A Companion to Jensen-Steffensen's Inequality

Josip E. Pečarić
Department of Mathematics and Physics, Faculty of Civil Engineering, University of Beograd, 11000 Beograd, Yugoslavia

Communicated by Oved Shisha
Received June 20, 1983; revised July 24, 1984

DEDICATED TO PROFESSOR KY FAN ON THE OCCASION OF HIS 70 TH BIRTHDAY

Jensen's inequality for convex functions can be stated as follows:
Suppose that f is convex on (a, b). Then for x_{1}, \ldots, x_{n} in (a, b) and $p_{1}, \ldots, p_{n} \geqslant 0, P_{n}=\sum_{i=1}^{n} p_{i}>0$,

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leqslant \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) . \tag{1}
\end{equation*}
$$

The following result is also known:
Suppose that f is convex on $(a, b), a<x_{1} \leqslant \cdots \leqslant x_{n}<b$ and

$$
\begin{equation*}
0 \leqslant \sum_{i=1}^{k} p_{i}=P_{k} \leqslant P_{n}(1 \leqslant k \leqslant n-1), \quad P_{n}>0 \tag{2}
\end{equation*}
$$

Then (1) again holds.
This is the well-known Jensen-Steffensen inequality.
Slater [1] proved the following companion to Jensen's inequality:
Suppose that f is convex and nondecreasing (nonincreasing) on (a, b). Then for $x_{1}, \ldots, x_{n} \in(a, b), \quad p_{1}, \ldots, p_{n} \geqslant 0, \quad p_{1}+\cdots+p_{n}>0, \quad$ and $p_{1} f^{\prime}\left(x_{1}\right)+\cdots+p_{n} f_{+}^{\prime}\left(x_{n}\right) \neq 0$, we have

$$
\begin{equation*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqslant f\left(\sum_{i=1}^{n} p_{i} x_{i} f_{+}^{\prime}\left(x_{i}\right) / \sum_{i=1}^{n} p_{i} f_{+}^{\prime}\left(x_{i}\right)\right) . \tag{3}
\end{equation*}
$$

An integral analog of this result was also given. Both results remain true if at any occurence of $f_{+}^{\prime}(x)$ we write instead any value in the interval $\left[f_{-}^{\prime}(x), f_{+}^{\prime}(x)\right]$.

First, we note the following simple generalization of Slater's above result:

Theorem 1. Suppose that f is convex on (a,b). If, for $x_{1}, \ldots, x_{n} \in(a, b)$, $p_{1}, \ldots, p_{n} \geqslant 0, p_{1}+\cdots+p_{n}>0$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f_{+}^{\prime}\left(x_{i}\right) \neq 0, \sum_{i=1}^{n} p_{i} x_{i} f_{+}^{\prime}\left(x_{i}\right) / \sum_{i=1}^{n} p_{i} f_{+}^{\prime}\left(x_{i}\right) \in(a, b), \tag{4}
\end{equation*}
$$

then (3) holds.
The proof is similar to that in [1].
Now we give a companion to Jensen-Steffensen's inequality:

Theorem 2. Suppose that f is convex on (a, b) and $a<x_{1} \leqslant \cdots \leqslant x_{n}<b$. If (2) and (4) hold, then so does (3).

Proof. For arbitrary $x, y \in(a, b)$ we have

$$
\begin{equation*}
f(y)-f(x) \geqslant(y \quad x) f_{+}^{\prime}(x) \tag{5}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
f(x)-f(y) \leqslant(x-y) f_{+}^{\prime}(x) \tag{6}
\end{equation*}
$$

Therefore

$$
\Delta_{i}=f(A)-f\left(x_{i}\right)-f_{+}^{\prime}\left(x_{i}\right)\left(A-x_{i}\right) \geqslant 0 \quad(i=1, \ldots, n),
$$

where

$$
A=\sum_{i=1}^{n} p_{i} x_{i} f_{+}^{\prime}\left(x_{i}\right) / \sum_{i=1}^{n} p_{i} f_{+}^{\prime}\left(x_{i}\right) .
$$

Suppose that $A \in\left[x_{k}, x_{k+1}\right](k \in(1, \ldots, n-1))$. If $x_{i} \leqslant x_{i+1} \leqslant A$, then, using (5), we obtain

$$
\begin{aligned}
f\left(x_{i+1}\right)-f\left(x_{i}\right) & \geqslant\left(x_{i+1}-x_{i}\right) f_{+}^{\prime}\left(x_{i}\right) \\
& =\left(A-x_{i}\right) f_{+}^{\prime}\left(x_{i}\right)-\left(A-x_{i+1}\right) f_{+}^{\prime}\left(x_{i}\right) \\
& \geqslant\left(A-x_{i}\right) f_{+}^{\prime}\left(x_{i}\right)-\left(A-x_{i+1}\right) f_{+}^{\prime}\left(x_{i+1}\right),
\end{aligned}
$$

namely,

$$
f(A)-f\left(x_{i}\right)-\left(A-x_{i}\right) f_{+}^{\prime}\left(x_{i}\right) \geqslant f(A)-f\left(x_{i+1}\right)-\left(A-x_{i+1}\right) f_{+}^{\prime \prime}\left(x_{i+1}\right),
$$

i.e.,

$$
\Delta_{i} \geqslant \Delta_{i+1} .
$$

Similarly, if $A \leqslant x_{i} \leqslant x_{i+1}$, then, from (6), we have

$$
\begin{aligned}
f\left(x_{i+1}\right)-f\left(x_{i}\right) & \leqslant\left(x_{i+1}-x_{i}\right) f_{+}^{\prime}\left(x_{i+1}\right) \\
& =\left(A-x_{i}\right) f_{+}^{\prime}\left(x_{i+1}\right)-\left(A-x_{i+1}\right) f_{+}^{\prime}\left(x_{i+1}\right) \\
& \leqslant\left(A-x_{i}\right) f_{+}^{\prime}\left(x_{i}\right)-\left(A-x_{i+1}\right) f_{+}^{\prime}\left(x_{i+1}\right),
\end{aligned}
$$

i.e.,

$$
\Delta_{i} \leqslant \Delta_{i+1} .
$$

Therefore we have

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \Delta_{i}= & \sum_{i=1}^{k} p_{i} \Delta_{i}+\sum_{i=k+1}^{n} p_{i} \Delta_{i} \\
= & \Delta_{k} P_{k}+\sum_{i=1}^{k-1} P_{i}\left(\Delta_{i}-\Delta_{i+1}\right) \\
& +\Delta_{k+1} \bar{P}_{k+1}+\sum_{i=k+2}^{n} \bar{P}_{i}\left(\Delta_{i}-\Delta_{i-1}\right) \\
\geqslant & 0\left(\bar{P}_{k}=P_{n}-P_{k-1}, k=2,3, \ldots, n ; \bar{P}_{1}=P_{n}\right)
\end{aligned}
$$

i.e.,

$$
f(A) P_{n}-\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)=\sum_{i=1}^{n} p_{i} \Delta_{i} \geqslant 0
$$

which is the inequality (3).
If $A \in\left(a, x_{1}\right)$, then Δ_{i} is nonnegative and nonincreasing for $i=1, \ldots, n$. So we have

$$
\sum_{i=1}^{n} p_{i} \Delta_{i}=\Delta_{n} P_{n}+\sum_{i=1}^{n-1} P_{i}\left(\Delta_{i}-\Delta_{i-1}\right) \geqslant 0
$$

i.e., (3) is again valid. Similarly we can prove (3) if $A \in\left(x_{n}, b\right)$.

Remarks. 1°. If

$$
0 \leqslant \sum_{i=1}^{k} p_{i} f_{+}^{\prime}\left(x_{i}\right) \leqslant \sum_{i=1}^{n} p_{i} f_{+}^{\prime}\left(x_{i}\right) \quad(1 \leqslant k \leqslant n-1)
$$

then $A \in\left[x_{1}, x_{n}\right]$. For a nondecreasing function f and nonnegative p_{i} we have Slater's result.
2°. Using similar proofs, we can give integral analogs of Theorems 1 and 2.

Reference

1. M. L. Slater, A companion inequality to Jensen's inequality, J. Approx. Theory 32 (1981), 160-166.
