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A time-domain homogenization technique for lamination
stacks in dual finite element formulations�
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Abstract

A time-domain homogenization technique is developed to take the eddy currents in lamination stacks into account with dual 3-D
magnetodynamic b- and h-conform finite element formulations. The lamination stack is considered as a source region carrying pre-
defined current density and magnetic flux density distributions describing the eddy currents and skin effect in each lamination. These
distributions are related and are approximated with sub-basis functions. The stacked laminations are then converted into continuums
with which terms are associated for considering the eddy current loops produced by parallel fluxes, through the homogenization of
the sub-basis function contributions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Iron cores in electrical devices are usually made of lamination stacks in order to reduce the eddy current losses
due to time-varying flux excitations. When simulating such devices using the finite element (FE) method, it is usually
impossible to model the eddy currents in each separate lamination. Commonly these currents are first completely
ignored, whereupon the Joule losses may be estimated from the results of the eddy current free model [2]. This
nevertheless leads to neglecting the flux reduction due to the eddy currents, while this reduction can be significant for
high frequency excitations.

A technique is proposed here to directly take these losses into account with both dual 3-D magnetodynamic b- and
h-conform FE formulations. The technique is a time-domain extension, particularly to allow nonlinear analyses, of the
frequency-domain method proposed in [5,7] and an alternative to the method proposed in [6] for homogenizing the
laminations in a formulation. It also extends the methods proposed in [1,8] to high frequency excitations and in [3] to
3-D applications. It consists in considering the lamination stack as an homogenized source region carrying predefined
current density distributions, as well as the associated magnetic flux density distributions, describing the eddy currents
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and skin effect in each lamination. The expressions of such related current and magnetic flux densities and their use in
dual formulations constitute the key objective of this paper. Results obtained with both formulations are validated for
test problems.

2. Magnetodynamic problem in lamination stacks

A bounded domain � of the 3-D Euclidean space is considered, in which the magnetodynamic problem is defined.
Massive conductors, subject to eddy currents, belong to �c ⊂ � and source conductors, carrying a given current density
js, are regions of �s ⊂ �.

The direct way to consider the eddy currents in a lamination stack is to model this stack as a set of massive
conductors (i.e., a subset of �c) separated by insulating layers. This is nevertheless generally unfeasible in view of the
large number of laminations encountered in iron cores. An alternative method consists in considering the lamination
stack as an homogenized region (i.e., rather a subset of �s) through predefined current density and magnetic flux
density distributions in each lamination. These distributions can be expressed in terms of adequate basis functions and
unknown coefficients.

3. Predefined eddy current density distribution

3.1. Eddy current density versus the magnetic flux density

A lamination stack region �ls is considered (Fig. 1), with transversal gaps between the laminations; longitudinal gaps
are not considered here and would ask for an extension of the proposed method. Each lamination has a thickness d, an
electric conductivity � and a magnetic permeability �. It is described by a local coordinate system (i�, i�, i�), for which
the directions i� and i� are parallel to the lamination plane, while i� is perpendicular to it. The direction i� is considered
as the a priori unknown direction of the magnetic flux density b� = �h� parallel to the lamination, and consequently
i� is the main direction of the eddy current loops generated by variations of b�, with the associated current density j�.

The effect of a varying magnetic flux density perpendicular to the laminations can be taken into account in the
magnetodynamic problem via an anisotropic conductivity having a zero component along i�. Its consideration in the
developed formulation would lead to non-zero net currents for j�.

The current density j� has to undergo a pretreatment for avoiding, at the discrete level, the discretization of each
lamination separately. This pretreatment concerns the strongly expressed equations in the considered formulation and
consequently differs for b- and h-conform formulations. On one hand, for a b-conform formulation, the Faraday and
the flux conservation equations have to be expressed strongly, while the Ampere equation is rather expressed in a weak
form. On the other hand, for an h-conform formulation, the Ampere equation is the one to be strongly expressed, while
the others have to be written in a weak form.

Ωls
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γ = –d/2
γ = +d/2
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i γ
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Fig. 1. Lamination stack �ls with its local coordinate system (i�, i�, i�) associated with each lamination.
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Fig. 2. Magnetic flux density b� and associated current density j� in the cross section (i�, i�) of a lamination stack �ls for either (2) or (3); fringing
effects are neglected.

On one hand, by the 1-D Faraday equation neglecting fringing effects of j� (Fig. 2), one has for one lamination, with
thickness coordinate �,

��e� = i� × �tb�, (1)

where e� is the �-directed electric field. Taking the primitive of (1) and the Ohm law, the current density j� can be
expressed in terms of a primitive in � of b�, i.e.,

j� = �e� = �i� × �t

∫
b� d�. (2)

On the other hand, by the 1-D Ampere equation neglecting fringing effects of j� as well (Fig. 2), one has for one
lamination,

j� = −i� × ��h� = −i� × ��(�
−1b�). (3)

3.2. Magnetic flux density approximate expansion

Field b� in either (2) or (3) is unknown and an approximate expansion limited to a certain order is given along the
thickness of each lamination, i.e., for its component b�, with b� = b�i�,

b�(�, t) =
∑
n∈S

bn(t)�n(�), (4)

where functions �n(�) define sub-basis functions for b�, which must differ from the constant function because of the
skin effect, and S defines a set of expansion orders. Field b� has been considered as a constant in [1,5,8] for a low
frequency model and is now intended to be given a higher approximation order. For a given problem, an optimum
order can be selected via a p-adaptation process based on the relative error between solutions of successive orders p
and p + 1.

The so-called skin effect sub-basis functions can be freely chosen as polynomials [6] or as more sophisticated
expressions closer to the expected actual distribution of b� (e.g., hyperbolic functions). In case no net current exists in
the laminations, even polynomial basis functions can be considered [6].

The purpose of expansion (4) is to avoid the definition of a FE mesh of each lamination approximating accurately
enough the skin effect. Here, this distribution will rather be considered by a pretreatment of sub-basis functions in the
FE formulation, as will be shown, instead of using explicit classical basis functions of a sufficient number of thin FEs
along each lamination thickness.

Coefficients bn are peculiar to each lamination. For the lamination stack, they have to be converted to a continuum, or
homogenized, continuously varying from one lamination to the next. This means that other basis functions are needed
for the approximation of this continuum along direction i�; a variation along the longitudinal direction i� should be
allowed as well. These basis functions will be associated with the so-defined homogenized FE mesh.

Both expressions (2) and (3) cannot be simultaneously satisfied with the discrete expansion (4) of b�. One of them
can be exactly satisfied while the other can be only satisfied weakly, depending on the wished conformity in the FE
formulation. For a b-conform formulation, the strong expression of the flux conservation, i.e., div b = 0, has to be
applied to (4) for giving particular properties to coefficients bn. An adequate choice for the sub-basis functions will be
shown to simplify, among other things, the expression of such properties. For an h-conform formulation, the strong
expression of the Ampere equation will have to be satisfied as well.
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4. Homogenization process in FE formulations

4.1. b-Conform magnetic vector potential formulation

The general expression of the electric field e via a magnetic vector potential a involves the gradient of an electric
scalar potential v in �c, i.e.,

e = −�ta − grad v in �c, (5)

with

b = curl a in �, (6)

so that the Faraday equation is satisfied; b is the magnetic flux density and v can usually be fixed to zero in passive
conductors. The magnetodynamic (b-conform) a formulation is obtained from the weak form of the Ampere equation,
i.e. [5],

(�−1 curl a, curl a′)� + (��ta, a′)�c − (js, a′)�s = 0, ∀a′ ∈ Fa(�), (7)

where Fa(�) is a function space defined on the whole studied domain � and containing the basis functions for a and
test function a′.

The lamination stack is considered as a source region (i.e., in �s, rather than a set of massive conductors, in �c)

carrying the predefined current density (2) in place of source current js in (7), as well as the associated predefined
magnetic flux density b�.

Both the first and third terms in (7) have to give contributions similar to these given in case of a massive conductor
region [5]. This is achieved by using (2), (4), as well as e� = −�ta� leading to a� = −i� × ∫

b� d�.
One has, for the first term of (7),

(�−1 curl a, curl a′)�ls =
∑

i

(�−1b�, b′
�)�ls,i =

∑
i

(
�−1

∑
n

bn�n,
∑
m

b′
m�m

)
�ls,i

, (8)

where the contribution of �ls is split up into a sum of contributions of each of its laminations �ls,i (i.e., the ith lamination
in �ls). Then, by summing on i the integrals in all the laminations �ls,i , and averaging the contributions of the sub-basis
functions products, (8) becomes

(�−1 curl a, curl a′)�ls =
∑
m

∑
n

(N̄mnb̄n, b̄′
m)�̄ls

=
∑
m

∑
n

(N̄mn curl ān, curl ā′
m)�̄ls

, (9)

with coefficients N̄mn of a matrix N̄ defined by

N̄mn = d−1
∫ d/2

−d/2
�−1�m(�)�n(�) d�, ∀m, n ∈ S, (10)

where an upper bar symbol denotes an homogenized entity along the lamination or stack thickness. The coefficients bn

of expansion (4) for each lamination are indeed transformed to a continuum b̄n when all the laminations are considered
together, i.e., through the integration in �̄ls, defined as the homogenized laminated region.

The homogenized magnetic flux density b̄n can be expressed as the curl of a magnetic vector potential ān, considered
as homogenized as well. In this way, the conservation of the magnetic flux density, i.e., div b = 0, is satisfied for
the whole expansion (4), as will be shown. At the discrete level, the vector potential is approximated with edge FEs.
Particular definition of sub-basis functions �n(�) will be shown to conveniently allow the transposition of the flux
conservation.
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The third term of (7) is developed analogously, this time with primitives of �n(�), i.e.,

−(js, a′)�ls = −
∑

i

(j�, a′)�ls,i = −
∑

i

(
�i� × �t

∫
b� d�, −i� ×

∫
b′

� d�

)
�ls,i

=
∑

i

(
��t

∫
b� d�,

∫
b′

� d�

)
�ls,i

=
∑

i

(
��t

∫ ∑
n

bn�n d�,
∫ ∑

m

b′
m�m d�

)
�ls,i

=
∑

i

(
��t

∑
n

bn

∫
�n d�,

∑
m

b′
m

∫
�m d�

)
�ls,i

. (11)

Then, by summing on i the integrals in all the laminations �ls,i , and averaging the contributions of the primitive
sub-basis functions products, (11) becomes

−(js , a′)�ls =
∑
m

∑
n

(P̄mn�t b̄n, b̄′
m)�̄ls

=
∑
m

∑
n

(P̄mn�t curl ān, curl ā′
m)�̄ls

(12)

with coefficients P̄mn of a matrix P̄ defined by

P̄mn = d−1
∫ d/2

−d/2
�

(∫
�m(�) d�

)(∫
�n(�) d�

)
d�, ∀m, n ∈ S. (13)

The magnetic permeability � has generally to be kept in integral (10) in order to consider its possible nonlinear nature,
i.e., �−1 =�−1(b�). For a non-constant permeability, each coefficient N̄mn depends on each particular evaluation point
in �̄ls. In this way, the nonlinear behavior is averaged along the lamination thickness through (10).

4.2. h-Conform magnetic field formulation

The magnetodynamic (h-conform) h-	 formulation is obtained from the weak form of the Faraday equation, i.e. [4],

�t (�h, h′)� + (�−1 curl h, curl h′)�c + (�−1js, curl h′)�s = 0, ∀h′ ∈ Fh	(�), (14)

where Fh	(�) is a function space defined on � and containing the basis functions for the magnetic field h, coupled to
a magnetic scalar potential 	, as well as for the test function h′.

Both first and third terms in (14) have to give contributions similar to those given in case of a massive conductor
region. This is achieved by using approximation (4) for h�=�−1b� and the associated curl for approximating j� through
(3), i.e., for the components of these quantities,

h�(�, t) =
∑
n∈S

hn(t)�n(�), (15)

j�(�, t) = −
∑
n∈S

hn(t)���n(�), (16)

with hn = �−1bn. In this way, the Ampere equation is exactly satisfied in each lamination. The Faraday equation will
be rather weakly satisfied through (14). The terms for n > 0 in (15) can be interpreted as defining a source magnetic
field of which the curl is the source current density j�, while the term for n = 0 defines a curl-free component of h�.

One has, for the first term of (14) expressed by the contribution of all separate laminations �ls,i ,

�t (�h, h′)�ls =
∑

i

(�h�, h′
�)�ls,i =

∑
i

(
�
∑
n

hn�n,
∑
m

hm�m

)
�ls,i

(17)

which becomes, by summing the integrals in all the laminations �ls,i ,

�t (�h, h′)�ls =
∑
m

∑
n

(N̄h,mnh̄n, h̄′
m)�̄ls

, (18)
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with coefficients N̄h,mn of a matrix N̄h defined by

N̄h,mn = d−1
∫ d/2

−d/2
��m(�)�n(�) d�, ∀m, n ∈ S. (19)

The homogenized magnetic field h̄0 can be expressed as the gradient of a magnetic scalar potential, considered as
homogenized as well. For a nonlinear material, � = �(h�) in (19).

The third term of (14) is developed analogously, this time with derivatives of �n(�), i.e.,

(�−1js, curl h′)�ls =
∑

i

(�−1j�, j′�)�ls,i =
∑

i

(
�−1

∑
n

hn���n,
∑
m

h′
m���m

)
�ls,i

(20)

which becomes, by summing the integrals in all the laminations �ls,i ,

(�−1js, curl h′)�ls =
∑
m

∑
n

(P̄h,mnh̄n, h̄′
m)�̄ls

, (21)

with coefficients P̄h,mn of a matrix P̄h defined by

P̄h,mn = d−1
∫ d/2

−d/2
�−1���m(�)���n(�) d�, ∀m, n ∈ S. (22)

5. Skin effect sub-basis functions

Examples of polynomial skin effect sub-basis functions �n(�r) are developed here. These can be limited to even
orders in case no net current flows in the laminations, which gives, for the expansion order set in (4), S = {0, 2, 4, . . .}.

For convenience, coordinate � is defined as equal to zero at the mid-thickness of each lamination. It can be also
associated with a reference coordinate �r, varying from −1 to 1 along the thickness of each lamination, i.e., defined by
�r = �2/d .

The sub-basis functions can be worthily given the property of orthogonality, i.e.,∫ +1

−1
�i (�r)�j (�r) d�r = 0 for i �= j, i, j ∈ S, (23)

which, in particular, defines a zero average value for each function �n of order n greater or equal to 1; function �0 is
constant and equal to 1. Consequently, the coefficient b0 in (4) is directly the mean magnetic flux density. For linear
magnetic materials, this property also gives matrix N̄ a diagonal form.

Even functions �n(�r), n ∈ S = {0, 2, 4, . . .}, can then be determined as

�0(�r) = 1, �2(�r) = 1
2 (3�2

r − 1), �4(�r) = 1
8 (35�4

r − 30�2
r + 3), . . . . (24)

The associated primitive functions 
n(�r) = ∫
�n(�r) d�r, n ∈ S, are


0(�r) = �r, 
2(�r) = 1
2 (�3

r − �r), 
4(�r) = 1
8 (7�5

r − 10�3
r + 3�r), . . . . (25)

The associated derivative functions �n(�r) = ��r
�n(�r), n ∈ S, are

�0(�r) = 0, �2(�r) = 3�r, �4(�r) = 5
2 (7�3

r − 3�r), . . . . (26)

The corresponding functions written in terms of � are given by

�n(�) = �n(�r), 
n(�) = d

2

n(�r), �n(�) = 2

d
�n(�r). (27)

Thanks to their property of orthogonality, sub-basis functions of additional orders satisfying (23) can be determined
without difficulties. They will act in a hierarchical way in the expansion of b�, only adding coefficients in matrices N̄,
P̄, N̄h and P̄h, without modifying the already calculated contributions.
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For S = {0, 2, 4} and constant � and �, matrices N̄ and P̄ are (indexes for rows and columns follow those of set S)

N̄ = �−1

⎛
⎜⎝

1 0 0

0 1
5 0

0 0 1
9

⎞
⎟⎠ , P̄ = �

d2

4

⎛
⎜⎝

1
3 − 1

15 0

− 1
15

2
105 − 1

315

0 − 1
315

2
693

⎞
⎟⎠ , (28)

of which the coefficients can be directly used in terms (9) and (12) of the magnetic vector potential formulation (7).
Matrices N̄h and P̄h, giving the coefficients to be used in terms (18) and (21) of the magnetic field formulation (14),
are

N̄h = �

⎛
⎜⎝

1 0 0

0 1
5 0

0 0 1
9

⎞
⎟⎠ , P̄h = �−1 4

d2

⎛
⎜⎝

0 0 0

0 3 3

0 3 10

⎞
⎟⎠ . (29)

6. Constraints on the homogenized magnetic flux density

As stated before, for the b-conform formulation, the conservation of the magnetic flux density b has to be expressed
in a strong way. In case there is no component of b perpendicular to the laminations, i.e., b� = 0 and b = b� given by
(6), one has, in each lamination �ls,i ,

div b� = div

(∑
n∈S

bn�n(�)

)
=
∑
n∈S

div bn�n(�) = 0. (30)

Then, thanks to the orthogonality property (23) of the sub-basis functions �n, (30) implies that

div bn = 0, ∀n ∈ S, (31)

which holds in any lamination but also for the homogenized coefficients b̄n, i.e.,

div b̄n = 0, ∀n ∈ S. (32)

A non-zero perpendicular component b�, with b = b� + b� (or b = b̄� + b�), only gives a complementary contribution
to coefficient b0 (or b̄0), all together satisfying

div(b0 + b�) = 0 or div(b̄0 + b�) = 0, (33)

with all the other relations in (31) or (32), for n �= 0, unchanged.
It should be noted that, in this case, odd order sub-basis functions have to be considered in the expansion of b�.

Indeed, the eddy currents induced by time variations of b� have to be given even order distributions. Relations (32) and
(33b) justify that b̄0 +b� and all the other coefficients b̄n can be expressed as the curl of magnetic vector potentials. The
restriction of coefficients b̄n, ∀n ∈ S, in a plane perpendicular to the laminations (with a priori unknown direction i�)
can be obtained through the use of a tensorial conductivity in (13), with non-zero values only in the directions parallel
to each lamination. Both contributions b̄0 and b� are naturally mixed through the weak formulation.

7. Application

The homogenized formulations have been applied to a test problem consisting of a 3-D stack of rectangular lamina-
tions. The laminations are characterized by a constant relative permeability �r =2000 and a conductivity �=107 S m−1.
Two values are considered for their thickness: d =0.3 and 0.6 mm. The thickness of the stack is 1.8 mm and its width is
10 mm. It is excited by an enforced magnetomotive force (MMF) either sinusoidal or triangular, giving a flux parallel
to the laminations. The frequency of the sinusoidal MMF varies from 50 to 50 kHz, with associated skin depth from
0.5 to 0.016 mm. The one of the triangular MMF is either 50 Hz, 1 or 5 kHz.

The homogenized solutions, with polynomials orders p equal to 0 and 2 in (4), are compared with the solution of the
direct method considering the stack as a set of insulated massive conductors (Fig. 3 for a sinusoidal MMF and Fig. 4
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Fig. 3. Amplitude of the magnetic flux in the lamination stack versus the frequency with the direct method and the homogenized or continuum model.

Fig. 4. Magnetic flux versus normalized time with the direct method, no consideration of eddy current (no continuum; a direct image of the MMF
is obtained), and the homogenized or continuum model (d = 0.3 mm); triangular MMF of different frequencies.

for a triangular MMF). A very good agreement is obtained for p = 2 up to quite a high frequency, while the accuracy
is lower for p = 0. The mesh of the massive conductors is sufficiently fine to take the small skin depth into account for
high frequencies (in addition, insulating layers have to be considered between the laminations), while the mesh of the
continuum does not need to satisfy this constraint and is therefore coarse for any frequency.



398 P. Dular / Journal of Computational and Applied Mathematics 215 (2008) 390–399

Fig. 5. Magnetic flux density along the thickness of a lamination, at a certain time instant, for different frequencies with the direct method and the
homogenized or continuum model (d = 0.3 mm).

Fig. 6. Eddy current density along the thickness of a lamination, at a certain time instant, for different frequencies (sinusoidal MMF) with the direct
method and the homogenized or continuum model (d = 0.3 mm).

Other comparisons can also be made. The distribution of b� can be post-computed by (4), using the homogenized
coefficients b̄n and can be compared to the magnetic flux density obtained with the direct method in massive conductor
regions (Fig. 5). A similar comparison can be done for the current density j�, post-computed through (2) or (3) and (4)
(Fig. 6). Such comparisons point out the accuracy obtained in function of the approximation order p of b� in (4).
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8. Conclusions

A time-domain technique has been developed to take the eddy currents in lamination stacks into account with dual
3-D magnetodynamic b- and h-conform FE formulations. In order to avoid the explicit definition of all laminations,
each laminated region is converted into a continuum in which the eddy current effects are taken into account thanks
to adapted terms in the weak formulations. For that, each lamination stack is considered as a source region carrying
predefined current density and magnetic flux density distributions describing the eddy currents and skin effect in each
lamination. The current density is expressed in terms of the magnetic flux density, this latter being approximated with
sub-basis functions of which the contributions are averaged in the weak formulations.

The developed method appears attractive for directly taking into account the eddy current effects which are particularly
significant for high frequency components. The time-domain analysis makes possible the consideration of these effects
for both nonlinear and transient phenomena.
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