
ELSEVIER Theoretical Computer Science 172 (1997) 293-301

Theoretical
Computer Science

Note

A lower bound on branching programs reading
some bits twice

Petr Savicky , Stanislav ?%k’

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodrirenskou v&G 2.
182 07 Prague 8, Czech Republic

Received October 1995; revised June 1996

Communicated by A. Razborov

Abstract

By (l,+k(n))-branching programs (b.p.‘s) we mean those b.p.‘s which during each of their
computations are allowed to test at most k(n) input bits repeatedly. For a Boolean function

computable within polynomial time a trade-off is presented between the size and the number
of repeatedly tested input bits of any b.p. P computing the function. Namely, if at most k(n)
repeated tests are allowed, where log, n <k(n) < n/(1000 log, n), then the size of P is at least
exp(Q(n/(k(n) log, n))“‘). This is exponential whenever k(n) <n” for a fixed CI < 1 and super-
polynomial whenever k(n) = o(n/ log: n).

The presented result is a step towards a superpolynomial lower bound for 2-b.p.‘s which is an
open problem since 1984 when the first superpolynomial lower bounds for I-b.p.‘s were proven
(Wegener, 1988; %k, 1984). The present result is an improvement on (%k, 1995).

1. Introduction

A branching program (b.p.) is a computation model for representing the Boolean

functions. The input of a branching program is a vector consisting of n input bits. The

branching program itself is a directed acyclic graph with one source. The out-degree of

each node is at most 2. Every branching node, i.e. a node of out-degree 2, is labeled

by the index of an input bit and one of its out-going edges is labeled by 0, the other

one by 1. The sinks (out-degree 0) are labeled by 0 and 1. A branching program

represents a Boolean function as follows. The computation starts at the source. If a

node of out-degree 1 is reached, the computation follows the unique edge leaving the

node. In each branching node the input bit assigned to the node is tested and the

* Corresponding author. E-mails: { savicky,stan}@uivt.cas.cz.

I The research of both authors was supported by GA of the Czech Republic, Grant No. 20119510976.

0304-3975/97/$17.00 @ 1997 -EElsevier Science B.V. All rights reserved

PZZSO304-3975(96)00183-l

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82031113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

294 P. Savickj, S. .&ikl Theoretical Computer Science 172 (1997) 293-301

out-going edge labeled by the actual value of the input bit is chosen. Finally, a sink
is reached. Its label determines the value of the function for the given input. By the
size of a branching program we mean the number of its nodes.

Branching programs were introduced because of their relation to the P L LOG

problem. Namely, the polynomial size b.p.‘s represent a nonuniform variant of LOG.
Hence, a superpolynomial lower bound on b.p.‘s for a Boolean function computable
within polynomial time would imply P # LOG.

In order to investigate the computing power of branching programs, restricted models
were suggested. Besides the hope that these restricted models help to solve the general
problem, some kinds of the restricted branching programs are important also as a data
structure for representing Boolean functions in some CAD applications, e.g. design or
verification of Boolean circuits, see e.g. [l 11.

One possible kind of restriction of the b.p.‘s is to bound the number of repeated
tests of each input bit. In a k-b.p., each computation can test each input bit at most
k times. Even more restrictive assumption is the following. In a syntactic k-b.p., on
each path from the source to a sink, each input bit is tested at most k times. This
is more restrictive, since in a b.p., there may be paths that are not followed by any
computation.

In 1984 the first superpolynomial lower bounds for 1-b.p.‘s were proven [lo, 121. The
first step towards the case of 2-b.p.‘s were made with real-time b.p.‘s, which perform
at most n steps during each computation on any input of length n. The results were
a quadratic lower bound [3], a subexponential lower bound [131 and an exponential
lower bound [6]. For syntactic k-b.p.‘s, exponential lower bounds have been proven,
see [2,4,7]. The results of [2,4] apply even to nondeterministic k-b.p.‘s. However, the
problem for 2-b.p.‘s remains open.

There are also other generalizations of 1-b.p.‘s, such that some input bits are al-
lowed to be tested more than once. Namely, (l,+k(n))-b.p. is a b.p., where for each
computation, the number of input bits tested more than once is at most k(n). There is
no restriction on the number of tests of these at most k(n) input bits. Again, syntactic
(1, +k(n))-b.p.‘s are b.p.‘s, where the above restriction is applied to any path from the
source to a sink, not only to the computations.

For syntactic (1, +k(n))-b.p.‘s, where k(n) is bounded by c n1/3/ logi’3 n for an appro-
priate c > 0, an exponential lower bound and tight hierarchies (in k(n)) are presented
in [8,9].

In the present paper, we prove that every (1, +k(n))-b.p., where log, n <k(n)<

n/(1000 log, n), computing a function fn has size at least exp (Q (n/(k(n) log, n)) “‘).

This is exponential whenever k(n) <na for a fixed GI < 1 and superpolynomial when-
ever k(n) = o(n/ log: n). The function fn is computable by polynomial size general
b.p.‘s. Moreover, it is computable in polynomial time and, in fact, it is in uniform ACC.
The present result is an improvement of [14], where a lower bound exp(Q(n/k(n)2)1’4)
for (l,+k(n))-b.p.‘s and for another function was proved. The lower bound from [14]
is superpolynomial whenever k(n) = o(n”*/ log: n).

P. Savickj, S. &ikl Theorelical Computer Science I72 (1991) 293-301 295

Recently, the lower bounds of the present paper were improved for characteristic

functions of some well-known binary linear codes, see [5]. The largest lower bound

is achieved there for BCH codes and it is exp (a (min{n’/2,n/k(n)})). This is super-

polynomial for any k(n) = o(n/ log, n).

2. The lower bound

First, we shall discuss some notation. As an input to a b.p. we shall consider also

partial inputs. This means that the input bits may have values 0, 1 and *. In the last

case, we say that the corresponding input bit is not specified by the (partial) input.

For an input u let camp(u) denote the sequence of nodes of the b.p. visited during the

computation on U. For a partial input U, we say that the computation for u leads to a

node w, if w is the first branching node on the computation for u, which tests a bit

not specified by u.

If u is a vector, then its ith coordinate is denoted by u(i). By subscripts, we distin-

guish different vectors. If u E (0, l}“, then llull denotes the number of ones in U.

Assume, P is a b.p. computing a function f and let f’ be a subfunction of f
obtained by setting some input bits of f to constants. By changing every branching

node of P labeled by an input bit involved in the setting to a node with out-degree

one and with an appropriate successor, we obtain a b.p. P’ computing f’. The b.p. P’
will be called a restriction of P.

Definition 2.1. Let I = { 1, H} be the set of indices of the input bits. Let ~1, ~2,. . . , u,

be (partial) inputs and let for all i = 1,2,. . . ,s, Ai C I be the set of indices of the

input bits specified in ui. Let Ai be pairwise disjoint. Then, let [ui, 242,. . . , us] be the

(partial) input specifying the bits with the indices from Ui=iAi such that if j E Ai,

then [UI, ~2,. . . , u,](j) = ui(j).

Definition 2.2. Let a, b be (partial) inputs with the same set of specified bits. Let

D = {i : u(i) # b(i)}. The pair a, b is called a forgetting pair, if there is a node w

in the branching program such that w belongs to both camp(a) and camp(b) and both

computations read all the bits with indices in D at least once before reaching w.

Lemma 2.3. Let c be the size of a branching program P and let every computation
of P read at least d different bits. Let s>O be a natural number such that (2 log, c+

l)(s+l)<d. Then thereexistpairwisedisjointsetsAiC{1,2,...,n}fori= l,...,s+l

and partial inputs ai : Ai --+ (0, 1) and bi : Ai -+ (0, l}, ai # bi such that for all
i = 1,2,..., s + 1 we have

(i) IAil <2 log, C + 1,

(ii) the inputs [al,. . . ,a,+11 and[al,...,ai-l,bi,ai+l , . . . , as+11 form a forgetting pair.

Proof. Let r = [log, c] + 1 > log, c. By our assumption, every computation of P

reads at least r input bits, since r < 2 log, c + 1 <d. We shall construct a sequence

296 P. Savicki. S. &ikl Theoretical Computer Science I72 (1997) 293-301

UO,Ul,... , U,. of sets of partial inputs in such a way that for every i = 0, 1, . . . , r, the

set Ui consists of 2’ inputs with exactly i specified bits. In particular, U0 contains only

the totally undefined input. Given Ui, the set Ui+, is constructed as follows. For each

u E Ui, follow the computation for u until the first bit not specified by u is required.

Let j be its index. Then, include into Vi+, the inputs ug and u1 extending u by setting

the jth bit to 0 and 1, respectively. Now, since 2’ > c, there are at least two distinct

inputs in U,, say u1 and 02, such that the computations for both these inputs lead to

the same node. Note that, by construction of U,, there is a bit specified by both v1 and

~2, but with different values in v1 and 212. Moreover, for both i = 1,2, the computation

for vi reads all the bits specified by vi.

Let Cl be the set of bits tested by comp(vl) and C2 be the set of bits tested by

comp(u2). Let Al = Cl U C2. Since Cl fl C2 # 0, IA1162r - 1621og,c + 1. Let a

partial input al extend 01 in such a way that the bits with indices in Al not determined

in 01 are equal to the values of these bits in ~2. Similarly, bl extends v2 so that the

bits undefined in v2 have the same value as in VI. Hence, al and bl may differ on

the bits with indices from Cl n C2 whereas the bits with indices from the symmetric

difference of Cl and C2 are specified in both al and bl and are equal. One can easily

see that comp(a,) follows comp(vl) and comp(bl) follows comp(v2) until comp(ul)

and comp(bl) join in some node w. All the bits, where al and bl differ, are read on

both computations before reaching w. Hence, al and bl form a forgetting pair.

If Aj, uj and bj for all j = 1,. . . , i, where i < s + 1, are already constructed, we

continue in the following way: consider only those inputs which equal aj on Aj for

all j = l,..., i. These inputs define a restriction Pi of P. Since) $, Aj I< (2 log, c +

1)s < d - 2 log, c - 1 and r <2 log, c + 1, each computation of Pi tests at least r input

bits. Otherwise, during a computation of P less than d bits are tested. This would be a

contradiction to the assumptions of the lemma. Now, the construction of UO, UI, . . . , U,

applied in the first part of the proof to P is applied to Pi. Using this, ai+l, bi+l and

Ai+l are defined in the same way as al, bl and Al above. Note that, by construction,

Ai+l contains only input bits not in &I A/.

It follows from the construction that (i) is satisfied. Moreover, the construction of ai

and bi implies that the computations for the partial inputs [al,. . . , ui] and [al,. . . , ai_ 1, b;]

lead to the same node. Hence, the inputs [al,. . . , u,+l] and [al,. . . , ui-1, bi, ui+l, . . . , u,+l]

form a forgetting pair. 0

Definition 2.4. For every nonzero natural numbers m, t let gm,t be the Boolean function

of (m+ 1)t variables defined as follows. The input of gm,t is treated as an m by t matrix

A over GF(2) and a vector u over GF(2) of length t. Then, let g&A,u) = 1 if and

only if Au = 0.

In order to prove that gm,t is hard for (1, +s)-b.p. for some s, we will find an

appropriate m by t matrix A and then we prove a lower bound on the size of any

(1, +s)-b.p. computing g&A, u) as a function of u only. The properties of the matrix

A needed for this are stated in the following definition.

P. Savickj. S. .%ikl Theoretical Computer Science 172 (1997) 293-301 291

Definition 2.5. An m by t matrix A will be called hard, if the two following conditions

are satisfied:

(a) For every nonzero u E (0, l}‘, if IIu((< m/log, t, then Au # 0.

(b) For every partial input u with at most Lt/4] specified coordinates, there exists a

total input U’ extending u such that Au’ = 0.

Since the multiplication of a vector u by a fixed matrix A is a linear operation, the

property (a) is equivalent to the following: If U, v are distinct vectors, Au = 0 and

the Hamming distance of u and v is less than m/log, t, then Au # 0. In terms of the

linear codes, this means that the code {U : Au = 0} has the minimum distance at least

ml log, t.

Lemma 2.6. Let m and t be some nonzero natural numbers such that m > log, t

and a hard m by t matrix exists. Let s be such that 4m(s + 1) <t log, t. Then every
(l,+s)-b.p. computing gm,r has the size at least 2((m~‘o~~r)-1)~2.

Proof. Assume, A is a hard m by t matrix. Assume that a b.p. P computes gm,t and

each of its computations reads at most s input bits repeatedly. Let P’ be the restriction

of P computing gA(u) = g&A,u). By definition, the function gA is a function of t

variables. Clearly, P’ is not larger than P and it is also (1, +s)-b.p. Let the size of P’
be c and let the minimum number of input bits read on a computation path be d. Then

d > t/4, because every partial input u of at most t/4 specified bits may be extended to

an input x with gA(x) = 1 and also to x’ with gA(x’) = 0. The existence of x follows

from (b). The input x’ may be chosen as an extension of u differing from x in one

coordinate. By (a), we then have gA(x’) = 0.

The lower bound on the size of P’ is proved by contradiction. Assume that

2 log,c+ 1 < m/log,t.

Since (s + 1) d (t log, t)/(4m) by the assumptions of the lemma, we obtain

(1)

(2 log,c+ l)(s+ l)<t/4. (2)

This together with d > t/4 implies that the assumptions of Lemma 2.3 are satisfied for

P’ and gA. Consider the partial inputs [ai ,..., a,+11 and [al,. ..,ai_l,bi,ai+l,..., a,+11
guaranteed by the lemma. By (2), [al,. . . , a,+11 specifies at most t/4 input bits. Hence,

(b) from the definition of a hard matrix implies that it is possible to extend [al,. . . , a,+11
to an input x = [al,..., a,+l,a] with gA(x) = 1. For i = 1,. . .,s + 1 let yi =

[al,. . . ,bi,. . . , a,+,, a]. The inputs x and yi form a forgetting pair. Moreover, the Ham-

ming distance of x and yi is at most 2 log, c + 1 < m/log, t. Hence, by (a) we have

gA(yi) = 0. Consider the node w from Definition 2.2 applied to x and yi. This node is

reached by the computation for x and also for y,. However, since gA(x) # gA(yi), the

computations for x and yi reach different sinks. Hence, there is a node w’ reached by

both computations, such that either w’ = w or w’ is reached after w and such that in w’

an input bit differing x and yi is read. Since this bit was read also before reaching w,

298 P. Savickj, S. .%iklTheoretical Computer Science 172 (1997) 293-301

it is read twice in both computations. Since the sets of input bits, where x and yi differ

are disjoint for different i’s, the computation for x reads at least s + 1 input bits twice.

This is a contradiction. Hence, (1) is not satisfied and we have log, c > (ml log, t- 1)/2.

q

Lemma 2.7. For every large enough natural number t and any natural number m

satisfying 6 log, t <m < t/8, there exists a hard m by t matrix A.

Proof. For the proof of the existence of A we will replace (b) by the following stronger

property.
(b’) The linear span of any t - [t/4] columns of A is the whole space (0, l}m.

By the following argument, (b’) + (b). If u’ is a total input extending a partial

input u, then Au’ is a sum of two groups of columns in A. The first group are the

columns corresponding to nonzero coordinates in the partial input u and the second

group correspond to nonzero coordinates extending u to u’. Because of (b’), for any u

of at most [t/4] specified coordinates it is possible to choose the extension u’ in such

a way that the two groups of columns have the same sum. Then, the total sum is zero.

This implies (b).

The existence of A with (a) and (b’) will be established by proving that a matrix

chosen at random satisfies these properties with positive probability. Assume, the entries

of A are equal to 1 with probability i and that they are independent.

Let B, be the event Au = 0. If u is a fixed nonzero vector, then Au is uniformly

distributed over (0, 1)“. Hence, the probability of B, is 2-“. The probability of the

disjunction of B, over some set of vectors ZJ is at most the sum of the probabilities of

corresponding B,. Hence, the probability that (a) is not satisfied is at most 2-m times

the number of nonzero u, [lull < m/log, t. It is easy to verify that for every I at most

(t + 1)/3 we have, using also Stirling’s formula,

Using this and the fact that the last expression is nondecreasing in I, if 1 is considered

as a real variable between 0 and t, we obtain that the probability that (a) is not satisfied

is at most

(3)

By the assumptions of the lemma, m 2 2e log, t. This implies that the fraction inside

the bracket in (3) is at most t/2. Hence, (3) is bounded by

2 z 0 t mJ10g2t_2-m =2.2-mllog~*.2m.2-m~~.

Now, let us consider the property (b’). A group of columns generates the whole

space (0, l}m iff it is not contained in any subspace of dimension m - 1, i.e. in a

P. Savickj, S. icikl Theoretical Computer Science 172 (1997) 293-301 299

set of the form {z : (qz) = 0}, where u is a nonzero vector from { 0, 1)” and (., .)

denotes the scalar product mod 2. Consider the following property.

(b”) Every nonzero vector v E (0, l}m has nonzero scalar product with at least

[t/41 + 1 columns of A.

We shall prove that (b”) and (b’) are equivalent. To prove (b’) =+ (b”), assume

that (b”) is not satisfied. Then, there is a group of t - [t/4] columns of A with zero

scalar product with some nonzero u. This contradicts (b’), since these columns do not

generate the whole (0, 1)“. To prove (b”) + (b’), consider some group of t - [t/41

columns of A. By (b”) and the characterization of subspaces from above, for any

subspace of (0, l}m of dimension m - 1, there is a column in this group not contained

in the subspace. This implies (b’).

The probability of (b”) may be estimated as follows. Fix some nonzero o E (0, 1)“’

and let Xi be the scalar product of u and the ith column of A. The X/‘s are independent

and Pr(X, = 1) = i. Let h = t/2 - Lt/4J 2 t/4. The probability that (b”) is not satisfied

for the given particular v is, by Chernoff inequality (see e.g. [I]),

Pr (xf=,& 6 It/41 = t/2 - h)) <e-2h2/1 be-‘!’

Since there are 2m - 1 nonzero vectors v, the probability that (b”) is not satisfied for

at least one of them is the probability of the disjunction of 2”’ - 1 events of probability

at most e -t’8. Hence, the probability that (b”) is not satisfied is at most (2”’ - l)e-‘j8.

This is at most (2/e)“‘, since m <t/8. Hence, the probability that (b”) is not satisfied

tends to zero with increasing t. Together with (4), this implies that the probability that

a random matrix does not satisfy some of the conditions (a) and (b”) is less than 1

for t large enough. This proves the existence of the required hard matrix A. 0

Definition 2.8. For every natural number n 3 6, let the Boolean function fn be defined

as follows. The first 2 [log, nl bits are considered as the binary representation of natural

numbers m and t. If m = 0 or t = 0 or (m + 1)t > n - 2 [log, nl, the function fn is 0.

Otherwise, fn is equal to gm,t applied to the next (m + 1)t bits after the representations

of m and t.

Theorem 2.9. Let log, n <s(n) <n/(1000 log, n). Then for every n large enough, the
size of any (1, +s(n))-b.p. computing the function f ,, is at least

This is superpolynomial, whenever s(n) = o(n/ log; n).

Proof. Let P be a (1, +s(n))-b.p. computing fn. In order to prove the lower bound on

the size of P, we choose appropriate numbers m and t such that (m+ 1)t <n - [2 log, nl .

Then, we set the first 2 [log, n] input bits to the binary representation of m and t. As

the result of this restriction, we obtain a (l,+s(n))-b.p. P’. By definition of fn, P’

300 P. Savickg, S. .%iklTheoretical Computer Science 172 (1997) 293-301

computes g,,,[. Then, the size of P’ is estimated using Lemmas 2.6, 2.7. Since P’ is a

subprogram of P, the lower bound obtained for P’ in this way is also valid for P.
Let

Clearly, (m + 1)t 6 3/4. n + o(n) d II - 2 [log, n1. Hence, by setting the first 2 [log, n1

bits as described above, we obtain a b.p. P’ computing gm,r.

In order to apply Lemma 2.7, we have to verify 6 log, t Q m d t/S. Clearly, fi d t <It.

Hence, i . log, n d log, t < log, n. It follows that

m
-=(1-o(1)).&-,
1% t F+/z. (5)

By substituting the maximal possible value of s(n), we obtain

“>k%@>6.
log, t 5

Since, moreover, m/t = (1 f o(1)) +f . (log, n)/ s n < k, the assumptions of Lemma ()

2.7 are satisfied. Hence, there is an m by t hard matrix.

In order to use Lemma 2.6, it remains to verify its assumption on s = s(n), namely

4m(s(n) + 1) d t log, t. We have

~=(l*o(l,,.3.1$$
3

log,t>(l *o(l)).--s(n)>s(n)+ 1.
2

Lemma 2.6 implies that the size of P’ and hence also of P is exp(Q(m/ log, t)). This

implies the theorem using (5). Cl

Note that the function gm,r is computable by branching programs of linear size and

fn by polynomial branching programs. Both these functions are in P.

References

[l] B. BollobBs, Random Graphs (Academic Press Inc., London, 1985).

[2] A. Borodin, A. Razborov and R. Smolensky, On lower bounds for read-k-times branching programs,

Compuf. Complexity 3 (1993) 1-18.
[3] M. FtLEnik and J. HromkoviE, Nonlinear lower bound for real-time branching programs, Comput.

Artijcial Intelligence 4 (1985) 353-359.
[4] S. Jukna, A note on read-k-times branching programs, RAIRO Inform. Theor. Appl., 29 (1) (1995)

75-83.

P. Savickg, S. .%ikl Theoretical Computer Science 172 (1997) 293-301 301

[S] S. Jukna and A. Razborov, Neither reading few bits twice nor reading illegally helps much, TR96-037,

ECCC, Trier.

[6] K. Kriegel and S. Waack, exponential lower bounds for real-time branching programs, in: Proc. FCT’87,
Lecture Notes in Computer Science, Vol. 278 (Springer, Berlin, 1987) 263 - 267.

[7] E. A. Okolnishkova, Lower bounds for branching programs computing characteristic functions of binary

codes (in Russian), Metody diskret. Analiz. 51 (1991) 61-83.
[8] D. Sieling, New lower bounds and hierarchy results for restricted branching programs, Tech. Report

494, Univ. Dortmund 1993; J. of Comput. System Sci., to appear.
[9] D. Sieling and 1. Wegener, New lower bounds and hierarchy results for restricted branching programs,

in: Proc. Workshop on Graph-Theoretic Concepts in Computer Science WG’94, Lecture Notes in

Computer Science, Vol. 903 (Springer,Berlin, 1994) 3599370.

[lo] 1. Wegener, On the complexity of branching programs and decision trees for clique functions, JACM
35 (1988) 461471.

[I l] I. Wegener, Efficient data structures for the Boolean functions, Discrete Math. 136 (1994) 347-372.
[121 S. iik, An exponential lower bound for one-time-only branching Programs, in: Proc. MFCS’84, Lecture

Notes in Computer Science, Vol. 176 (Springer, Berlin, 1984) 562-566.

[13] S. .?ak, An exponential lower bound for real-time branching programs, Inform. and Control 71 (112)
(1986) 87-94.

[I41 S. iak, A superpolynomial lower bound for (l,+k(n))- branching programs, in: Proc. MFCS’95,
Lecture Notes in Computer Science, Vol. 969 (Springer, Berlin, 1995) 3 19-325.

