1988; %k, 1984). The present result is an improvement on (%k, 1995). 

1. Introduction 

A branching program (b.p.) is a computation model for representing the Boolean 

functions. The input of a branching program is a vector consisting of n input bits. The 

branching program itself is a directed acyclic graph with one source. The out-degree of 

each node is at most 2. Every branching node, i.e. a node of out-degree 2, is labeled 

by the index of an input bit and one of its out-going edges is labeled by 0, the other 

one by 1. The sinks (out-degree 0) are labeled by 0 and 1. A branching program 

represents a Boolean function as follows. The computation starts at the source. If a 

node of out-degree 1 is reached, the computation follows the unique edge leaving the 

node. In each branching node the input bit assigned to the node is tested and the 
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out-going edge labeled by the actual value of the input bit is chosen. Finally, a sink 
is reached. Its label determines the value of the function for the given input. By the 
size of a branching program we mean the number of its nodes. 

Branching programs were introduced because of their relation to the P L LOG 

problem. Namely, the polynomial size b.p.‘s represent a nonuniform variant of LOG. 
Hence, a superpolynomial lower bound on b.p.‘s for a Boolean function computable 
within polynomial time would imply P # LOG. 

In order to investigate the computing power of branching programs, restricted models 
were suggested. Besides the hope that these restricted models help to solve the general 
problem, some kinds of the restricted branching programs are important also as a data 
structure for representing Boolean functions in some CAD applications, e.g. design or 
verification of Boolean circuits, see e.g. [l 11. 

One possible kind of restriction of the b.p.‘s is to bound the number of repeated 
tests of each input bit. In a k-b.p., each computation can test each input bit at most 
k times. Even more restrictive assumption is the following. In a syntactic k-b.p., on 
each path from the source to a sink, each input bit is tested at most k times. This 
is more restrictive, since in a b.p., there may be paths that are not followed by any 
computation. 

In 1984 the first superpolynomial lower bounds for 1-b.p.‘s were proven [lo, 121. The 
first step towards the case of 2-b.p.‘s were made with real-time b.p.‘s, which perform 
at most n steps during each computation on any input of length n. The results were 
a quadratic lower bound [3], a subexponential lower bound [ 131 and an exponential 
lower bound [6]. For syntactic k-b.p.‘s, exponential lower bounds have been proven, 
see [2,4,7]. The results of [2,4] apply even to nondeterministic k-b.p.‘s. However, the 
problem for 2-b.p.‘s remains open. 

There are also other generalizations of 1-b.p.‘s, such that some input bits are al- 
lowed to be tested more than once. Namely, (l,+k(n))-b.p. is a b.p., where for each 
computation, the number of input bits tested more than once is at most k(n). There is 
no restriction on the number of tests of these at most k(n) input bits. Again, syntactic 
(1, +k(n))-b.p.‘s are b.p.‘s, where the above restriction is applied to any path from the 
source to a sink, not only to the computations. 

For syntactic (1, +k(n))-b.p.‘s, where k(n) is bounded by c n1/3/ logi’3 n for an appro- 
priate c > 0, an exponential lower bound and tight hierarchies (in k(n)) are presented 
in [8,9]. 

In the present paper, we prove that every (1, +k(n))-b.p., where log, n <k(n)< 

n/( 1000 log, n), computing a function fn has size at least exp (Q (n/(k(n) log, n)) “‘). 

This is exponential whenever k(n) <na for a fixed GI < 1 and superpolynomial when- 
ever k(n) = o(n/ log: n). The function fn is computable by polynomial size general 
b.p.‘s. Moreover, it is computable in polynomial time and, in fact, it is in uniform ACC. 
The present result is an improvement of [14], where a lower bound exp(Q(n/k(n)2)1’4) 
for (l,+k(n))-b.p.‘s and for another function was proved. The lower bound from [14] 
is superpolynomial whenever k(n) = o(n”*/ log: n). 



P. Savickj, S. &ikl Theorelical Computer Science I72 (1991) 293-301 295 

Recently, the lower bounds of the present paper were improved for characteristic 

functions of some well-known binary linear codes, see [5]. The largest lower bound 

is achieved there for BCH codes and it is exp (a (min{n’/2,n/k(n)})). This is super- 

polynomial for any k(n) = o(n/ log, n). 

2. The lower bound 

First, we shall discuss some notation. As an input to a b.p. we shall consider also 

partial inputs. This means that the input bits may have values 0, 1 and *. In the last 

case, we say that the corresponding input bit is not specified by the (partial) input. 

For an input u let camp(u) denote the sequence of nodes of the b.p. visited during the 

computation on U. For a partial input U, we say that the computation for u leads to a 

node w, if w is the first branching node on the computation for u, which tests a bit 

not specified by u. 

If u is a vector, then its ith coordinate is denoted by u(i). By subscripts, we distin- 

guish different vectors. If u E (0, l}“, then llull denotes the number of ones in U. 

Assume, P is a b.p. computing a function f and let f’ be a subfunction of f 
obtained by setting some input bits of f to constants. By changing every branching 

node of P labeled by an input bit involved in the setting to a node with out-degree 

one and with an appropriate successor, we obtain a b.p. P’ computing f’. The b.p. P’ 
will be called a restriction of P. 

Definition 2.1. Let I = { 1, . . . . H} be the set of indices of the input bits. Let ~1, ~2,. . . , u, 

be (partial) inputs and let for all i = 1,2,. . . ,s, Ai C I be the set of indices of the 

input bits specified in ui. Let Ai be pairwise disjoint. Then, let [ui, 242,. . . , us] be the 

(partial) input specifying the bits with the indices from Ui=iAi such that if j E Ai, 

then [UI, ~2,. . . , u,](j) = ui(j). 

Definition 2.2. Let a, b be (partial) inputs with the same set of specified bits. Let 

D = {i : u(i) # b(i)}. The pair a, b is called a forgetting pair, if there is a node w 

in the branching program such that w belongs to both camp(a) and camp(b) and both 

computations read all the bits with indices in D at least once before reaching w. 

Lemma 2.3. Let c be the size of a branching program P and let every computation 
of P read at least d different bits. Let s>O be a natural number such that (2 log, c+ 

l)(s+l)<d. Then thereexistpairwisedisjointsetsAiC{1,2,...,n}fori= l,...,s+l 

and partial inputs ai : Ai --+ (0, 1) and bi : Ai -+ (0, l}, ai # bi such that for all 
i = 1,2,..., s + 1 we have 

(i) IAil <2 log, C + 1, 

(ii) the inputs [al,. . . ,a,+11 and[al,...,ai-l,bi,ai+l , . . . , as+11 form a forgetting pair. 

Proof. Let r = [log, c] + 1 > log, c. By our assumption, every computation of P 

reads at least r input bits, since r < 2 log, c + 1 <d. We shall construct a sequence 
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UO,Ul,... , U,. of sets of partial inputs in such a way that for every i = 0, 1, . . . , r, the 

set Ui consists of 2’ inputs with exactly i specified bits. In particular, U0 contains only 

the totally undefined input. Given Ui, the set Ui+, is constructed as follows. For each 

u E Ui, follow the computation for u until the first bit not specified by u is required. 

Let j be its index. Then, include into Vi+, the inputs ug and u1 extending u by setting 

the jth bit to 0 and 1, respectively. Now, since 2’ > c, there are at least two distinct 

inputs in U,, say u1 and 02, such that the computations for both these inputs lead to 

the same node. Note that, by construction of U,, there is a bit specified by both v1 and 

~2, but with different values in v1 and 212. Moreover, for both i = 1,2, the computation 

for vi reads all the bits specified by vi. 

Let Cl be the set of bits tested by comp(vl) and C2 be the set of bits tested by 

comp(u2). Let Al = Cl U C2. Since Cl fl C2 # 0, IA1162r - 1621og,c + 1. Let a 

partial input al extend 01 in such a way that the bits with indices in Al not determined 

in 01 are equal to the values of these bits in ~2. Similarly, bl extends v2 so that the 

bits undefined in v2 have the same value as in VI. Hence, al and bl may differ on 

the bits with indices from Cl n C2 whereas the bits with indices from the symmetric 

difference of Cl and C2 are specified in both al and bl and are equal. One can easily 

see that comp(a,) follows comp(vl) and comp(bl) follows comp(v2) until comp(ul) 

and comp(bl) join in some node w. All the bits, where al and bl differ, are read on 

both computations before reaching w. Hence, al and bl form a forgetting pair. 

If Aj, uj and bj for all j = 1,. . . , i, where i < s + 1, are already constructed, we 

continue in the following way: consider only those inputs which equal aj on Aj for 

all j = l,..., i. These inputs define a restriction Pi of P. Since ) $, Aj I< (2 log, c + 

1 )s < d - 2 log, c - 1 and r <2 log, c + 1, each computation of Pi tests at least r input 

bits. Otherwise, during a computation of P less than d bits are tested. This would be a 

contradiction to the assumptions of the lemma. Now, the construction of UO, UI, . . . , U, 

applied in the first part of the proof to P is applied to Pi. Using this, ai+l, bi+l and 

Ai+l are defined in the same way as al, bl and Al above. Note that, by construction, 

Ai+l contains only input bits not in &I A/. 

It follows from the construction that (i) is satisfied. Moreover, the construction of ai 

and bi implies that the computations for the partial inputs [al,. . . , ui] and [al,. . . , ai_ 1, b;] 

lead to the same node. Hence, the inputs [al,. . . , u,+l] and [al,. . . , ui-1, bi, ui+l, . . . , u,+l] 

form a forgetting pair. 0 

Definition 2.4. For every nonzero natural numbers m, t let gm,t be the Boolean function 

of (m+ 1)t variables defined as follows. The input of gm,t is treated as an m by t matrix 

A over GF(2) and a vector u over GF(2) of length t. Then, let g&A,u) = 1 if and 

only if Au = 0. 

In order to prove that gm,t is hard for (1, +s)-b.p. for some s, we will find an 

appropriate m by t matrix A and then we prove a lower bound on the size of any 

(1, +s)-b.p. computing g&A, u) as a function of u only. The properties of the matrix 

A needed for this are stated in the following definition. 
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Definition 2.5. An m by t matrix A will be called hard, if the two following conditions 

are satisfied: 

(a) For every nonzero u E (0, l}‘, if IIu(( < m/log, t, then Au # 0. 

(b) For every partial input u with at most Lt/4] specified coordinates, there exists a 

total input U’ extending u such that Au’ = 0. 

Since the multiplication of a vector u by a fixed matrix A is a linear operation, the 

property (a) is equivalent to the following: If U, v are distinct vectors, Au = 0 and 

the Hamming distance of u and v is less than m/log, t, then Au # 0. In terms of the 

linear codes, this means that the code {U : Au = 0} has the minimum distance at least 

ml log, t. 

Lemma 2.6. Let m and t be some nonzero natural numbers such that m > log, t 

and a hard m by t matrix exists. Let s be such that 4m(s + 1) <t log, t. Then every 
(l,+s)-b.p. computing gm,r has the size at least 2((m~‘o~~r)-1)~2. 

Proof. Assume, A is a hard m by t matrix. Assume that a b.p. P computes gm,t and 

each of its computations reads at most s input bits repeatedly. Let P’ be the restriction 

of P computing gA(u) = g&A,u). By definition, the function gA is a function of t 

variables. Clearly, P’ is not larger than P and it is also (1, +s)-b.p. Let the size of P’ 
be c and let the minimum number of input bits read on a computation path be d. Then 

d > t/4, because every partial input u of at most t/4 specified bits may be extended to 

an input x with gA(x) = 1 and also to x’ with gA(x’) = 0. The existence of x follows 

from (b). The input x’ may be chosen as an extension of u differing from x in one 

coordinate. By (a), we then have gA(x’) = 0. 

The lower bound on the size of P’ is proved by contradiction. Assume that 

2 log,c+ 1 < m/log,t. 

Since (s + 1) d (t log, t)/(4m) by the assumptions of the lemma, we obtain 

(1) 

(2 log,c+ l)(s+ l)<t/4. (2) 

This together with d > t/4 implies that the assumptions of Lemma 2.3 are satisfied for 

P’ and gA. Consider the partial inputs [ai ,..., a,+11 and [al,. ..,ai_l,bi,ai+l,..., a,+11 
guaranteed by the lemma. By (2), [al,. . . , a,+11 specifies at most t/4 input bits. Hence, 

(b) from the definition of a hard matrix implies that it is possible to extend [al,. . . , a,+11 
to an input x = [al,..., a,+l,a] with gA(x) = 1. For i = 1,. . .,s + 1 let yi = 

[al,. . . ,bi,. . . , a,+,, a]. The inputs x and yi form a forgetting pair. Moreover, the Ham- 

ming distance of x and yi is at most 2 log, c + 1 < m/log, t. Hence, by (a) we have 

gA(yi) = 0. Consider the node w from Definition 2.2 applied to x and yi. This node is 

reached by the computation for x and also for y,. However, since gA(x) # gA(yi), the 

computations for x and yi reach different sinks. Hence, there is a node w’ reached by 

both computations, such that either w’ = w or w’ is reached after w and such that in w’ 

an input bit differing x and yi is read. Since this bit was read also before reaching w, 
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it is read twice in both computations. Since the sets of input bits, where x and yi differ 

are disjoint for different i’s, the computation for x reads at least s + 1 input bits twice. 

This is a contradiction. Hence, (1) is not satisfied and we have log, c > (ml log, t- 1)/2. 

q 

Lemma 2.7. For every large enough natural number t and any natural number m 

satisfying 6 log, t <m < t/8, there exists a hard m by t matrix A. 

Proof. For the proof of the existence of A we will replace (b) by the following stronger 

property. 
(b’) The linear span of any t - [t/4] columns of A is the whole space (0, l}m. 

By the following argument, (b’) + (b). If u’ is a total input extending a partial 

input u, then Au’ is a sum of two groups of columns in A. The first group are the 

columns corresponding to nonzero coordinates in the partial input u and the second 

group correspond to nonzero coordinates extending u to u’. Because of (b’), for any u 

of at most [t/4] specified coordinates it is possible to choose the extension u’ in such 

a way that the two groups of columns have the same sum. Then, the total sum is zero. 

This implies (b). 

The existence of A with (a) and (b’) will be established by proving that a matrix 

chosen at random satisfies these properties with positive probability. Assume, the entries 

of A are equal to 1 with probability i and that they are independent. 

Let B, be the event Au = 0. If u is a fixed nonzero vector, then Au is uniformly 

distributed over (0, 1)“. Hence, the probability of B, is 2-“. The probability of the 

disjunction of B, over some set of vectors ZJ is at most the sum of the probabilities of 

corresponding B,. Hence, the probability that (a) is not satisfied is at most 2-m times 

the number of nonzero u, [lull < m/log, t. It is easy to verify that for every I at most 

(t + 1)/3 we have, using also Stirling’s formula, 

Using this and the fact that the last expression is nondecreasing in I, if 1 is considered 

as a real variable between 0 and t, we obtain that the probability that (a) is not satisfied 

is at most 

(3) 

By the assumptions of the lemma, m 2 2e log, t. This implies that the fraction inside 

the bracket in (3) is at most t/2. Hence, (3) is bounded by 

2 z 0 t mJ10g2t_2-m =2.2-mllog~*.2m.2-m~~. 

Now, let us consider the property (b’). A group of columns generates the whole 

space (0, l}m iff it is not contained in any subspace of dimension m - 1, i.e. in a 
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set of the form {z : (qz) = 0}, where u is a nonzero vector from { 0, 1)” and (., .) 

denotes the scalar product mod 2. Consider the following property. 

(b”) Every nonzero vector v E (0, l}m has nonzero scalar product with at least 

[t/41 + 1 columns of A. 

We shall prove that (b”) and (b’) are equivalent. To prove (b’) =+ (b”), assume 

that (b”) is not satisfied. Then, there is a group of t - [t/4] columns of A with zero 

scalar product with some nonzero u. This contradicts (b’), since these columns do not 

generate the whole (0, 1)“. To prove (b”) + (b’), consider some group of t - [t/41 

columns of A. By (b”) and the characterization of subspaces from above, for any 

subspace of (0, l}m of dimension m - 1, there is a column in this group not contained 

in the subspace. This implies (b’). 

The probability of (b”) may be estimated as follows. Fix some nonzero o E (0, 1)“’ 

and let Xi be the scalar product of u and the ith column of A. The X/‘s are independent 

and Pr(X, = 1) = i. Let h = t/2 - Lt/4J 2 t/4. The probability that (b”) is not satisfied 

for the given particular v is, by Chernoff inequality (see e.g. [I]), 

Pr (xf=,& 6 It/41 = t/2 - h)) <e-2h2/1 be-‘!’ 

Since there are 2m - 1 nonzero vectors v, the probability that (b”) is not satisfied for 

at least one of them is the probability of the disjunction of 2”’ - 1 events of probability 

at most e -t’8. Hence, the probability that (b”) is not satisfied is at most (2”’ - l)e-‘j8. 

This is at most (2/e)“‘, since m <t/8. Hence, the probability that (b”) is not satisfied 

tends to zero with increasing t. Together with (4), this implies that the probability that 

a random matrix does not satisfy some of the conditions (a) and (b”) is less than 1 

for t large enough. This proves the existence of the required hard matrix A. 0 

Definition 2.8. For every natural number n 3 6, let the Boolean function fn be defined 

as follows. The first 2 [log, nl bits are considered as the binary representation of natural 

numbers m and t. If m = 0 or t = 0 or (m + 1)t > n - 2 [log, nl, the function fn is 0. 

Otherwise, fn is equal to gm,t applied to the next (m + 1)t bits after the representations 

of m and t. 

Theorem 2.9. Let log, n <s(n) <n/( 1000 log, n). Then for every n large enough, the 
size of any (1, +s(n))-b.p. computing the function f ,, is at least 

This is superpolynomial, whenever s(n) = o(n/ log; n). 

Proof. Let P be a (1, +s(n))-b.p. computing fn. In order to prove the lower bound on 

the size of P, we choose appropriate numbers m and t such that (m+ 1 )t <n - [2 log, nl . 

Then, we set the first 2 [log, n] input bits to the binary representation of m and t. As 

the result of this restriction, we obtain a (l,+s(n))-b.p. P’. By definition of fn, P’ 
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computes g,,,[. Then, the size of P’ is estimated using Lemmas 2.6, 2.7. Since P’ is a 

subprogram of P, the lower bound obtained for P’ in this way is also valid for P. 
Let 

Clearly, (m + 1 )t 6 3/4. n + o(n) d II - 2 [log, n1. Hence, by setting the first 2 [log, n1 

bits as described above, we obtain a b.p. P’ computing gm,r. 

In order to apply Lemma 2.7, we have to verify 6 log, t Q m d t/S. Clearly, fi d t <It. 

Hence, i . log, n d log, t < log, n. It follows that 

m 
-=(1-o(1)).&-, 
1% t F+/z. (5) 

By substituting the maximal possible value of s(n), we obtain 

“>k%@>6. 
log, t 5 

Since, moreover, m/t = (1 f o( 1)) +f . (log, n)/ s n < k, the assumptions of Lemma ( ) 

2.7 are satisfied. Hence, there is an m by t hard matrix. 

In order to use Lemma 2.6, it remains to verify its assumption on s = s(n), namely 

4m(s(n) + 1) d t log, t. We have 

~=(l*o(l,,.3.1$$ 
3 

log,t>(l *o(l)).--s(n)>s(n)+ 1. 
2 

Lemma 2.6 implies that the size of P’ and hence also of P is exp(Q(m/ log, t)). This 

implies the theorem using (5). Cl 

Note that the function gm,r is computable by branching programs of linear size and 

fn by polynomial branching programs. Both these functions are in P. 
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