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1. Introduction

Let B(H) denote the space of all bounded linear operators on a separable Hilbert space H. For a

compact positive operator A ∈ B(H), let λ1(A) � λ2(A) � · · · � 0 denote the eigenvalues of A

arranged in decreasing order and repeated according to multiplicity.

A useful characterization of compact operators (see, e.g., [6] or [13, p. 59]) says that

A ∈ B(H) is compact if and only if 〈Aen, en〉 → 0 as n → ∞ (1)

for every orthonormal set {en} inH, where 〈·, ·〉 denotes the inner product defined onH. The charac-

terization (1) implies the following fact:

If A, B ∈ B(H) are positive such that A is compact and A � B, then B is compact. (2)

The Weyl’s monotonicity principle for compact positive operators (see, e.g., [2, p. 63] or [4, p. 26])

says that if A, B ∈ B(H) are compact positive operators such that A � B, then λj(A) � λj(B) for

j = 1, 2, ....
For 0 < μ < 1, the μ-weighted arithmetic mean of two positive operators A, B ∈ B(H), denoted

by A∇μB, is the operator defined by

A∇μB = (1 − μ)A + μB.

In addition, ifA is invertible andμ > 0, then an operator (defined earlier in [10]) called theμ-weighted

geometric mean of A and B, denoted by A�μB, is defined by

A�μB = A1/2
(
A−1/2BA−1/2

)μ
A1/2.

In particular, if μ = 1
2
, the operators A∇1/2B and A�1/2B are called the arithmetic mean and the

geometricmean ofA and B, respectively. One of the interesting properties of theμ-weighted geometric

mean (see, e.g., [1, p. 35]) is that if A, B ∈ B(H) are invertible positive operators, then

A�μB = B�1−μA (3)

for 0 < μ < 1. Moreover, when A and B commute, we have A�μB = A1−μBμ for μ > 0. It can be

shown, as in the finite-dimensional case given in [9,11], that ifA, B ∈ B(H) are such thatA is invertible

and B is positive, then, for 0 < μ < 1,

A∗(A∗−1BA−1)μA � (
A∗A

) ∇μB (4)

with equality if and only if A∗A = B. In particular, if A is positive and invertible, then in the inequality

(4), replacing A by A1/2, we have

A�μB � A∇μB. (5)

with equality if and only if A = B.

For 0 < μ < 1 and for positive and invertible operators A, B ∈ B(H), the arithmetic mean of the

operators A�μB and A�1−μB, denoted by Hμ(A, B), is called the μ-weighted Heinz mean of A and B,

that is

Hμ(A, B) = A�μB + A�1−μB

2
.

It can be seen that Hμ(A, B) = H1−μ(A, B) = Hμ(B, A). Moreover, the inequality (5) implies that

Hμ(A, B) � A + B

2
(6)

with equality if and only if A = B.

It can be seen that if A, B ∈ B(H) are positive invertible operators such that A− B is compact, then

the operator A−1/2 (A − B)2 A−1/2 is compact. This follows from the fact that the space of compact

operators is a two sided ideal in B(H). Moreover, it follows from the spectral theorem applied in the
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Calkin Algebra setting that the operators A∇μB − A�μB and A+B
2

− Hμ(A, B) are also compact, for

μ > 0. To see this, let K(H) denote the closed two sided ideal of compact operators in B(H), and let

B(H)/K(H) be the Calkin algebra andπ : B(H) → B(H)/K(H) be the canonical homomorphism of

B(H) onto B(H)/K(H). If A, B ∈ B(H) are such that A − B is compact, then π(A) = π(B). Since the

Calkin algebra is a C∗-algebra, and hence it can be represented as an operator algebra, it follows from

the spectral theorem in this setting, that ifA, B ∈ B(H) are positive invertible operators such thatA−B

is compact, then π(A)�μπ(B) = π(A)∇μπ(B), and so π(A�μB) = π(A∇μB). Hence, A∇μB − A�μB

is compact. Using a similar argument, it can be shown that A+B
2

− Hμ(A, B) is also compact.

Recently, in the finite dimensional Hilbert space setting, eigenvalue inequalities for the difference

of the arithmetic mean and the geometric mean of two positive definite n × n matrices have been

established. It has been shown in [5] that if A and B are n × n positive definite matrices such that

A � B > 0, then

λj

(
A + B

2
− A�1/2B

)
� 1

8
λj

(
A−1/2(A − B)2A−1/2

)
(7)

and

λj

(
A + B

2
− A�1/2B

)
� 1

8
λj

(
B−1/2(A − B)2B−1/2

)
(8)

for j = 1, 2, ..., n. Moreover, recent operator inequalities for differences of means of Hilbert space

operators have been given in [7,8].

In this paperwe are interested in eigenvalue inequalities for differences ofmeans of positive invert-

ibleoperators inB(H). InSection2,wegiveeigenvalue inequalities for thedifferenceof theμ-weighted

arithmetic mean and the μ-weighted geometric mean of two positive invertible operators. Some of

our results in Section 2 present natural generalizations of the inequalities (7) and (8). In Section 3, we

present eigenvalue inequalities for the difference of the arithmetic mean and the μ-weighted Heinz

mean of two positive invertible operators. In Section 4, we investigate the equality conditions of our

inequalities given in Sections 2 and 3.

2. Eigenvalue inequalities for the difference of the weighted arithmetic mean and the weighted

geometric mean

In this sectionwepresent upper and lower bounds for the eigenvalues of the operatorA∇μB−A�μB,

where A, B ∈ B(H) are positive invertible operators such that A − B is compact.

For x, y ∈ R, y �= −1, let

K (x, y) = x (1 − x)

2 (1 + y)2
.

It can be easily seen that

K(x, y) = K(1 − x, y). (9)

In our analysis, we need the following scalar inequalities. They are known as Bernoulli’s inequalities

(see, e.g., [12, p. 76]).

Lemma 1.

(a) Let x ∈ [−1, β], where β � 0. If 0 < μ < 1, then

1 + μx − (1 + x)μ � K(μ, β)x2 (10)

with equality if and only if x = 0.
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(b) Let x ∈ [γ, ∞), where −1 < γ � 0. If 0 < μ < 1, then

1 + μx − (1 + x)μ � K(μ, γ )x2 (11)

with equality if and only if x = 0.

Another result that we also need is the following. It involves a monotonicity property for operator

functions (see, e.g., [3]).

Lemma 2. Let X ∈ B(H) be self-adjoint and let f and g be continuous functions such that f (t) � g(t)
for all t ∈ Sp(X) (the spectrum of X). Then f (X) � g(X) with equality if and only if f (t) = g(t) for all

t ∈ Sp(X).

Now, we present our first main result in this section.

Theorem 1. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact. If 0 < μ < 1,

β � 0, and −1 < γ � 0, then

λj

(
A∇μB − A�μB

) � K(μ, β)λj

(
A−1/2 (A − B)2 A−1/2

)
(12)

for j = 1, 2, ... and

λj

(
A∇μB − A�μB

) � K(μ, γ )λj

(
B−1/2 (A − B)2 B−1/2

)
(13)

for j = 1, 2, ....

Proof. We prove the inequality (12). The proof of the inequality (13) is similar. Let X = A−1/2BA−1/2.

Then I � X > 0 and so Sp(X) ⊆ (0, 1]. Applying Lemma 1, for x = t − 1, t ∈ Sp(X), we have

1 − μ + μt − tμ = 1 + μ(t − 1) − tμ

� K(μ, β) (t − 1)2 . (14)

It follows from the inequality (14) and Lemma 2 that

(1 − μ) I + μA−1/2BA−1/2 −
(
A−1/2BA−1/2

)μ = (1 − μ)I + μX − Xμ

� K(μ, β) (X − I)2

= K(μ, β)
(
A−1/2BA−1/2 − I

)2

and so

A∇μB − A�μB = (1 − μ) A + μB − A1/2
(
A−1/2BA−1/2

)μ
A1/2

� K(μ, β)A1/2
(
A−1/2BA−1/2 − I

)2
A1/2. (15)

Since A−B is compact, the operator A∇μB−A�μB is also compact, and since the operator K(μ, β)A1/2(
A−1/2BA−1/2 − I

)2
A1/2 is positive, it follows from the inequality (15), together with the fact (2), that

the operator

K(μ, β)A1/2
(
A−1/2BA−1/2 − I

)2
A1/2
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is compact. The Weyl’s monotonicity principle for compact positive operators, together with the in-

equality (15), implies that

λj

(
A∇μB − A�μB

) � K(μ, β)λj

(
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

)
(16)

for j = 1, 2, .... For Y =
(
A−1/2BA−1/2 − I

)
A1/2 it can be seen that

λj

(
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

)

= λj

(
Y∗Y

)
= λj

(
YY∗)

= λj

((
A−1/2BA−1/2 − I

)
A

(
A−1/2BA−1/2 − I

))

= λj

(
A−1/2 (A − B)2 A−1/2

)
(17)

for j = 1, 2, .... Now, the inequality (12) follows from the inequality (16) and the identity (17). �

A particular case of Theorem 1, for β = γ = 0, can be stated as follows. This result presents

our promised natural generalization of the inequalities (7) and (8). In the finite-dimensional case, the

compactness of A − B can be deleted, because every operator in this case is compact.

Corollary 1. Let A, B ∈ B(H) be positive such that A � B > 0 and A− B is compact. If 0 < μ < 1, then

λj

(
A∇μB − A�μB

) � μ (1 − μ)

2
λj

(
A−1/2 (A − B)2 A−1/2

)

and

λj

(
A∇μB − A�μB

) � μ (1 − μ)

2
λj

(
B−1/2 (A − B)2 B−1/2

)

for j = 1, 2, .... In particular, for μ = 1
2
, we have

λj

(
A∇1/2B − A�1/2B

) � 1

8
λj

(
A−1/2 (A − B)2 A−1/2

)

and

λj

(
A∇1/2B − A�1/2B

) � 1

8
λj

(
B−1/2 (A − B)2 B−1/2

)

for j = 1, 2, ....

An application of Lemma 1 can be stated as follows.

Lemma 3. Let 0 < μ < 1.

(a) Let x ∈ [−1, β], where β � 0. If 0 < μ < 1, then

(1 + μx)2 − (1 + x)2μ �
(
K(2μ, β) + μ2

)
x2 (18)

with equality if and only if x = 0.
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(b) Let x ∈ [γ, ∞), where −1 < γ � 0. If 0 < μ < 1, then

(1 + μx)2 − (1 + x)2μ �
(
K(2μ, γ ) + μ2

)
x2 (19)

with equality if and only if x = 0.

Proof. Since

(1 + μx)2 − (1 + x)2μ − μ2x2 = 1 + 2μx − (1 + x)2μ ,

the results follow from this relation and Lemma 1. �

Based on Lemma 3, we have the following result.

Theorem 2. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact. If 0 < μ < 1,

β � 0, and −1 < γ � 0, then

λj

((
A∇μB

)
A−1 (

A∇μB
) − A�2μB

)
�

(
K(2μ, β) + μ2

)
λj

(
A−1/2 (A − B)2 A−1/2

)
(20)

and

λj

((
A∇μB

)
A−1 (

A∇μB
) − A�2μB

)
�

(
K(2μ, γ ) + μ2

)
λj

(
B−1/2 (A − B)2 B−1/2

)
(21)

for j = 1, 2, ....

Proof. We prove the inequality (20). The proof of the inequality (21) is similar. Let X = A−1/2BA−1/2.

Then I � X > 0 and so Sp(X) ⊆ (0, 1]. Applying Lemma 1, for x = t − 1, t ∈ Sp(X), we

have

(1 − μ + μt)2 − t2μ �
(
K(2μ, β) + μ2

)
(t − 1)2 . (22)

It follows from the inequality (22) and Lemma 3 that

(
(1 − μ) I + μA−1/2BA−1/2

)2 −
(
A−1/2BA−1/2

)2μ
= ((1 − μ) I + μX)2 − X2μ

�
(
K(2μ, β) + μ2

)
(X − I)2

=
(
K(2μ, β) + μ2

) (
A−1/2BA−1/2 − I

)2

and so

(
A∇μB

)
A−1 (

A∇μB
) − A�2μB

= A1/2
[(

(1 − μ)I + μA−1/2BA−1/2
)2 −

(
A−1/2BA−1/2

)2μ]
A1/2

�
(
K(2μ, β) + μ2

)
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2. (23)

Since A − B is compact, the operator
(
A∇μB

)
A−1

(
A∇μB

) − A�2μB is also compact, and since the

operator
(
K(2μ, β) + μ2

)
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2 is positive, it follows from the inequality

(23), together with the fact (2), that the operator
(
K(2μ, β) + μ2

)
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2 is
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compact. TheWeyl’smonotonicity principle for compact positive operators, togetherwith the inequal-

ity (23), implies that

λj

((
A∇μB

)
A−1 (

A∇μB
) − A�2μB

)

�
(
K(2μ, β) + μ2

)
λj

(
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

)
(24)

for j = 1, 2, .... Now the result follows from the inequality (24) and the identity (17). �

Further results can be obtained using the following scalar inequalities.

Lemma 4.

(a) If 1
2

� μ < 1, x � 1 or 0 < μ � 1
2
, 0 < x � 1, then

1 + μ(x2 − 1) − x2μ � 2μ (1 − μ) (x − 1)2 (25)

with equality if and only if x = 1.
(b) If 1

2
� μ < 1, 0 < x � 1 or 0 < μ � 1

2
, x � 1, then

1 + μ(x2 − 1) − x2μ � 2μ (1 − μ) (x − 1)2 (26)

with equality if and only if x = 1.

Proof. We prove the inequality (25). The proof of the inequality (26) is similar. Consider the function

g : (0, ∞) → R defined by

g(x) = 1 − μ + μx2 − x2μ − 2μ(1 − μ)(x − 1)2.

Then

g′(x) = 2μx − 2μx2μ−1 − 4μ(1 − μ)(x − 1)

= 2μ (2μ − 1)) x − 2μx2μ−1 + 4μ(1 − μ)

and

g′′(x) = 2μ (2μ − 1))
(
1 − x2μ−2

)
.

If 1
2

� μ < 1 and x � 1, then g′′(x) � 0. Hence, g′ is increasing on [1, ∞), which implies that

g′(x) � g′(1) for x � 1. Since g′(x) � 0 for x � 1, we conclude that g is increasing on the interval

[1, ∞). This implies the inequality g(x) � g(1) = 0, which is valid for x � 1.

Similarly, if 0 < μ � 1
2
and 0 < x � 1, then g′′(x) � 0. Hence, g′ is increasing on (0, 1], which

implies that g′(x) � g′(1) for 0 < x � 1. Since g′(x) � 0 for 0 < x � 1, we conclude that g

is increasing on the interval (0, 1]. This implies the inequality g(x) � g(1) = 0, which is valid for

0 < x � 1. �

Based on Lemma 4, we have the following related result.

Theorem 3. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact.

(a) If 0 < μ � 1
2
, then

λj

(
A∇μ

(
BA−1B

)
− A�2μB

)
� 2μ (1 − μ) λj

(
A−1/2 (A − B)2 A−1/2

)
(27)
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for j = 1, 2, ..., and if 1
2

� μ < 1, then

λj

(
A∇μ

(
BA−1B

)
− A�2μB

)
� 2μ (1 − μ) λj

(
A−1/2 (A − B)2 A−1/2

)
(28)

for j = 1, 2, ....
(b) If 0 < μ � 1

2
, then

λj

(
B∇μ

(
AB−1A

)
− B�2μA

)
� 2μ (1 − μ) λj

(
B−1/2 (A − B)2 B−1/2

)
(29)

for j = 1, 2, ..., and if 1
2

� μ < 1, then

λj

(
B∇μ

(
AB−1A

)
− B�2μA

)
� 2μ (1 − μ) λj

(
B−1/2 (A − B)2 B−1/2

)
(30)

for j = 1, 2, ....

Proof. Weprove the inequality (27). The proof of the inequalities (28)-(30) is similar. SinceA � B > 0,

we have Sp(A−1/2BA−1/2) ⊆ (0, 1]. So for t ∈ Sp(A−1/2BA−1/2), we have

1 − μ + μt2 − t2μ = 1 + μ(t2 − 1) − t2μ

� 2μ (1 − μ) (t − 1)2 (by the inequality (25))

Consequently,

(1 − μ) I + μ(A−1/2BA−1/2)2 − (A−1/2BA−1/2)2μ � 2μ (1 − μ)
(
A−1/2BA−1/2 − I

)2

and so

A∇μ

(
BA−1B

)
− A�2μB

= (I − μ) A + μA1/2(A−1/2BA−1/2)2A1/2 − A1/2(A−1/2BA−1/2)2μA1/2

� 2μ (1 − μ) A1/2
(
A−1/2BA−1/2 − I

)2
A1/2. (31)

Since A − B is compact, the operator A∇μ

(
BA−1B

)
− A�2μB is also compact, and since the opera-

tor 2μ (1 − μ) A1/2
(
A−1/2BA−1/2 − I

)2
A1/2 is positive, it follows from the inequality (31), together

with the fact (2), that the operator 2μ (1 − μ) A1/2
(
A−1/2BA−1/2 − I

)2
A1/2 is compact. The Weyl’s

monotonicity principle for compact positive operators together with the inequality (31) implies that

λj

(
A∇μ

(
BA−1B

)
− A�2μB

)

� 2μ (1 − μ) λj

(
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

)

= 2μ (1 − μ) λj

(
A−1/2 (A − B)2 A−1/2

)

for j = 1, 2, .... This proves the inequality (27). �

3. Eigenvalue inequalities for the difference of the arithmetic mean and the weighted geometric

Heinz mean

In this sectionweemploy someof our results given inSection2 toobtainupper and lowerbounds for

the eigenvalues of the operator A+B
2

− Hμ(A, B), where A, B ∈ B(H) are positive invertible operators

such that A − B is compact.



1524 O. Hirzallah et al. / Linear Algebra and its Applications 436 (2012) 1516–1527

Theorem 4. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact. If 0 < μ < 1,

β � 0, and −1 < γ � 0, then

λj

(
A + B

2
− Hμ(A, B)

)
� K(μ, β)λj

(
A−1/2 (A − B)2 A−1/2

)
(32)

for j = 1, 2, ... and

λj

(
A + B

2
− Hμ(A, B)

)
� K(μ, γ )λj

(
B−1/2 (A − B)2 B−1/2

)
(33)

for j = 1, 2, ....

Proof. We prove the inequality (32). The proof of the inequality (33) is similar. In the inequality (15),

replacing μ by 1 − μ, we have

A∇1−μB − A�1−μB � K(1 − μ, β)A1/2
(
A−1/2BA−1/2 − I

)2
A1/2

= K(μ, β)A1/2
(
A−1/2BA−1/2 − I

)2
A1/2. (34)

Combining the inequalities (15) and (34) we have

A + B

2
− Hμ(A, B) = A + B − (

A�μB + A�1−μB
)

2

=
(
A∇μB − A�μB

) + (
A∇1−μB − A�1−μB

)
2

� K(μ, β)A1/2
(
A−1/2BA−1/2 − I

)2
A1/2. (35)

SinceA−B is compact, theoperator A+B
2

−Hμ(A, B) is also compact, and since theoperatorK(μ, β)A1/2

(
A−1/2BA−1/2 − I

)2
A1/2 is positive, it follows from the inequality (35), together with the fact (2), that

the operator

2μ (1 − μ) A1/2
(
A−1/2BA−1/2 − I

)2
A1/2

is compact. The Weyl’s monotonicity principle for compact positive operators, together with the in-

equality (35), implies that

λj

(
A + B

2
− Hμ(A, B)

)
� K(μ, β)λj

(
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

)
(36)

for j = 1, 2, .... Now the result follows from the inequality (36) and the identity (17). �

4. Equality conditions

In this section we study the equality conditions of our inequalities presented in Sections 2 and 3.

Our analysis here is mainly based on the following lemma [4, p. 26].

Lemma 5. Let A, B ∈ B(H) be compact positive operators such that A � B. Then A = B if and only if

λj(A) = λj(B) for j = 1, 2, ....

Based on Lemma 5 and the equality conditions of the inequalities (10) and (11), we get our first

main result in this section.
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Theorem 5. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact. If 0 < μ < 1,

β � 0, and −1 < γ � 0, then

(a)

λj

(
A∇μB − A�μB

) = K(μ, β)λj

(
A−1/2 (A − B)2 A−1/2

)
(37)

for j = 1, 2, ... if and only if A = B.
(b)

λj

(
A∇μB − A�μB

) = K(μ, γ )λj

(
B−1/2 (A − B)2 B−1/2

)
(38)

for j = 1, 2, ... if and only if A = B.

Proof. We prove part (a). The proof of part (b) is similar. Suppose that

K(μ, β)λj

(
A−1/2 (A − B)2 A−1/2

)
= λj

(
A∇μB − A�μB

)

for j = 1, 2, .... Since

λj

(
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

)
= λj

(
A−1/2 (A − B)2 A−1/2

)

for j = 1, 2, ..., we have

λj

(
A∇μB − A�μB

) = λj

(
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

)
(39)

for j = 1, 2, .... The equality (39), together with the inequality (15) and Lemma 5, implies that

A∇μB − A�μB = A1/2
(
A−1/2BA−1/2 − I

)2
A1/2

and so

(1 − μ) I + μA−1/2BA−1/2 −
(
A−1/2BA−1/2

)μ = K(μ, β)
(
A−1/2BA−1/2 − I

)2

which is equivalent to saying that

1 + μ(t − 1) − tμ = K(μ, β) (t − 1)2

for all t ∈ Sp(A−1/2BA−1/2). It follows fromtheequality conditionof Lemma1 that Sp(A−1/2BA−1/2) =
{1}. Since the operator A−1/2BA−1/2 is positive, it follows that A−1/2BA−1/2 = I, and hence A = B.

The converse is trivial and the proof is complete. �

Based on the equality conditions of the inequalities in Lemma 1, and using an argument similar to

that used in the proof of Theorem 5, we have the following result.

Theorem 6. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact. If 0 < μ < 1,

β � 0, and −1 < γ � 0, then

(a)

λj

((
A∇μB

)
A−1 (

A∇μB
) − A�2μB

)
=

(
K(2μ, β) + μ2

)
λj

(
A−1/2 (A − B)2 A−1/2

)
(40)

for j = 1, 2, ... if and only if A = B.
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(b)

λj

((
A∇μB

)
A−1 (

A∇μB
) − A�2μB

)
=

(
K(2μ, γ ) + μ2

)
λj

(
A−1/2 (A − B)2 A−1/2

)
(41)

for j = 1, 2, ... if and only if A = B.

Using an argument similar to that used in the proof of Theorem 5, finally, we obtain equality

conditions of the inequalities (27)–(30) and of the inequalities (32) and (33).

Theorem 7. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact.

(a) If 0 < μ � 1
2
, then

λj

(
A∇μ

(
BA−1B

)
− A�2μB

)
= 2μ (1 − μ) λj

(
A−1/2 (A − B)2 A−1/2

)

for j = 1, 2, ... if and only if A = B

(b) If 1
2

� μ < 1, then

λj

(
A∇μ

(
BA−1B

)
− A�2μB

)
= 2μ (1 − μ) λj

(
A−1/2 (A − B)2 A−1/2

)

for j = 1, 2, ... if and only if A = B.

(c) If 0 < μ � 1
2
, then

λj

(
B∇μ

(
AB−1A

)
− B�2μA

)
= 2μ (1 − μ) λj

(
B−1/2 (A − B)2 B−1/2

)

for j = 1, 2, ... if and only if A = B

(d) If 1
2

� μ < 1, then

λj

(
B∇μ

(
AB−1A

)
− B�2μA

)
= 2μ (1 − μ) λj

(
B−1/2 (A − B)2 B−1/2

)

for j = 1, 2, ... if and only if A = B.

Theorem 8. Let A, B ∈ B(H) be positive such that A � B > 0 and A − B is compact. If 0 < μ < 1,

β � 0, and −1 < γ � 0, then

(a)

λj

(
A + B

2
− Hμ(A, B)

)
= K(μ, β)λj

(
A−1/2 (A − B)2 A−1/2

)

for j = 1, 2, ... if and only if A = B.
(b)

λj

(
A + B

2
− Hμ(A, B)

)
= K(μ, γ )λj

(
B−1/2 (A − B)2 B−1/2

)

for j = 1, 2, ... if and only if A = B.
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