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1. Introduction

Let B(H) denote the space of all bounded linear operators on a separable Hilbert space . For a
compact positive operator A € B(H), let A{(A) > A(A) = --- > 0 denote the eigenvalues of A
arranged in decreasing order and repeated according to multiplicity.

A useful characterization of compact operators (see, e.g., [6] or [13, p. 59]) says that

A € B(H) is compact if and only if (Ae,, e,) — 0asn — oo (1)

for every orthonormal set {e,} in , where (-, -) denotes the inner product defined on #. The charac-
terization (1) implies the following fact:

If A, B € 9B(H) are positive such that A is compact and A > B, then B is compact. (2)

The Weyl's monotonicity principle for compact positive operators (see, e.g., [2, p. 63] or [4, p. 26])
says that if A, B € B(H) are compact positive operators such that A > B, then A;j(A) > A;(B) for
ji=1,2,..

For 0 < i < 1, the w-weighted arithmetic mean of two positive operators A, B € 8B(#), denoted
by AV, B, is the operator defined by

AV, B = (1 — WA+ uB.

In addition, if Aisinvertible and i > 0, then an operator (defined earlier in[10]) called the p-weighted
geometric mean of A and B, denoted by Aff, B, is defined by

Ag,B = A2 (A71/2pA7 1)1 412,

In particular, if © = % the operators AVy,,B and Aft1 /B are called the arithmetic mean and the
geometric mean of A and B, respectively. One of the interesting properties of the .-weighted geometric
mean (see, e.g., [1, p. 35]) is that if A, B € B(H) are invertible positive operators, then

At,B = Bfij_,A (3)

for 0 < pu < 1. Moreover, when A and B commute, we have A, B = A'=HBH for ;1 > 0. It can be
shown, as in the finite-dimensional case givenin [9,11], thatif A, B € 8B(H) are such that A is invertible
and B is positive, then, for0 < u < 1,

A*(A"'BATHA < (AA) VB (4)
with equality if and only if A*A = B. In particular, if A is positive and invertible, then in the inequality
(4), replacing A by A'/2, we have

A, B < AV,B. (5)

with equality if and only if A = B.

For 0 < pu < 1 and for positive and invertible operators A, B € B(H), the arithmetic mean of the
operators Af, B and Af;_, B, denoted by H;, (A, B), is called the p-weighted Heinz mean of A and B,
that is

A, B+ Al ,B
-5
It can be seen that Hy, (A, B) = Hy—; (A, B) = H,, (B, A). Moreover, the inequality (5) implies that

A+B
Hy (A, B) < — (6)
with equality if and only if A = B.
It can be seen that if A, B € %(H) are positive invertible operators such that A — B is compact, then
the operator A~'/2 (A — B)> A='/2 is compact. This follows from the fact that the space of compact
operators is a two sided ideal in B(#). Moreover, it follows from the spectral theorem applied in the

H, (A, B) =
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Calkin Algebra setting that the operators AV, B — Aff;B and # — H,, (A, B) are also compact, for
> 0.To see this, let () denote the closed two sided ideal of compact operators in %8(7%), and let
B(H) /K (H) be the Calkin algebra and 7 : B(H) — B(H)/K(H) be the canonical homomorphism of
B(H) onto B(H)/K(H).IfA, B € B(H) are such that A — B is compact, then 7 (A) = 7 (B). Since the
Calkin algebra is a C*-algebra, and hence it can be represented as an operator algebra, it follows from
the spectral theorem in this setting, thatif A, B € %(’H) are positive invertible operators such that A—B
is compact, then 7 (A)f,, 77 (B) = w(A)V,7(B), and so 7 (Af,B) = 7 (AV,B). Hence, AV, B — A, B
is compact. Using a similar argument, it can be shown that ’% — H, (A, B) is also compact.
Recently, in the finite dimensional Hilbert space setting, eigenvalue inequalities for the difference
of the arithmetic mean and the geometric mean of two positive definite n x n matrices have been
established. It has been shown in [5] that if A and B are n X n positive definite matrices such that
A > B > 0, then

A+B 1., _
Aj (— —Ati1/zB) Sy (A 1/2(4 — B)?A 1/2) (7)
2 8
and
A+B 1., _
Aj (T —Afn/zB) < gh(BP@a—BB1R) (8)

forj = 1, 2, ..., n. Moreover, recent operator inequalities for differences of means of Hilbert space
operators have been given in [7,8].

In this paper we are interested in eigenvalue inequalities for differences of means of positive invert-
ible operators in (). In Section 2, we give eigenvalue inequalities for the difference of the p-weighted
arithmetic mean and the p-weighted geometric mean of two positive invertible operators. Some of
our results in Section 2 present natural generalizations of the inequalities (7) and (8). In Section 3, we
present eigenvalue inequalities for the difference of the arithmetic mean and the p-weighted Heinz
mean of two positive invertible operators. In Section 4, we investigate the equality conditions of our
inequalities given in Sections 2 and 3.

2. Eigenvalue inequalities for the difference of the weighted arithmetic mean and the weighted
geometric mean

In this section we present upper and lower bounds for the eigenvalues of the operator AV, B—Af, B,
where A, B € B(H) are positive invertible operators such that A — B is compact.
Forx,y e Ry # —1, let

K (x.y) x(1—x)
X’y = S

2(1+y)?
It can be easily seen that

In our analysis, we need the following scalar inequalities. They are known as Bernoulli’s inequalities
(see, e.g., [12, p. 76]).

Lemma 1.
(a) Letx € [—1, B],where B > 0.If 0 < . < 1, then
1+ pux— 1+ " > K(u, p)x* (10)

with equality if and only if x = 0.
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(b) Letx € [y, 00), where —1 <y < 0.If 0 < i < 1, then

14 pux — (14+ 0" <K, y)x? (11)
with equality if and only if x = 0.

Another result that we also need is the following. It involves a monotonicity property for operator
functions (see, e.g., [3]).

Lemma 2. Let X € B(H) be self-adjoint and let f and g be continuous functions such that f (t) > g(t)
forall t € Sp(X) (the spectrum of X). Then f(X) > g(X) with equality if and only if f(t) = g(t) for all
t € Sp(X).

Now, we present our first main result in this section.

Theorem 1. Let A, B € B(H) be positive such that A > B > 0 and A — B is compact. If0 < u < 1,
B > 0,and —1 < y < 0, then

A (AV,B — A, B) = K(1u, B)Aj (A”/2 (A— B)ZA*‘/Z) (12)
forj=1,2,...and
A (AV,B — A, B) < K(1t, Y)Aj (3*1/2 (A — B)? 3*1/2) (13)

forj=1,2, ...

Proof. We prove the inequality (12). The proof of the inequality (13) is similar. Let X = A~1/2BA~1/2,
Then! > X > 0and so Sp(X) C (0, 1]. Applying Lemma 1, forx =t — 1, t € Sp(X), we have

1—p+ut—t"=14+ut—1)—t"
>K(u. B) (t —1)%. (14)
It follows from the inequality (14) and Lemma 2 that
(1— )1+ pA2pa=1/2 _ (A*l/zBA*VZ)“ =1 — )+ puX — X"
>K(u, B) (X = 1)*
=K(u, B) (A_l/ZBA_]/Z - 1)2
and so
AV,B—Af,B=(1— ) A+ uB — A'/> (A—WBA‘W)“A”2
> K(u, pAY? (A—l/zBA—‘/2 - 1)2A1/2. (15)

Since A— B is compact, the operator AV, B— Af, B is also compact, and since the operator K (y, ,B)Al/2

2
(A”/zBA”/2 — I) A'/2 is positive, it follows from the inequality (15), together with the fact (2), that
the operator

2
K, ﬂ)Al/Z (A—1/2BA—1/2 _ I) Al/2
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is compact. The Weyl's monotonicity principle for compact positive operators, together with the in-
equality (15), implies that

2
A (AV,.B — At,,B) = K(u, B)Aj (AV2 (,trl/zB,ch2 - 1) AVZ) (16)
forj=1,2,...ForY = (A‘l/ZBA_l/2 — I) AY/2 it can be seen that

A (Al/z (A—1/2BA—1/2 . I)ZAl/z)

=2 (Y"Y)

= A (YY)

=2 ((A7"/2Ba2 —1) A (A28 2 - 1))

= (A—1/2 (A—B)ZA_l/Z) (17)

forj =1, 2, .... Now, the inequality (12) follows from the inequality (16) and the identity (17). O

A particular case of Theorem 1, for § = y = 0, can be stated as follows. This result presents
our promised natural generalization of the inequalities (7) and (8). In the finite-dimensional case, the
compactness of A — B can be deleted, because every operator in this case is compact.

Corollary 1. LetA, B € B(H) be positive such that A > B > 0and A — Bis compact. If0 < u < 1, then

1—

2 (712 a— By A1?)
and

% (AV,B — A#,,B) < M/\j (B> a—B)y’B'/?)
forj =1, 2, ....Inparticular, for © = % we have

A (AV1/2B — Atty,B) > %,\j (A—V2 (A— B)ZA_l/Z)
and

Aj (AV4 /2B — Aty 2B) < %)\j (871/2 (A—B)? B”/z)
forj=1,2,..

An application of Lemma 1 can be stated as follows.

Lemma3. Let0 < pu < 1.

(a) Letx € [—1, B],where B > 0.1f 0 < u < 1, then
(14 0)° = 1+ 0% > (kKQu., p) +4?) & (18)

with equality if and only if x = 0.
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(b) Letx € [y, 00), where —1 <y < 0.If 0 < i < 1, then
(14 0% = (1407 < (KQu. y) + 1) & (19)
with equality if and only if x = 0.
Proof. Since
A4+ ux)? — 1+ — 2 =14 2ux — (1 + %)%,

the results follow from this relation and Lemma 1. [J

Based on Lemma 3, we have the following result.

Theorem 2. Let A, B € B(H) be positive such that A > B > 0and A — B is compact. If0 < u < 1,
B = 0,and —1 < y < 0, then

Aj ((AVMB) A~ (AV,,B) — AﬁzMB) > (K(Z,u, B) + Mz) Aj (A—”2 (A— B)ZA_]/z) (20)
and

% ((AV,.B) A™" (AV,B) — Aty,iB) < (K(2u, v) + 14®) 4 (B2 (A — B)* B~'/?) 21)
forj=1,2, ...

Proof. We prove the inequality (20). The proof of the inequality (21) is similar. Let X = A~'/2BA=1/2,

ThenI > X > 0 and so Sp(X) C (0, 1]. Applying Lemma 1, forx = t — 1,t € Sp(X), we
have

(1= 4 pt)? = 2 > (K@ p) + ) (6= 177 (22)
It follows from the inequality (22) and Lemma 3 that
2 2
((1 = ) 1+ pA="2BA=12)" — (a1/2pa~1/2) "

= ((1— w1+ uX)*> —x*
> (K@u, B) + 1) (X = 1)?

— (K(Zp,, B) + Mz) (,crl/zBA—]/2 - 1)2

and so

(AV,B)A™! (AV,,B) — Atl,, B

2 2
Al [((1 . /,L)I+U,A_1/ZBA_1/2) _ (A—l/zBA—Uz) “]Al/z

2
> (1<(zu, B) + MZ)AUZ (A”/ZBA”/2 — 1) A2, (23)
Since A — B is compact, the operator (AV,B)A~! (AV,,B) — At},B is also compact, and since the
2
operator (K(Zu, B) + Mz) A2 (A_l/zBA_]/2 — I) A2 s positive, it follows from the inequality
2
(23), together with the fact (2), that the operator (K(Zu, B) + uz) Al/2 (A”/ZBA*]/2 - I) AV/2 s
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compact. The Weyl's monotonicity principle for compact positive operators, together with the inequal-
ity (23), implies that

% ((AV,.B) A" (AV,,B) — At,B)
> (K(z,u, B) + Mz) A (Al/z (A—l/zBA—1/2 _ I)ZA]/Z) (24)
forj =1, 2, .... Now the result follows from the inequality (24) and the identity (17). O
Further results can be obtained using the following scalar inequalities.
Lemma 4.
@IF3<pu<l,x>1or0<pu<3,0<x<1,then
THpE =1 = =20 (1 — ) (x—1)° (25)

with equality if and only if x = 1.

(b)If; <pu<1,0<x<Tor0<pu<g,x>1,then

1
ia

T pe® =1 =3 <2 (1= p) (x—1)? (26)
with equality if and only if x = 1.

Proof. We prove the inequality (25). The proof of the inequality (26) is similar. Consider the function
g:(0,00) — R defined by

g) =1—p+px> —x* —2u(1 — p)(x — D2
Then
g =2px — 2 —ap(1 — ) (x — 1)

=2p 2u — 1) x —2u* 1 +4p — p)
and

g/ =2u@u—1)(1-x72).

If% < < landx > 1, then g’(x) > 0.Hence, g’ is increasing on [1, 00), which implies that
g'(x) > g (1) forx > 1.Since g’(x) > 0 forx > 1, we conclude that g is increasing on the interval
[1, co). This implies the inequality g(x) > g(1) = 0, which is valid forx > 1.

Similarly, if 0 < u < % and 0 < x < 1, then g”(x) > 0.Hence, g’ is increasing on (0, 1], which
implies that g/(x) > g’(1) for 0 < x < 1.Since g’(x) > 0for 0 < x < 1, we conclude that g
is increasing on the interval (0, 1]. This implies the inequality g(x) > g(1) = 0, which is valid for
0<x<1. 0O

Based on Lemma 4, we have the following related result.
Theorem 3. Let A, B € B(H) be positive such that A > B > 0 and A — B is compact.

Q) If0 < u < % then

2 (AV, (BAT'B) — AfaB) > 200 (1 — ) 2 (A2 (A — B)? A1/?) (27)
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forj=1,2,...andif 5 < p <1, then
% (AV,, (BA'B) — AttauB) < 2.0 (1 — 1) 4 (A7'/2 (A — B> A™'72) (28)

forj=1,2,...
(b) If 0 < p < 3, then

4 (BV,u (AB™'A) — Bty A) < 241 (1 — o) (B2 (4 — B)? B™1/2) (29)
forj=1,2,..,andif I < p <1, then

3 (BV,u (AB™'A) — Bto,A) > 241 (1 — )y (B2 (4 — B)? B™1/2) (30)
forj=1,2, ...

Proof. We prove the inequality (27). The proof of the inequalities (28)-(30) is similar. Since A > B > 0,
we have Sp(A~"/2BA="/2) C (0, 1].So for t € Sp(A~'/2BA="/2), we have

1T—p4upt? —t# =14 put®—1) —t#
>2u (1 — ) (t —1)? (by the inequality (25))
Consequently,
2
(= )+ @A 2BA™12)%2 — (A712BA1/2)2 > 210 (1 — ) (A*]/zBA*”2 - 1)
and so
AV, (BA_lB) — At B
— (- WA+ uAl/z(A’l/zBA*1/2)2A1/2 —A1/2(A*1/2BA’1/2)2“A1/2
2
>2u(1—p)Al? (A_I/ZBA_UZ - 1) A2, (31)
Since A — B is compact, the operator AV, (BA_lB) — Aflp, B is also compact, and since the opera-
1/2 (4—1/2pa—1/2 2 ,1/2 P : :
tor2u (1 —p)A (A BA — I) A'/“ is positive, it follows from the inequality (31), together

2
with the fact (2), that the operator 24 (1 — 1) A/? (A_VZBA_V2 - I) A'/2 is compact. The Weyl's
monotonicity principle for compact positive operators together with the inequality (31) implies that

% (AV,. (BA™'B) — At,.B)
> 20 (1w k (A1/2 (A—1/zBA—1/z _ 1)2A1/2)
=2u(1—p) A (A—l/2 A— B)ZA_]/Z)

forj = 1, 2, .... This proves the inequality (27). O

3. Eigenvalue inequalities for the difference of the arithmetic mean and the weighted geometric
Heinz mean

In this section we employ some of our results given in Section 2 to obtain upper and lower bounds for
the eigenvalues of the operator ’# — H,, (A, B), where A, B € () are positive invertible operators
such that A — B is compact.
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Theorem 4. Let A, B € B(H) be positive such that A > B > 0 and A — Bis compact. If0 < p < 1,
B >0,and —1 < y < 0, then

A ('? — Hyu (A, B)) > K(u, p)aj (A7 (A — B> A71/2) (32)

forj=1,2,...and

Aj (/? — Hu (A, B)) <K y)x (B2 (A—B)?B7'72) (33)

forj=1,2, ...

Proof. We prove the inequality (32). The proof of the inequality (33) is similar. In the inequality (15),
replacing u by 1 — u, we have

2
AVy_ B — At B=K(1 — p, B)A'? (A_]/ZBA_VZ - 1) Al/2

2
=K(u, B)A? (A_1/2BA_1/2 —1) A2, (34)
Combining the inequalities (15) and (34) we have
A+ B A+ B— (At,B+ A1_,B
+ CHAB) = +B— ( ﬁ,; + At uB)
_ (AVuB — A%B) + (AV1—B — At B)
2
2
> K(u, P2 (A71/2BA12 — 1) A2, (35)
Since A—Bis compact, the operator /# —H,, (A, B) isalso compact, and since the operator K (1, ,B)A”2

2
(A”/ZBA*]/2 — 1) A'/2 is positive, it follows from the inequality (35), together with the fact (2), that
the operator

2
2u(1— ,u)Al/z (A71/2BA71/2 —I) A1/2

is compact. The Weyl’s monotonicity principle for compact positive operators, together with the in-
equality (35), implies that

A+ B
)»j( +

2
— _H,(A B)) > K(w, B)Aj (Al/z (A”/ZB,L\”/2 — 1) Al/z) (36)
forj =1, 2, .... Now the result follows from the inequality (36) and the identity (17). O

4. Equality conditions

In this section we study the equality conditions of our inequalities presented in Sections 2 and 3.
Our analysis here is mainly based on the following lemma [4, p. 26].

Lemma 5. Let A, B € B(H) be compact positive operators such that A > B. Then A = B if and only if
)\j(A) = )»j(B)fOTj =1,2,..

Based on Lemma 5 and the equality conditions of the inequalities (10) and (11), we get our first
main result in this section.
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Theorem 5. Let A, B € B(H) be positive such that A > B > 0and A — Bis compact. If 0 < pu < 1,
B >0,and —1 < y <0, then

(a)
% (AV,B — AZ,B) = K(iu, B2 (A% (A— B2 A™'12) (37)

(b) forj=1,2,...ifand only if A = B.

A (AV,B — A B) = K(it, y)Aj (3*1/2 (A — B)? 3*1/2) (38)
forj=1,2,...ifand only if A = B.
Proof. We prove part (a). The proof of part (b) is similar. Suppose that
K(e, B2 (A% (A= B2 A7) = 1) (AV,,B — Af,,B)
forj =1, 2, ....Since
A (A‘/2 (A*WBA*‘/2 - 1)2A1/2) = A (A”/2 (A— B)zA*W)
forj =1, 2, ..., we have
A (AV,B — A%,B) = (A”2 (A/2pA71/2 — 1)2A1/2) (39)
forj =1, 2, .... The equality (39), together with the inequality (15) and Lemma 5, implies that
AV,.B — Af,B = A2 (A7/2BAT1/2 — 1)2A1/2
and so
(1— )1+ pa2pa=1/2 _ (A—l/zBA—l/z)“ = K(u. p) (A7"/2BA712 — 1)2
which is equivalent to saying that
T pe—1) =" =K, p) (€ —1)°
forallt € Sp(A~'/2BA~"/2).1t follows from the equality condition of Lemma 1 that Sp(A~/2BA~1/2) =

{1}. Since the operator A~1/2pA=1/2 jg positive, it follows that A=1/2BA=1/2 = |, and hence A = B.
The converse is trivial and the proof is complete. [

Based on the equality conditions of the inequalities in Lemma 1, and using an argument similar to
that used in the proof of Theorem 5, we have the following result.

Theorem 6. Let A, B € B(H) be positive such that A > B > 0and A — Bis compact. If 0 < pu < 1,
B >0,and —1 < y < 0, then

(a)

A ((AVMB) A7 (AV,B) — AttzMB) = (K@u, B) + 11?) A (A*l/2 (A-— B)ZA*”Z)
(40)

forj=1,2,...ifand only if A = B.
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(b)

A ((AVMB) A™' (AV,.B) — Ay, B) = (K(Z,u, y)+ 12) A (A”/2 (A— B)zA”/z)
(41)
forj=1,2,...ifand only if A = B.

Using an argument similar to that used in the proof of Theorem 5, finally, we obtain equality
conditions of the inequalities (27)-(30) and of the inequalities (32) and (33).

Theorem 7. Let A, B € B(H) be positive such that A > B > 0 and A — B is compact.
@) If 0 < pu < 3, then
A (AVM (BA_1B) - AﬁzuB) =2 (1—p) A (A—V2 (A-— B)ZA_l/z)

forj=1,2,...ifandonlyif A=B
(b) If 3 < < 1, then

Aj (Avﬂ (BA‘lB) - AtIz,LB) =20 (1 — ) Aj (A‘l/2 (A— B)ZA—W)

forj=1,2,...ifand only if A = B.
(O Ifo<pu< % then

% (BVyu (ABT'A) — BtiauA) =210 (1 — ) 3 (B2 (A — B)? B~'/2)

forTj=1,2,...ifandonlyifA=B
(d) If 5 < <1, then

A (BVM (AB”A) - BﬁzﬂA) =20 (1— )4 (B~2(A—B)’B'/?)

forj=1,2,...ifand only if A = B.

Theorem 8. Let A, B € B(H) be positive such that A > B > 0 and A — Bis compact. If0 < pu < 1,
B >0,and —1 < y < 0, then

(a)

A+B
(1

— Hyu (A, B)) = K(u, B)Aj (A—l/2 (A— B)ZA—”Z)

forj =1, 2,...ifand only if A = B.
(b)

A+B
 (

—— —Hu(A, B)) =K(u, y)A; (3—1/2 (A — B)? B—l/z)

forj=1,2,...ifand only ifA = B.
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