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ABSTRACT 

A Gaussian belief function can be intuitic'ely described as a Gaussian distribution 
ot~er a hyperplane, whose parallel subhyperplanes are the focal elements'. This paper 
elaborates on the idea of  Dempster and Sharer and formally represents a Gaussian 
belief function as a wide-sense inner product and a linear functional ouer a variable 
space, and as their duals" ot:er a hyperplane in a sample space. By adapting Dempster's 
rule to the continuous case, it derices a rule o f  combination and proves its equivalence 
to its geometric description by Dempster. It illustrates by examples how mixed knowl- 
edge int.'olcing linear equations, multicariate Gaussian distributions, and partial igno- 
rance can be represented and combined as Gaussian belief functions. 

KEYWORDS:  expert systems, Dempster-Shafer theory, belief networks, 
knowledge representation, multivariate Gaussian distributions 

1, INTRODUCTION 

The notion of Gaussian belief functions (GBFs) extends Dempster-  
Shafer theory in representing mixed knowledge, some of which is logical, 
some uncertain, and some vacuous. Logical knowledge is represented by a 
hyperplane in a sample space. Ignorance is represented by partitioning the 
hyperplane into parallel subhyperplanes as focal elements. Uncertain 
knowledge is then represented by a Gaussian distribution across the focal 
elements over the hyperplane. In its full generality, a GBF can be intu- 
itively described as a Gaussian distribution across the parallel members  of 
a partition of a hyperplane. It includes as special cases nonprobabilistic 
linear equations, statistical observations, multivariate Gaussian distribu- 
tions over a hyperplane, and vacuous belief functions. In terms of graphi- 
cal models (Kong, 1986), a general GBF can be seen as the combination of 

Address correspondence to Liping Liu, Ph.D., School of Business, Albany State College, Albany, 
GA 31705. E-mail: LIPING@RAMS .ALSN~T. PEACHNET. EDU. 

Received Januaw 1994; revised May 1995; accepted Scptcmber 1995. 

International Journal of Approximate Reasoning 1996; 14:95 126 
(e 1996 Elsevier Science Inc. 0888-613X/96/$15.00 
655 Avcnue of the Americas, New York, NY 10010 SSDI 0888-613X(96)00115-8 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82030857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


96 Liping Liu 

its special cases, whose individual representation is often trivial. However, 
to represent a GBF in its full generality, advanced notions such as linear 
functionals and linear spaces are required. This paper  elaborates on the 
idea of Dempster  (1990b) and Shafer (1992) and formally represents a 
GBF as a wide-sense inner product and a linear functional over a variable 
space, and as their dual over a hyperplane in a sample space. When 
variables of interest are specified, the abstract representation can be 
reduced into matrices and linear and quadratic functions, which allow 
efficient implementat ion of the idea of GBFs. Using examples, the paper  
shows how this can be done and how statistical models and assumptions 
can be formally represented and combined as GBFs. 

As in Dempster-Shafer  theory (Shafer, 1976), knowledge represented by 
GBFs has two primitive operat ions--marginal iza t ion and combination. 
Marginalization corresponds to the coarsening of knowledge, and combi- 
nation corresponds to the integration of knowledge. Drawing inferences 
consists of combining all the relevant information and marginalizing the 
full body of knowledge into the variables of interest. The marginalization 
of a GBF is most naturally described as a projection in a variable space. 
The combination of GBFs is geometrically described by Dempster  (1990b) 
as intersecting hyperplanes and summing the restricted log "densities" in a 
sample space. To interplay these two operations, this paper  adapts Demp- 
ster's rule to the continuous case and derives a rule of combination in a 
variable space. It shows that the resulting rule is equivalent to the 
geometric description in Dempster  (1990b). 

In terms of representation, a GBF may be equivalently represented 
by a Bayesian model and vice versa. However, the proposal of the no- 
tion of GBFs is dictated by the best-known properties of belief-function 
mode l ing- - the  representation of ignorance by vacuous belief functions, 
the resolution of complex representations of uncertainty into components  
by graphical models, and the combination of independent models by 
Dempster ' s  rule. As Dempster  (1990b) argued, the belief-function formal- 
ism generalizes Bayesian inference of posterior distributions while aban- 
doning its most controversial component:  improper  priors. It extends, 
unifies, and clarifies Fisher's fiducial method of posterior reasoning while 
filling the void of a prior distribution in the logical structure with a vacuous 
belief function. Also, as its geometric description suggests, a GBF treats all 
the components  of a statistical model (such as observations, model as- 
sumptions, and subjective beliefs) not as separate concepts, but as manifes- 
tations of a single concept. Furthermore,  the specification of a graphical 
belief-function model is based on symmetric evidential independence 
assumptions that are simpler and easier to check than asymmetric Bayesian 
conditional-probability assumptions, whose verification and falsification 
are often difficult due to human beings' limited knowledge about causality. 
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These features of GBFs allow people to concentrate their modeling efforts 
on recognizing and incorporating independent  components  of real infor- 
mation. 

The notion of GBFs turns out to have a wide range of real applications. 
Dempster  (1990a, b) shows how the Kalman filter can be understood in 
terms of GBFs. As Dempster  (1990a) shows, the state equations and the 
observation equations in the Kalman filter can be captured by logical 
belief functions. The distributional assumptions on independent random 
disturbances can be represented by Gaussian distributions. The values of 
observable variables can be represented as another  set of logical belief 
functions. All three types of belief functions are specified locally in a belief 
network. The recursion involved in the filter can be regarded as a special 
case of the recursion involved in the computat ion of GBF marginals in a 
join tree. The full Kalman filter model results from judging all these 
components  belief functions to be independent and combining them into a 
single belief function by Dempster ' s  rule. 

Because GBFs can represent statistical models, and because Dempster ' s  
rule can be used to combine knowledge from independent items of 
evidence, it is clear that the theory of GBFs provides a method of 
combining independent models. Liu (1995b) implements this idea. Specifi- 
cally, information from different sources such as multiple databases is 
treated as independent items of evidence. The knowledge drawn from each 
database, such as a linear regression model or a belief network, is repre- 
sented by a GBF. The models from different databases are combined in 
the way we combine GBFs. Combined predictions or inferences are then 
made, based on the combined model. Obviously, this approach is consis- 
tent with the spirit of Dempster-Shafer  theory of belief functions and 
Dempster ' s  rule of combination. Using concrete examples, Liu (1995b) 
shows how linear models, simultaneous equations, and belief networks can 
be combined as GBFs. He also shows how this important task can be 
actually performed by simple matrix operations. The proposed method has 
a potential application in automated learning of belief networks from 
multiple databases that are neither appendable nor joinable (Maier, 1983). 
It also generalizes the metaanalysis for integrating independent statistical 
findings (Hunter  and Schmidt, 1990) and the Bayesian method of estimat- 
ing common regression coefficients (Box and Tiao, 1973). As we will see 
shortly, the GBF method can combine models of different kinds that may 
involve different variables. In contrast, the models to be combined in the 
metaanalysis and the Bayesian method must be the same, and the parame-  
ters to be estimated must be common.  In such a restricted case, Liu 
(1995b) shows that the GBF method is similar in flavor to metaanalysis and 
the Bayesian method. For example, for the problem of weighted means 
(Yates, 1939) and its generalization (Box and Tiao, 1973), both the GBF 
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method and the Bayesian method give the same posterior distribution of 
common regression coefficients. 

In expert systems, the number  of GBFs to be combined could be very 
large. It is inefficient and even infeasible to combine all of them first and 
then make inferences. Liu (1995a) extends existing work on finite belief 
functions (Kong, 1986; Shafer, Shenoy, and Mellouli, 1987; Shenoy and 
Shafer, 1990) and proposes a local computat ion scheme for GBFs. The 
basic idea is to arrange all the GBFs into a tree-structured graph, called a 
join tree, and propagate  knowledge by sending and absorbing messages 
step by step in the tree. Each step of propagation involves sending a 
message from a node to a neighbor. Thus, the join-tree approach consists 
of a series of local computations, each of which involves only a small 
number  of variables that are near each other in the join tree. The local 
computation scheme has been shown to work for finite belief or probability 
functions (Kong, 1986; Shenoy and Sharer, 1990; Lauritzen and Spiegelhal- 
ter, 1988). Liu (1995a) shows that it also works for GBFs by proving the 
axioms of Shenoy and Sharer (1990), which are the conditions under which 
the local computation of any objects is possible. 

An outline of this paper  is as follows. Section 2 briefly introduces 
Dempster-Shafer  theory of belief functions and provides some notions and 
terminology that are used throughout the paper. Section 3 first describes 
GBFs in geometric terms and then formally represent them respectively in 
variable spaces and sample spaces. This section uses some advanced 
concepts such as linear spaces and linear functionals, which are mathemat-  
ically elegant but not scientifically crucial. The nontechnical reader may 
just read the examples and geometric descriptions to make sense of GBFs. 
Section 4 derives a rule for combining GBFs in variable spaces and then 
represents it equivalently as intersections and restricted summations in 
sample spaces. Section 5 concludes the paper. 

2. D E M P S T E R - S H A F E R  T H E O R Y  

The notion of belief functions can be traced to the work of Jakob 
Bernoulli on pooling pure evidence. In modern language, an item of pure 
evidence proves a claim with a certain probability but has no bearing on its 
negation. Probabilities in accordance with pure evidence are not additive. 
For example, suppose I find a scrap of newspaper predicting a blizzard 
tomorrow, which I regard as infallible. Also, suppose I am 75% certain 
that the newspaper is today's. Then, I am 75% sure of a blizzard tomorrow. 
However, if the newspaper is not today's, either blizzard or no blizzard 
could happen, since then the newspaper carriers no information on tomor- 
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row's weather. The degree of support  for no blizzard is zero and for either 
blizzard or no blizzard is 25%. 

Bernoulli 's idea of nonadditive probabilities has now been well devel- 
oped by Dempster  (1968), Sharer (1976), and many others, under the name 
of Dempster-Shafer  theory of belief functions. In this theory, a piece of 
evidence is encoded as a probability measure.  The degree of belief for a 
claim is interpreted as a degree of the evidential support. Degrees of belief 
from independent items of evidence are combined by Dempster ' s  rule of 
combination. Let X be a set of discrete variables, and X* its finite sample 
space. L Let A x denote a subset of X*,  which is interpreted as the 
proposition that the true value of X is in A x. Then the degree of 
evidential support  for A x is represented by m ( A x ) .  The assignment of 
m ( A  x)  is in accordance with a certain item of evidence and satisfies the 
following axioms: 

0 < m ( A  x )  < 1, m ( O )  = O, ~ { m ( A x ) l A  x} = 1. (1) 

A subset A x is called a focal element iff m ( A  x )  > 0. Due to lack of 
evidence justifying a more specific allocation, a portion of our total belief 
allocated to a focal element A x does not necessitate the allocation of any 
partial belief to its subset. For the above newspaper example, we can 
encode the evidence by a probability measure with p(today's) = 0.75 and 
p(not  today's) = 0.25. Since "today's  newspaper"  supports the claim "bliz- 
zard" and "not  today's newspaper"  supports the claim "blizzard or no 
blizzard," the degrees of evidential support  can be represented as m({bliz- 
zard}) = 0.75, rn({blizzard, no blizzard}) = 0.25, and m({no blizzard}) = 0. 
Thus, {blizzard} and {blizzard, no blizzard} are the two focal elements. The 
25% of belief for {blizzard, no blizzard} does not imply any reallocation of 
the belief to its subsets {blizzard} and {no blizzard}. 

If  all the focal elements are singletons, we call the belief function 
Bayesian. On the other hand, if the sample space is the only focal element, 
we call the belief function r'acuous. One advantage of the belief-function 
modeling is its ability to represent ignorance and partial ignorance. In 
Bayesian inference, complete ignorance is often represented by a uniform 
prior distribution or a prior with large scale parameters,  such as a Gauss- 
ian distribution with large variance. As Fisher consistently criticized (Fisher, 
1959; Zabell, 1989), such priors often lack theoretical or empirical bases. 

In Shafer (1976), the term "frame of discernment"  instead of "sample space" is used, to 
emphasize its epistemic nature in that a sample space is deliberately constructed according to 
our knowledge and opinion. 
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They sometimes imply vanishingly small prior probability for regions of 
practical interest. The belief-function formalism represents ignorance by 
vacuous belief functions. It clearly distinguishes lack of belief from disbe- 
lief. For example, a vacuous belief function with m({rainy, not rainy}) = 1 

1 will be regarded as totally different from the one with m({rainy}) = ~ and 
m({not rainy}) - ~. 

Another  advantage of the belief-function formalism is its ability to pool 
independent pieces of evidence by Dempster ' s  rule. A piece of evidence is 
encoded as a probability measure. The pooling of two independent pieces 
of evidence can be encoded as the product of two probability measures. 
From this perspective, Dempster  (1967) derived a rule for combining belief 
functions that represent independent pieces of evidence. Suppose there 
are two belief functions Bel I and Bel z respectively for sets X and Y. Their  
basic probability assignments are respectively rn l(A x) and m2(A y). Then, 
by Dempster ' s  rule, the combined belief function, denoted by Bel i ® Bel2, 
is for set X U Y and has basic probability assignment 

m ( A x u  Y) = ol I ~ _ ~ { m l ( A x ) m 2 ( A y ) [ ( A x ) +  xr'Y ~ ( A v ) ~  xqY 

- ( A x v y )  +xnr }, (2) 

where a is a normalization constant given by 

and ( A x ) * x v r  is the projection of A x  to the sample space of X N Y. 
The symbols (A y) * x n v and (A x ,0 Y) : x n r are interpreted similarly. In 
general, suppose Y is a subset of X. Then 

( A x )  * r =  {Y lAx  N [{y} × ( X  \ Y)*] =/= O}, (3) 

where ( X  \ Y)* is the sample space of X \ Y. Note that ( A x )  ~ x < v  m 
( A y )  ~xc ' r  = O represents that the two assertions A x and A r from Bel I 
and Bel 2 are conflicting. One of them must be false, and a joint assertion 
is qualitatively impossible, c~ is the total belief committed to all the joint 
assertions that are qualitatively possible. If c~ = 0, the two belief functions 
are incombinable because they have no joint assertions qualitatively possi- 
ble. 

Combination corresponds to the integration of knowledge. Sometimes 
we are interested in drawing partial knowledge from a full body of 
knowledge. This corresponds to the coarsening of knowledge, obtained by 
the marginalization of a belief function. Suppose Bel is a belief function 
for X with basic probability assignment m ( A x ) ,  and Y is a subset of X. 
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Then  we define Bel + v as a belief funct ion for Y with basic probabili ty 
assignment m ~ v satisfying 

m¢V(Ay) = ~ {m(A x) (Ax)zv = Ay). (4) 

3. GAUSSIAN BELIEF FUNCTIONS 

Variables of  interest in this paper  can be classified as deterministic,  such 
as observables or  controllables; random,  whose distribution is Gaussian;  
and vacuous,  on  which no knowledge bears. Based on a given body of  
evidence, a G B F  in general  encodes  logical and probabilistic knowledge 
for all the three types of  variables. Logical knowledge is represented by 
linear equations,  which are in turn represented by a hyperplane in a 
sample space. Probabilistic knowledge is represented by Gaussian distribu- 
tions across all the members  of  a part i t ion of  the hyperplane into parallel 
subhyperplanes.  Less general  than an ordinary belief function, whose focal 
e lements  may have nonempty  intersections, a G B F  has the parallel subhy- 
perplanes as its mutually exclusive focal elements.  Let  n, n - c, and n - b 
denote  the dimension numbers  o f  the sample space, the hyperplane,  and a 
focal element ,  respectively. In general,  c < b _< n. By appropriately setting 
one or  two of  the dimension numbers  c, b, and n, a G B F  can be 
degenera ted  into six nontrivial varieties, which provide building blocks for 
more  complex GBFs. If  b = c = 0, then the G B F  is vacuous and has the 
sample place as its sole focal element.  If  0 < c = b < n, then the G B F  is 
equivalent  to specifying c linear equations.  If  c = b = n, the true point  in 
the sample space is known with certainty, as might occur  by direct 
observation.  If  c = 0 and b = n, then the G B F  is an ordinary Gaussian 
probabili ty distribution in the sample space. If  c > 0 and b = n, the G B F  
is a Gaussian probabili ty distribution over the hyperplane.  In the latter two 
cases, the G B F  is Bayesian, because its focal e lements  are singletons with 
zero dimension.  Finally, if 0 = c < b < n, the G B F  is a p roper  belief 
function, which has a Gaussian distribution for some variables and no 
opinion for others.  

The  above geometr ic  description of  GBFs  is due to Demps te r  (1990b). 
In this section, we want to represent  a G B F  in its full generali ty as a 
mathemat ica l  construct  and a computa t iona l  object. Accord ing  to Demp-  
ster (1969), if all the variables of  interest span a variable s p a c e - - a  
finite-dimensional vector  space whose elements  are r andom va r i ab l e s - -  
then we can consider  the sample space to be its dual space, the space of  all 
linear functionals on the variable space. Accordingly,  a hyperplane in the 
sample space is dual to a subspace in the variable space. A wide-sense 
inner p roduc t  in the sample space, which specifies the log "densi ty" of  a 
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G B F  over  a hyperp lane ,  is dual  to a wide-sense  inner  p roduc t  in the  
var iab le  space,  which specif ies the  covar iance  of  all the  var iables  on a 
var iab le  subspace.  F r o m  this dual  co r r e spondenc e ,  nonprobab i l i s t i c  l inear  
equa t ions ,  which are  r e p r e s e n t e d  by a hype rp l an e  in the  sample  space,  can 
be r e p r e s e n t e d  by a var iab le  subspace ,  in which each var iable  takes  on a 
value  with cer ta inty.  W e  will call such a var iable  subspace  the  certainty 
space of  a GBF .  A mul t iva r i a te  Gauss i an  d i s t r ibu t ion  over  a hype rp l a ne  in 
the sample  space can be r e p r e s e n t e d  by a wide-sense  inner  p roduc t  with 
the  cer ta in ty  space  as its null  space,  which specifies the  covar iance  be-  
tween r a n d o m  var iables .  The re fo re ,  we can fully descr ibe  a G B F  in 
coo rd ina t e - f r ee  t e rms  in bo th  a var iab le  space and a sample  space.  

3.1. Representation in Variable Spaces 

Let  V be a r a n d o m - v a r i a b l e  space.  A G B F  on V is a qu in tup le t  
(C, B, L, zr, E) ,  whe re  C, B, and  L are  nes ted  subspaces  of  V, C c B c L _c 
V, 7r is a wide-sense  inner  p roduc t  of  B with C as its null space,  and  E is a 
l inear  funct ional  on B. W e  call C the certainty space, B the belief space, L 
the  label space, ~ the  covariance, and E the expectation. The  expec ta t ion  
E and the covar iance  ~- def ine  a Gauss i an  d i s t r ibu t ion  for the  var iables  in 
B by specifying the i r  m e a n s  and covar iances .  This  Gauss ian  d is t r ibut ion  is 
r e g a r d e d  as a full express ion  of  our  beliefs ,  based  on a given body  of  
evidence;  this i tem of  ev idence  justif ies no bel iefs  abou t  var iables  in L 
going beyond  what  is impl ied  by the bel iefs  abou t  the  var iables  in B. (The  
ev idence  might  just ify some  fu r the r  bel iefs  abou t  var iables  that  are  not  in 
L, but  these  are  ou t s ide  the  discussion so far  as a be l ie f  funct ion with 
space L is concerned . )  The  Gauss i an  d is t r ibu t ion  assigns ze ro  var iance  to 
the  var iab les  in C; if X is in C, we are  cer ta in  that  it t akes  the  value  E ( X )  
with cer ta inty.  Let  F be a subspace  of  B such that  B = C * F. W e  call F 
the  uncer ta in ty  space,  because  each var iab le  in it has nonze ro  var iance .  

Suppose  C, B, L, and  V have d imens ions  c, b, l, and  n, respect ively.  
Then  we can choose  a basis X l ,  X 2 . . . . .  X n of  V such that  X~ . . . . .  X c is a 
basis of  C, X 1 . . . . .  Xt, is a basis  o f  B, and X I . . . . .  X t is a basis of  L. Of  
course ,  Xc+ ~ . . . . .  Xt, is a basis of  F. F o r  i = 1, 2, . . . ,  b, let /x i d e n o t e  the 
mean  of  X i. F o r  i , j  = 1,2 . . . . .  b -  c, let "~ij d e n o t e  the  covar iance  
be tween  X + i  and Xc+ j. Let  /a = ( /x 1 . . . . .  p,;,) and  X = [52/j](b ,)×(b c)" 
Then  E and 7r can be r e p r e s e n t e d  as follows: 

E [ ( o l  I . . . . .  c%)]  = (O~ 1 . . . . .  O [ b ) ~  "1 , 

~ [ (  a~ . . . . .  ol~,), ( fi~ . . . . .  fit, )] = ( o~,+~ . . . . .  o~h)X ( ,e,+~ . . . . .  /3b) T, 
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where ( a l  . . . . .  ~b) and (/31 . . . . .  /~b ) are two variables in B. It is easy to see 
that 7r(-,. ) is a wide-sense inner p roduc t  on B with C as its null space: 
7r (S ,T)  = 0 i f  S or  T ~ C .  

EXAMPLE 1 Let  X, Y, and Z be three variables and x, y, and z be their 
sample values. A G B F  on these variables includes a Gaussian distribution 
X + X ~ N(0.5, 2) and a linear equat ion x + y + z = 1. Let  V be spanned 
by X, Y, and Z. Let  L = V. Let  C be spanned by the variable X + Y + Z, 
and B by the two variables X + Y + Z and X + Y. The  linear functional 
E and the wide-sense inner product  7r on B are defined as follows: 

E [ % ( X  + Y + Z )  + o~2(X+ Y)]  = c~ l + 0.5c~2, 

7 r [ a l ( X  + Y + Z )  + a 2 ( X  + Y ) , ~ 1 ( X  + Y + Z )  + ¢12(X+ Y)]  

= 2 oe 2 ~2" 

Then,  by verifying its variance and mean,  it is easy to see that the variable 
X + Y + Z takes on the value 1 with certainty, and so C is a one-dimen-  
sional certainty space to represent  the linear equat ion x + y + z = 1. 
Therefore ,  we arrive at G B F  = (C, B, L, rr, E).  This G B F  expresses beliefs 
about  each variable in B by giving its mean  and variance. Suppose,  for 
example, Z = ( X  + Y + Z )  - ( X  + Y). Then,  E ( Z )  = 1 - 0.5 = 0.5 and 
~r(Z, Z )  = 2 ( -  1 ) ( -  1) = 2. However ,  it has no opinion on variables in L 
that are not  in B. For  example, it justifies no beliefs about  the variables 
X, Y, X - Y, etc. 

The  reason for having the variable-space representa t ion is partly the 
simplicity of  defining marginalization,  which cannot  be obta ined in the 
sample-space representa t ion defined shortly. In a variable space, the 
marginalization of  a G B F  is simply a projection. Suppose (C, B, L, ~r, E )  is 
a Gaussian belief function, and M is a subspace of  L. Then  the marginal  of  
(C, B, L, ~', E) on M, denoted  by (C, B, L, ~-, E )  ~ M, is another  G B F  ob- 
tained by intersecting the certainty space C, belief space B, and label space 
L with M and restricting the covariance and the expectat ion to the new 
belief space: 

( C , B , L ,  Tr ,E)  +M = (C ¢3 M , B  n M , L  ¢3 M, Tr[~AM,E[nnM).  (5) 

In Example 1, if M is spanned by Z, then C N M = 0, B C3 M = L n 
M = { a Z l a  ~ JR}, 7 r l B n M ( a Z ,  ~ Z )  = 2cr13, and E I B n M ( C r Z )  = 0.50:. On  
the o ther  hand, if M is spanned by X, then C N M = 0, B n M = 0, 
L N M = M, 7rlsn M(0) = 0, and E [ s n n ( 0 )  = 0. The  marginal  is vacuous.  
This is intuitively reasonable,  because (C, B, L, 7r, E )  carries no knowledge 
about  X. 
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3.2. Representation in Sample Spaces 

Let V* denote  the sample space for V. The mathematical  essentials are 
best conveyed by first considering V* to be the dual space of  V and each 
sample point  to be a linear functional on V. A Gaussian distribution on a 
hyperplane of  V* can then be represented by specifying an inner product  
and a linear functional on the hyperplane.  An  advantage with the not ion of  
linear functionals is their independence  of  coordinates.  A linear functional 
t' over V is a real-valued function such that u(o~X + f l Y )  = a u ( X )  + 
f l u ( Y )  for all variables X and Y in V and real numbers  c~ and /3. We can 
regard u ( X )  as a sample value for X. Therefore ,  t, specifies a sample value 
for each variable in V. In particular, suppose X 1, X 2 . . . . .  X,, is a basis 
for V. Let t , (X  i) = x  i for i = 1,2 . . . . .  n. Then  t, specifies a vector 
(x~, x? . . . . .  x ,) ,  which is often referred to as a sample point. Because of  its 
linearity, u is one- to-one  cor respondent  to (x L, x 2 . . . . .  x,,). Therefore ,  we 
can treat a linear functional and a sample point interchangeably. They are 
different only in that the latter depends  on a basis for V while the fo rmer  
does not. As a familiar example of  linear functionals, the expectation E 
defines the mean for each variable in V. W h e n  a basis is chosen, E is 
equivalent to the mean  vec to r /x  in V*. 

Without  referring to its representat ion in V, a G B F  can be indepen-  
dently represented in V* by specifying a hyperplane,  a parti t ion of  the 
hyperplane,  and a wide-sense inner product  and a linear functional over 
the hyperplane.  However ,  to see the relationship between the two repre- 
sentations, we derive a dual representa t ion in V* for a given G B F  
(C, B, L, ~-, E).  To do this, we need  to choose a linear functional t on V 
that agrees with E on C - - t h a t  is, t ( X )  = E ( X )  for every variable X in C. 
The functional t is allowed to disagree with E on variables in B that are 
not in C. When  such a t has been chosen, we say that the G B F  is marked,  
and we call t its mark. We write (C, B, L, ~-, E, t) for a marked GBF.  Given 
a linear functional t, according to Demps te r  (1969), each subspace S in V 
has a dual hyperplane in V* that contains t: 

S* = {u]u (X)  = t ( X )  for all X in S}. (6) 

Therefore ,  C, B, and L have dual hyperplanes C*, B*, and L*, respectively. 
It is easy to see that these hyperplanes are nested: L* _c B* c C*. Accord-  
ing to the linear functional E, we can define an additional hyperplane in 
V* as follows: 

E* = {~,l~,(x) : E < X )  for all X in B}. 

It follows f rom E ( X )  = t ( X )  for all X in C that E* is conta ined in C* 
and parallel to B*. Since C is the certainty space, each variable X in it 
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takes on a single value E ( X )  with certainty. Because c ( X )  is interpreted 
as a sample value of  X and E ( X )  = t ( X )  for all X in C, C* actually 
specifies the location of  the true sample value of  X in C. Therefore ,  C* is 
the hyperplane that  represents  l inear equat ions in the G B F  (C, B, L, ~-, E).  
We are certain that the true sample point  must  be on C*, but we do not  
know where it is exactly on C*. The  hyperplane E* specifies its mean  
location. If  E* is a singleton, then the expected posit ion of  the true 
sample point  is specific. Otherwise,  E* ranges f rom - ~  to + ac along some 
dimensions. It means  that we are completely ignorant  about  where the 
true sample point  is along these dimensions. Therefore ,  E* is actually a 
focal element.  Any  other  hyperplanes,  including B*, which are parallel to 
E* are also focal elements.  All the focal elements  form a part i t ion of  the 
hyperplane C*. 

The  above hyperplanes are bet ter  illustrated in a coordina te  system. 
Choose  the same basis as in Section 3.1, and represent  each linear 
functional by its cor responding  sample point. Then  V* = {(x~ . . . . .  x , )  Ixi 

N, i = 1, 2 . . . . .  n}. Let  the mark  t = (/x I . . . . .  /A, t~+ ~ . . . . .  tn). Then  we 
have 

C *  = { ( x  I . . . . .  x n ) l x  1 

B *  = { ( x  1 . . . . .  x n ) [ x  1 

L* = { (X l  . . . . .  x n ) l x ~  

E *  = { ( x  I . . . . .  x ~ ) l x  1 

= tx I . . . . .  x ,  = txc}, 

= t J q , . . . , X  c = [d,c ,  X c + l  = t c + l , . . . , X  b = tb} , 

= ~ l , . . . , X c  = I ~ c ,  X c + l  = t c + l , . . . , X  l = t l }  , 

: ]"£1,"  • " ,  X¢ : ].Lc, X c +  1 : ] Z c +  I ,  " " " '  X b  : I'Zb } "  

Note  that the nice look of  the above hyperplanes is due to the appropr ia te  
choice of  a basis. If  a different basis is chosen, they may have to be 
expressed by linear equations.  

To represent  a Gaussian distribution across all the subhyperplanes  on 
C* that are parallel to B*, we need  to define a wide-sense inner product  
over C*. Since C* is not  a subspace, we introduce the following operat ions  
o n  C *  : 

x e y =  ( x - t )  + ( y - t )  + t  for a n y x a n d y  ~ C * ,  

a ® x = a ( x  - t)  + t for any x in C* and any real number  a .  

It is easy to verify that • and ® are closed opera t ions  on C*. According 
to Demps te r  (1969), the wide-sense inner product  7r, which is defined on B 
and takes the value 0 on C, has a dual opera t ion  ~ * ( x , y ) ,  which is a 
wide-sense inner product  on C* with the null hyperplane B* under  the 
operat ions  ~ and N. That  is, ~ * ( x , y )  = 0 iff x or  y ~ B*, ~ * ( x , y )  = 

~-*(y, x) for any x and y ~ C*, and 
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7r*[(o~ ® x )  • ( ~ ® y ) , z ]  = o ~ * ( x , z )  + / 3 7 r * ( y , z )  

for any x, y, z E C* and real number s  c~ and /3. In coordinate  terms, if ]£ 
is the covariance matrix as in Section 3.1, then for any x = (x~ . . . . .  x,,) and 
y = (yj  . . . . .  y,,) in C*, 

7 r * ( x ,  y )  = (xc+ I - t, +l . . . . .  xt, - t b ) ~ , - l ( Y ~  +l - t c - I  . . . . .  Yh - t~,) r .  

(7) 

So far we have found the duals for C, B, L, and 7r. In the following we 
need  to derive a l inear  funct ional  on C*, which is dual to E and specifies 
the mean  location E*. First we establish a one- to -one  cor respondence  
be tween l inear  funct ionals  on C* that are zero on the hyperplane  B* and 
the hyperplanes  on C* that are parallel  to B*. 

LEMMA ] In  c o o r d i n a t e  t e rms ,  H * ( x )  is a l inear  f u n c t i o n  on  C* t h a t  is 

zero  on  B* i f f  there  exists  a ( b  - c ) - d i m e n s i o n a l  v ec t o r  a s u c h  t h a t  

H * ( x )  = ~ ] £  I ( x ~ + l  - t , + l  . . . . .  x h - -  t l , )  T ,  (8) 

w h e r e  x = ( #1 . . . . .  i~ c, x ,  + 1 . . . . .  x , , )  ~ C*. 

Proof It suffices to prove the necessity. The  linearity of H * ( x )  implies 
that there exists an n -d imens iona l  vector z such that H * ( x )  = zx  r for any 
x = (/~l . . . . .  P~c, x,.~ 1 . . . . .  x,,) on C*. We decompose  z into ( z l ,  z 2, z~)  

such that 

H * ( x )  = zl( JL~ 1 . . . . .  # c  )T @- Z2(Xc+ 1 . . . . .  Xh )T -+- Z3(Xh+ I . . . . .  XH )T" 

Since H * ( x )  = 0 for any x ~ B*, it follows that z 3 = 0 and 

z~( #j  . . . . .  #~)T + z2(t~. + ~ . . . . .  t:,) r = O. 

Therefore ,  for any x ~ C*, 

H * ( x )  = z 2 ( x , ,  + i - tc + l . . . . .  x~, - tl,) r .  

Let a = z~ ~ .  T h e n  (8) is proved. • 

Compar ing  (7) and (8), we see that, for any fixed x ° in C*, ~-*(x °, x) is a 
l inear  funct ional  on C* with null  hyperplane  B*. In general ,  7r*(x °, x) is 
different  when  x ° changes ove r  C*. However,  it is easy to see from (7) that 
~ * ( x  °, x )  is invariant  iff x ° is in a hyperplane  parallel  to B*. That  is, for 
each hyperplane  H* that is parallel  to B*, 

H * ( x )  = 7 r * ( x ° , x )  for any x ° i n H *  (9) 
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is a linear functional on C* that is zero on B*, and the choice of x ° does 
not matter.  On the other hand, for each linear functional H * ( x )  that is 
zero on B* and has the form (8), 

H* : {(P~I . . . . .  t~c,Xc+l . . . .  . . . . .  Xb) = a  + (to+ 1 . . . . .  tb)} 

(10) 

is a hyperplane that is parallel to B*. Therefore,  we have 

LEMMA 2 Through ~-*(x °, x), linear functionals that are zero on B* and 
hyperplanes that are parallel to B* are in a one-to-one correspondence 
carried out by (9) and (10). 

Note that E* is parallel to B*. As a corollary, the hyperplane E* and the 
linear functional E * ( x )  = ~ ( x  °, x )  are one-to-one correspondent.  There-  
fore, we can use E * ( x )  as the dual to E and arrive at the representation 
(C*, t ,B*,L*,  It*,  E* )  for a marked GBF. We write t before B*, ~-*, and 
E* because all these objects depend on the choice of  t. Intuitively, 
(C*, t, B*, L*, ~-*, E*)  expresses beliefs about which element of V* is the 
true configuration of V. We are certain that the true configuration is on 
the hyperplane C* (the certainty hyperplane). Within C*, our belief is 
distributed over ellipsoidal cylinders around a smaller-dimensional hyper- 
plane E* (the expectation hyperplane) parallel to B*. The wide-sense inner 
product 7r* (the concentration inner product) specifies the shape, scale, 
and direction of the ellipsoidal cylinders, and the linear functional E* (the 
location functional) specifies E* by giving its inner product with every 
other hyperplane parallel to B* within C*. We call B* the no-opinion-ex- 
pressed space, since the GBF does not express any opinions about where 
the true configuration is along its coordinates. Similarly, we call I*  the 
no-opinion-allowed hyperplane, since the GBF, so long as it has the label 
L, is not allowed to express any opinions about where the true configura- 
tion is along its coordinates. 

EXAMPLE 2 Consider the GBF described in Example 1. If we choose 
X, Y, Z as a basis for V, then each linear functional on V can be repre- 
sented by a sample point ( x , y , z )  and V* = ( ( x , y , z )  lx, y , z  ~ ~}. Let 
t = (t~, t2, t3). Since t agrees with E on C, 

t ( X +  Y + Z )  = (t~,t  z, t3) (1 ,1 ,1)  T = t  I + t z  + t 3 = E ( X +  Y + Z )  = 1. 
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Thus,  t is a po in t  on the  hype rp l ane  x + y + z = 1. No te  that  C is spanned  
by X +  Y + Z ,  B is spanned  by X +  Y + Z  and X +  Y, and L = V .  
Obviously,  L* = {t}. The  hype rp l anes  C*, B*, and  E* are  as follows: 

C* = { ( x , y , z ) l z + y  + z  = 1}, 

B* = { ( x , y , z ) l x  + y + z = 1, x + y = t  I + t2}, 

E* = { ( x , y , z ) l x + y  + z  = 1, x + y  = 0.5}. 

F igure  1 shows these  hype rp l anes  graphical ly .  The  G B F  has no op in ion  
abou t  the  t rue  sample  value  a long the d imens ion  of  solid l ines in F igure  1. 
It has a Gauss i an  d i s t r ibu t ion  on the hype rp l ane  C*, which descr ibes  how 
likely it is that  the  t rue  value  lies on a line tha t  is para l le l  to E* and B*. 
Unfor tuna te ly ,  the  d i s t r ibu t ion  canno t  be wr i t ten  explicit ly in the  cur ren t  
coo rd ina t e  system. W e  choose  U = X +  Y + Z ,  V = X +  Y, W = X  as 
ano the r  basis for  V. Let  V* = {(u, t.,, w) I u, L~, w ~ N} and t = (1, t 2, t3). 
Then,  C* = {(u, L', w) [ u = 1}, B* = {(u, l.~, w) ] u = 1, L' = t 2 } ,  and C* = 
{(u, L', w) ]u = 1, t~ = 0.5}. 7r* and E* are  as follows: 

7r*[(1, L, ' ,w') ,  (1, L' ,w)] = l ( t : '  - t2)( t ,  - t2),  

AZ 

E ~ 

B* 

y 

E * ( 1 ,  t ' , w )  = 12(0.5 - t2)(t'- t 2 ) .  

Figure 1. The graphical representation of C*, B*, and E* in the (x, y, z) coordi- 
nate system. 
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/ / / /  

Y I 
Figure 2. The graphical representation of C*, B*, and E* in the (u, u, w) coordi- 
nate system. 

Based on the new coordinate system, the GBF is graphically shown in 
Figure 2. 

4. C O M B I N I N G  GAUS S IAN B ELIEF  F U N C T I O N S  

In this section we adapt  Dempster ' s  rule (2) to the case of GBFs. We 
achieve this progressively. We first define the combination for special cases 
and gradually generalize it into the full generality. As can be seen easily in 
Section 3.1, after we choose an appropriate  basis for a variable space, each 
GBF consists of a Bayesian belief function for some variables and a 
vacuous belief function for others. Since the vacuous components  do not 
contribute to knowledge, the combination of two GBFs is essentially the 
combination of their corresponding Bayesian components.  Therefore,  we 
can treat the combination of GBFs as a special case of the combination of 
continuous Bayesian belief functions. Following this logic, we first derive a 
rule for combining GBFs in a variable space. The resulting rule depends 
on the choice of  an appropriate  basis in the variable space. At this time, 
we are not aware of whether it can be represented in a coordinate-free 
way. In contrast with marginalization, combination can be most naturally 
described in a sample space. As Dempster  (1990a, b) suggested, combina- 
tion in a sample space can be phrased in coordinate-free terms as intersec- 
tions of hyperplanes and additions of wide-sense inner products. In the 
second part  of this section, we formally represent Dempster ' s  suggested 
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rule and show its consistency with the corresponding rule in a variable 
space. 

4.1. Combination by Dempster's Rule 

Given any continuous random vector X, a Bayesian belief function for it 
has singleton focal elements {x}. Its basic probability assignment can be 
represented by a function, say f(x),  which specifies the belief density 
committed to assertion {x}. Now suppose fl(x) and f2(x) correspond to 
two Bayesian belief functions for X. Let {x} and {x'} denote their focal 
elements, respectively. Since {x} ¢1 {x'} = ~ if x :~ x', the elements {x} 
and {x'} are consistent assertions only if x = x'. Discarding the belief 
committed to Q, the total belief committed to all the possible joint 
assertions is ffi(x)f2(x)dx. The total belief committed to the joint asser- 
tion X ~ (x, x + Ax) is f~+ ±Xfl(x)f2(x) dx. Therefore,  the density func- 
tion for the combined belief function, denoted by f~(x)® fz(X), is as 
follows by Dempster ' s  rule: 

f l (x)  ® f 2 ( x )  = o~ l f l (x)f2(x) , (11) 

where a = ffl(x)f2(x)dx. Note that f l(x) ® f2(x) >_ 0 and ~fl(x) ® 
f2(x) dx = 1. Thus, fj(x) ® f2(x) is indeed a probability density function. 

In the special case when fl(x) and f2(x) are Gaussian, we can represent 
fl(x) ® f2(x) explicitly. Let d(x, ~, Ix) denote an n-dimensional Gaussian 
density function with mean Ix and covariance matrix ~ as follows: 

1 
d[x, I£, IX] = ( ) I X 1 2 7 r  - ' / 2 - 1 / z  e x p { - ½ ( x  - IX)X l (x  - -  IX)T}, (12) 

where I~ l i s  the determinant  of N. Then, we have 

LEMMA 3 Let fl(x) = d(x, ~l, IXJ) and f2(x) = d(x, Z2, Ix?). Then fl(x ) 
® f2(x) = d(x, (r, a), where 

o r =  [(X 1) 1+ (2£2) 1] 1 and 

a = [ IXl (Xl ) - I  -L I X 2 ( X 2 ) - 1 ] [ ( ] ~ 1 ) 1  q - (X2)  -1] 1 (13) 

Proof According to (12), we can verify that 

1 ( ( x - a ) o -  L ( x - - a ) r - R )  
f l (x) f2(x)  = (277.)n]~1~2]1/2 exp -- 2 ' 
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where  a and o- are expressed in (13) and 

R = a o -  l a T  - -  /.~I(~I)-I(].LI)T -- /J~2(~2)-I(I, z2)T 

= ]d,l(~¢l ) 1[(,~.1 ) 1 -i t- ( ~ 2 ) - 1 ]  - ](W.,1)-I( / . / . , I )T 

_1_ /.£2(~__2) 1[(.~,) ,.jr_ (~2)-1]  1(~2) I(/j2)T 

+ 2#L(.~1) 1 [ ( ~ , ) - 1  + (~£2) -1 ] -1 (~2) -1 ( /~2 )T  

_ /X1(~1 ) 1( /Xl)r _ / .L2(£2) 1( jt/2)T. 

It follows from 

[ (~1 ) -1  q_ ( ~ 2 ) 1 ]  1 

= .~,2 _ ~£2[~1 q_ £2] 1~2 

that R can be simplified as 

R = _ ( # L  _ /x2)[Wl + ~2] -1 

Therefore ,  

f l(x)f2(x) 

Note  that 

1 

(2rr)"12~l 2~211/2 

( ~1 __ ~2)  T. 

(x_a)or_l(x_a)r +(ial t22)[~1 +~21_1 
× exp -- 2 

Thus, 

111 

( i.t t - ~2) r ) 

(~ I  .{._ "~2) 1 (~1 ) -1 [ ( ,~1 )  1 ]_ ( y 2 )  1] 1 
= ( :~2) - I .  

]~1 + ~2] 1/2]~1~2]1/2 = ] (~l )  1 q- ( ,~2)-11 1/2 
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Therefore,  

f l ( x ) f 2 ( x )  = 

Therefore,  

1 
1/2 

(2,n-)n/2 [ (~  l ) 1-L(.~_~2) 1] ' 

( '  ) Xexp - - ~ ( x -  a)[(~, 1) 1 + (]~2) 1]( x _ a )  T 

1 
X (2,.rr)n/2]~ 1 + ~,211/2 

Xexp{I(I_LI _ /&2)(~l _}_ ~2)  l ( / j l  _ /~2)T}. 

f f ,(x)f2(x) dx = 

and according to (13) 

fl(X) ® f2(x)  = 

1 

(27r)"/~1~ l + ~211/2 

×exp{½(/x 1 -  ~U~2)(~I -} - "~2) 1( ] & l  jO2)'l'}. 

(2,.n.),z/2 [ ( . ~ l ) 1 + ( ~ 2 ) l ]  1 1 
/2 

× e x p { - l ( x -  a ) [ ( ~ 2 ' ) L +  (~22) 1]( x _ a ) r} .  • 

Now we define the combination of two continuous Bayesian belief 
functions bearing on different sets of variables. Suppose f~(x 1, x 2) is the 
density function for random variable sets X l and X 2, and fz(xl ,  x~) for X l 
and X~, where X z and X 3 are disjoint. Their  focal elements are single- 
tons, denoted by {(x I, x2)} and {(x'~, x3)}, respectively. By (3), 

{ ( x l , x 2 ) }  lx~ C~ {(x ' l ,x~)} "x'  ~ 0 iff Y 1 = X r l  . 

Discarding the belief committed to 0 ,  the total belief committed to all the 
possible joint assertions is o~ = f f  l(xl, x2)f2(Xl, x~) dx I dx 2 dx~. Therefore,  
the density function for X~, X 2, and X 3 in the combined belief function, 
denoted by f l ( x l ,  x 2) ® f2(xl ,  x3), is as follows by Dempster 's rule: 

f j ( x j , x  2) ® f 2 ( x l , x O  = ot I f l ( x l , x 2 ) f 2 ( x t , x 3 ) .  (14) 
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Since f l (xl ,  X 2) = f l(Xl)fl(X 2 I X  1 = x 1) and f 2 ( x l ,  X 3) = f2(x1)f2(x3 IX1 = 
xl),  we can verify that a = f f l (x l ) f2(x l )d .~c  1. Then,  according to (11), we 
have 

f l ( x l ,  x2) ® f2(xl ,  X3) = { f l ( x l )  ® f 2 ( x t ) } f l ( x 2 ]  X l  = x~)fE(x3l X~ = x~). 
(15) 

In words, the combined density function is the product  of  the combinat ion 
of  the marginal  density functions on the common  variables and the 
condit ional  density functions given the value of  the common  variables. It is 
interesting to note  that (15) indicates the condit ional  independence  be- 
tween X 2 and X 3 given X~. As a basic property,  marginals and condit ion- 
als of a Gaussian distribution are still Gaussian. Thus, according to 
L e m m a  3, f l (x l )  ® f2(x 1) is Gaussian, and so is f l (xl ,  x 2) ® f2(xl ,  x 3) by 
(15) if f l (xl ,  x 2) and f2(xl,  x 3) are both Gaussian. 

LEMMA 4 Assume f l( x l, x 2) andf2(xl ,  x 3) are Gaussian. Assume 

f l (x l  ) ® f2(xl ) = d(Xl,  o-1, a 1 ), (16) 

f l (x2lXl = X l )  = d[x2, o v 2 , a  2 Jr- Xl(b2)T], (17) 

f2(x3]Xl= x 1) : d[x3, 0.3,a3 + Xl(b3)T]. ( 1 8 )  

Then 

f l (Xl ,  x2) ® f2(x l ,  x3) 

= d [ ( x , , X z , X . , ) , ~ , ( a ~ , a 2  + a , ( b 2 ) r , a 3  + a l ( b 3 ) r ) ] ,  

where 

0.1 °'l(b2 )7" °'l(b3 )T 

b20-1 0" 2 + b20"1(b2 )T b20"1(b3 )T 

/ b30.1 b30.1(b2) T 0.3 + b30.1(b3) T 

P roof  Assume n~, n2, and n 3 are respectively the dimension numbers  
of  X~, X2, and X 3. According to (15)-(18),  we can verify that  

1 
f l (Xl ,X2) ® f2(Xl,X3) 

(2Yr)(nl+n2+ns)/2(lO'l[ × 10.2] × 10.31) 1/2 

× exp{ - 1 ~g(x l ,x2 ,x3)} ,  
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where 

g(Xl,X2,X3) = ( X  1 - -  al)(o .1)  I ( X  1 - -  al )T 

q - [ x  2 - - a  2 --Xl(b2)T](o.2 ) I[X 2 - - a  2 - x ( b 2 ) r ]  T 

+ [ x  3 - a  3 - x ~ ( b 3 ) r ] ( o . 3 )  ' [ x  3 - a  3 - x , ( b 3 ) r ]  r 

By (15), f l(Xl,X2)@f2(xI,X3) IS Gaussian and its marginal on X~ is 
fL(xl )  ® f2(xl).  Thus, E ( X  1) = a 1. Fur thermore,  by (17), we have E ( X  2) = 
E [ E ( X 2 J X I ) ]  = E[a 2 + Xl(b2 )r] = a 2 + a l ( b 2  )r .  Similarly, we have E ( X  3) 
= a 3 + al(b3) r. Therefore,  there exist a three-dimensional symmetric ma- 
trix (wij) such that 

T 
g ( X l ,  X2 ,  X 3) = ( X  1 al, x2 -- a 2 -- aa(b2 )r ,  x 3 - a 3 - al(b3) ) (wi j )  

T f 
× ( x ,  - , , , ,  x 2  - ~,, - a l ( b 2 ) T ,  x 3  - a 3  - , ' l ( b ~ )  ) . 

By matching the coefficients of xix  j (i, j = 1, 2, 3), we can show that 

W I I  = ( O . 1 )  1 -~- (b2)T(O.3). l b  2 -/- ( b 3 ) T ( o . 3 ) .  . 1 b 3  ' 

w12 (b2)r(o.~) 1 = __(b3)T(O.3) I = __ - , W 1 3  . . , W 2 2  = ( 0 . 2 )  1 

w23 = 0, and w33 = ( o . 3 ) l  

Therefore,  

(wij)  = 
I - ( b 2  )r  - ( b 3 )  r ) 

0 I 0 
0 0 I 

(o.1) I 0 0 

0 (o.2)  I 0 

0 {} (o.3) 

1 0 

× - b 2  1 

- b  3 0 

I 0 0 
(wij)  l =  b e 1 0 

b 3 0 I 

!}, 
o.1 

0 

0 

0 0 

o- 2 0 

0 o- 3 

i (b2)r  (b3)~' 
1 0 
0 I 

= ~ ,  

and  Inl  : Io.ll x Io.2] x Io.31. • 

Finally we extend Dempster 's  rule to the general case when two continu- 
ous belief functions contain deterministic variables, whose value is known 
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with cer ta inty.  W i t h o u t  loss of  general i ty ,  we assume that  two be l ie f  
funct ions  Bel t and  Bel  2 share  a c o m m o n  de te rmin i s t i c  vec tor  D t and  a 
c o m m o n  r a n d o m  vec to r  X~. T h e  vec to r  U is de t e rmin i s t i c  in Bel t bu t  
uncer ta in  in Bel  2, and  V vice versa.  Bel 1 is ce r ta in  abou t  O 2 and  
uncer ta in  abou t  X 2. However ,  Bel 2 has no op in ion  abou t  e i the r  D 2 o r  X 2. 

Similarly,  Bel 2 is cer ta in  abou t  D 3 and  uncer ta in  abou t  X 3, but  Bel 1 has 
no op in ion  abou t  e i the r  D 3 or  X 3. In summary ,  Bel 1 bears  on de te rmin i s -  
tic vectors  D~, D 2, U and r a n d o m  vectors  V, Xt ,  X 2, and  Bel 2 on de te r -  
minis t ic  vec tors  D 1, D3, V and r a n d o m  vectors  U, Xj ,  X 3. The  hype rg raph  
r ep resen t ing  Bel~ and Bel 2 is shown in F igure  3. Since D t is a c o m m o n  
de te rmin i s t i c  vector ,  its value  mus t  be the  same  in bo th  Bel  t and  Bel 2, 
because  o therwise  the re  a re  no poss ib le  jo in t  asser t ions .  Le t  D~ = d~ in 
bo th  Bel  1 and Bel 2. A s s u m e  O 2 = d 2 ,  U = u and D 3 = d 3, V = v with 
cer ta in ty  in Bel t and  Bel2,  respect ively.  T h e n  focal e l emen t s  for  Bel  t can 
be r e p r e s e n t e d  by (d l ,  d 2 ,  u ,  to', X l ,  x 2 )  , and for  Bel 2 by (d l ,  d 3, u' ,  v,  x'l, x3). 
Each  pa i r  of  focal  e l emen t s  is nonconf l ic t ing  iff u = u ' ,  to = to ' ,  and  
x t = x '  1. The re fo re ,  for  the  exis tence of  poss ib le  jo in t  asser t ions ,  U is 
res t r ic ted  to take  values  u in Bel 2 and V is res t r ic ted  to t ake  values  to in 
Bel l .  Consequent ly ,  in the  c o m b i n e d  be l i e f  funct ion  Bel t ® Bel2,  U and  V 
b e c o m e  de te rmin i s t i c  and  

D 1 = d 1 , D 2 = d 2 , D 3 = d 3, U = u,  V = v. (19) 

Let  fl(to, x~, x 2) and  f 2 (u ,  x 1, x 3) be  respect ively  the  densi ty  funct ions  for  
Bel I and  Bel 2. Then  the to ta l  be l i e f  c o m m i t t e d  to all the  poss ib le  jo in t  
asser t ions  is 

a = f f l ( t o ,  x l ,  x 2 ) f 2 ( u ,  X 1 , X 3) dx 1 dy 2 dx 3. 

There fo re ,  the  be l i e f  densi ty  for  X l ,  X2, and  X 3 in Bel l  ® Bel 2 is 

f l ( U , X l , X  2) ® f 2 ( b l , X l , X  3) = O~ I f I ( U , X 1 , X 2 ) f 2 ( u , X I , X 3 ) .  (20) 

Figure 3. The belief network for Bel 1 and Bel 2. 



116 Liping Liu 

Since  f , ( t , ,  x 1, x 2) = f l ( v ) f , ( x l ,  x 2 j V = c) a nd  f2(u ,  x l ,  x 3) = 
f 2 (u ) f2 (x l ,  x 3 I U = u), applying (15) and (20) leads to 

f l ( v , x l , x 2 )  ® f 2 ( u , x L ,  x3) 

= [ f l ( x l l V =  L~) ®fE(X l lU  = u)] 

f l ( x2[V  = t~, g t = x l ) f 2 ( x 3 l U  = u, X] = x l ) .  (21) 

Given two GBFs  Bel~ = ( C t , B I , L , , T r ' , E  1) and Bel 2 = ( C 2 , B 2 , L 2 ,  
"n "2, E2),  in the following we will use (21) and Lemmas  3 and 4 to obta in  
their  combina t ion  

Bel = Bell ® Bel 2 = ( C , B , L ,  ~-, E ) .  

It can be seen easily from Dempste r ' s  rule that C = C 1 • C 2, B = B] • B 2, 
and L = L 1 • L 2. However,  at this t ime we are not  able to represent  E 
and ~- in a coordinate-f ree  way. Ins tead we choose a convenien t  basis 

D~, D 2, D 3, U, V, X~, X 2, X 3 . . . .  such that C~ is spanned  by {D 1, D 2, U}, 
C 2 by {D k, D 3, V}, B l by {D l, D 2, U, V, X l, X2}, a nd  B 2 by 
{D l, D 3, V, U, X 1, X3}. There  might be some other  variables in L~ • L 2 
that are not  in B~ • B 2. However,  specifying them is not  necessary, 
because E and ~- are defined in B l • B 2. As we know, when a basis is 
chosen, 7r i and E i (i = 1,2) are specified by the cor responding  mean  
vectors and covariance matrices. The  following theorem then shows how 
the m e a n  vector  for E and the covariance matrix for ~- can be represented  
by them. 

THEOREM 1 Git,en any two GBFs 

Belj = ( C i , B r , L l ,  Jr 1, EJ), where C 1 is spanned by {DI,  D2, U} and B I 
by {D], D2, U, V, X l, X2}, E 1 is determined by the mean  vector 
(dl ,  d2, u, ILl), IZ~l, t~  ), and ~r 1 is determined by the cot,ariance matrix 
Z]j (i, j = 0, 1, 2), and 

Bel z = ( C 2 , B z , L z , ~ - 2 ,  E2) ,  where C 2 is spanned by ( D I , D 3 ,  V}, B 2 by 
{D1, D3, V, U, X l, X3}, E 2 is determined by the mean t:ector 
(d, ,  d3, t~, i ~2, tz~, ~ ) ,  and 7r 2 is determined by the covariance matrix 
Z~j (i, j = 0, 1, 3), 

their combination Bel ~ ® Bel 2 is the G B F  

Bel = (C, B, L, ~-, E )  

where C = C 1 • C2, B = B 1 • B2, L = L 1 @ L2, E is determined by the 
mean vector 

(d] ,  d 2, d 3, u,  v, ax, a 2 + at(b2 )T, a 3 + al (b3)T) ,  (22) 
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and  rr is de termined  by the covariance matrix 

f~ = 

001 °'1(b2 ) r  001(bs ) r  

b2001 0"2 + b2001(b2) T b2001(b3) T 

~b3o- 1 b3Ol(b2 )T 0" 3 + b3o-i(b3 )T 

(23) 

where 

0"1 = [ (Xl  ) 1 + (~.,2) 1 ] - 1  

al = [ / x i ( X l )  1 +  /.L2(~2~2) I ] [ ( x l ) - I  + (X2)  1] 1 

i i 1 i '~i ~ill -- ~'Io(~'oo ) ~'oI (i = 1 ,2) ,  

- p . o ) ( X o o )  X l , ,  

- -  ) ( ~ ' 0 0  ) ~'*01' 
/./,2 = ~ + (U ]Z 2 2 1 2 

002 = x~2 - (x~,,, x'~)  I,0  I,,t '1 I,2/ 
xlI(' X1111 1 xll2 ) '  

a2 + Xl(b2 )T I = ~2 + ( ~ ' -  ~I>, x, - / , )  
xl),, xl),) 
Xl0 Xll 

1 

XI2 ' 

(24) 

, ( 2 5 )  

(26) 

(27) 

(28) 

(29) 

(30) 

X(20 XO1 X23 
a 3 + x , ( b 3 )  T = l ~  + ( u -  1.2.x1 - ~ )  X~,, 2£~, 2£~3 " 

(31) 

(32) 

P roof  F rom (19) it is easy to see that  {D~, D 2, D 3, U, V} spans C. Thus,  
C = C 1 • C 2. Accord ing  to (21), Bel has opinions  abou t  X I, X 2, and X 3. 
There fo re ,  B is spanned  by {Dj, D2, D 3, U, V, Xl, X 2, X3}. Hence  we have 
B = B~ • B 2. Tha t  L = L 1 • L 2 is obvious  f rom D e m p s t e r ' s  rule (2). It is 
a s tandard  p roper ty  of  Gauss ian  distr ibutions that  f t ( x ~ [ V  = v ) =  
d ( x t  ' Z l, t t l )  and f 2 ( x t  q U = u)  = d ( x  I, X2, p Z) ,wher  e 1£i a n d / x  i (i = 1,2) 
are shown in (26)-(28).  By L e m m a  3, 

fL (x l ]V  = V) ® f 2 ( x l ] U  = U) = d ( x  1, 001,al).  
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By (29)-(32), it is also standard that 

f l (X2[V= u , X  1 = y l ) =  d(x2,0"2,a 2 q-Xl(b2)T), 

f2(x3[g = lg ,X  1 = x 1 )  = d(x3,  o r 3 , a  3 -~- Xl(b3)T). 

According to (21) and Lemma 4, 

f l ( l~ ' ,X l ,X2)  ® f 2 ( u , X l , X 3 )  

where f~ is shown by (22). • 

In (26)-(32), ~;~ and /x 1 are respectively the conditional variance and 
mean of X 1 given V = t: in f l ( v ,  x~, x2); I£ 2 and /x 2 are respectively the 
conditional variance and mean of XI given U = u in f 2 (u ,  x l, x3); a 2 and 
b 2 are the regression coefficients of X 2 against X 1 in f~(x  l, x 2 ] V = t,); a 3 
and b3 are the regression coefficients of X 3 against X~ in f2(x~,  x 3 ] U = 
u). In words, the combination of two GBFs is done by the following 
four-step procedure: 

1. The certainty space of the combined GBF is the orthogonal sum of 
the certainty spaces of the component GBFs: A piece of evidence 
that supports a certainty space will be adopted as a fact in combina- 
tion. If a variable is believed to take a value with certainty by one 
component GBF, it is believed so by the combined GBF no matter 
how another component GBF feels about the variable. 

2. The belief space of the combined GBF is the orthogonal sum of the 
belief spaces of the component GBFs: The beliefs expressed by any 
component GBF will not be lost in the combination. If one compo- 
nent GBF has opinions about a certain variable, the combined GBF 
will adopt and somehow revise the opinions in accordance with 
another component GBF. 

3. Suppose F 1, F 2, and F are respectively the uncertainty spaces of Bel~, 
Bel 2, and Bel. Given the basis of C, compute the conditional means 
and variances for the basis of F~ • F 2 in both distributions, the 
regression coefficients of the basis of F1 - F 1 f"l F 2 against the basis 
of F 1 C~ F2, and the regression coefficients of the basis of F 2 - F 1 n F 2 
against the basis of F1 c~ F 2 in the appropriate distribution. 

4. Plug the results obtained in step 3 into (22)-(25), and get E and ~-. 

Steps 1 and 2 imply that combination corresponds to knowledge integra- 
tion. Steps 3 and 4 imply that the complex formulas of combination have 
some statistical semantics. 
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EXAMPLE 3 Let Bel~ denote the GBF specified in Example 1. Let Bel 2 be 
another  GBF bearing on random variables X, Y, and Z, which represents 
the following statistical models: 

Z = 1 . 5 X +  0.3 + e z,  

Y = 0.5Z + 0.1 + ey ,  

(33) 

(34) 

where X ~ N(0.2, 0•04), e z ~ N(0, 2), and ey ~ N(0, 1) are independent• 
The belief-network representation of the above model is shown in Figure 
4. Using (12), Equations (33) and (34) can be also respectively represented 
by f ( z  IX = x) = d(z, 2, 1.5x + 0.3) and f ( y  ] Z = z) = d(y, 1, 0.5z + 0•1). 
Noting that Y is conditionally independent of X given Z, the joint density 
function f ( x ,  y, z) can be obtained by multiplying f ( x )  with f ( z  IX = x) 
and f ( y  ]Z = z). We can also obtain f ( x ,  y, z) directly from (33) and (34) 
by computing the means and the covariances of X, Y, and Z. For example, 
E [ Z ]  = 1 . 5 E [ X ]  + 0.3 = 0.6, E [ Y ]  = 0 . 5 E [ Z ]  + 0.1 = 0.4, 
Coy(Y, Z )  = Cov(0.5Z + 0.1 + e r ,  Z )  = Cov[0.5(1.5X+ 0.3 + e z)  + 
0.1 + ey,  1.5X + 0.3 + e z] = 1.125 V a r ( X )  + 0•5 Var (e  z) = 1.045, etc. 
The joint density function for Bel 2 is 

[ ,000 °°4° 00 0 000465 t ] o4, 
• 1•045 2•090] 

Let us choose a common basis U = X +  Y + Z ,  V = X +  Y , W = X  for 
both Belj and Bel 2. Then Bel 2 is represented by the distribution 

f ( u , c , w )  = d[(u , / ' ,  W ) ,  

5.923 2.728 0.130) ] 
2.728 1.693 0.07 , (1.2, 0.6, 0.2) . 
0.130 0.070 0.040 

According to Theorem 1, C is spanned by U and B is spanned by {U, V, W}. 
The common uncertain variable for both Bel I and Bel 2 is V, which is like 
X~ in Theorem 1. Given U = 1, the conditional of V in Bel~ is the 
distribution of V itself, d(L,, 2, 0.5). Thus, I£ l = 2 and p l = 0.5. Since V is 
the only uncertain variable V in Bel t, terms including a 2 + u(b2 )r and o- 2 
in Theorem 1 do not exist• Given U = 1, the conditional distribution of V 

Cr--C Q 
Figure 4. The belief network for Equations (33) and (34). 
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in Bel 2 is d(v,  0.436, 0.508). Thus, ]£2 = 0.436 and /z 2 = 0.508. Similarly, 
according to (31) and (32), we have 

2.728 1.693 0 .07]  = 0 . 0 3 7 ,  

a 3 + u(b3) r = 0 . 2 +  (1 - 1.2, t . . . .  0.6)(  5.923 2.728] ' / 0 . 1 3 ]  
2.728 1.693 ] ~ 0.07 ] 

= 0.184 + 0.023t~. 

Thus, a s = 0.184 and b 3 = 0.023. By (24) and (25) we have o- 1 = 0.358 and 
a 1 = 0.507. Plugging the above values into (22) and (23), we obtain the 
combined mean vector  for U, V, and W as (1,0.507,0.196), and the 
combined  covariance matrix for V and W is 

( 0 . 3 5 8 0 . 0 0 8 )  
0.008 0.037 " 

4.2. A Coordinate-Free Representation of Combination 

The rule for combining GBFs  in Section 4.1 depends  on the choice of  a 
coordinate  system. In this section, we want to represent  it alternatively in a 
coordinate-f ree  way. The new representa t ion turns out to be elegant and 
concise. It also helps us see the deep symmetry,  i.e., commutat ivi ty  and 
associativity, o f  combinat ion.  However ,  it does not imply any improvement  
of  computa t ional  efficiencies. For  the purpose  of  numerical  computat ion,  
Liu (1995a, b) provides a third equivalent representa t ion of  the combina-  
tion rule in terms of  partial or  full sweep operat ions,  which essentially 
reduce combina t ion  of  GBFs  into spreadsheet  manipulations.  

THEOREM 2 Suppose  Bel I and  Bel 2 are two m a r k e d  G B F s  represented 

in a sample  space: 

Belj = ( C * I , t , B * I , L * I , ~ - * I , E * I ) ,  

Bel 2 = ( C  . 2  , t ,  B . 2 ,  L . 2 ,  71 . 2  , E * 2 ) ,  

where t is their c o m m o n  mark .  Then 

Bel I • Bel 2 = (C*,  t , B * , L * ,  ~-*, E * )  

= (C .1 N C * 2 , t , B  .1 N B*2 ,L  *l N L*2, ~-*l lc , ,nc ,2  

+ ~'*2lc*ln c .2 , E* l lc*~ n c *-~ + E*21c*' ~ c*:),  

where ~ *  i l c *~ ~ c*: and  E*  i l c*' ~ c *~ are respectively the restrictions o f  ~ *  i 
a n d E  *i (i = 1,2) to the intersection C .1 n C .2. 
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P roo f  W e  prove  T h e o r e m  2 using T h e o r e m  1. Thus,  we assume Bel~ 
and Bel  2 a re  the  dual  r ep re sen t a t i ons  of  the  two G B F s  (C1,B 1, L : ,  ~-1, E ~) 
and  ( C 2 , B 2 , L  2, ~.2, E2),  as def ined  in T h e o r e m  1, whose  c o m b i n a t i o n  in 
(C, B, L, ~-, E )  where  C = C 1 • C 2, B = B l • B z, L = L l • L2, and E 
and ~r are  specif ied by (22) and (23). W e  want  to show ( C * , t , B * , L * ,  
~'*, E * )  is dual  to (C, B, L, ~r, E ) w i t h  the  m a r k  t. 

G iven  any l inear  funct ional  t, suppose  hype rp l anes  S* and T*,  def ined  
as in (6), a re  dual  to subspaces  S and T, respect ively.  Then ,  accord ing  to 
D e m p s t e r  (1969), S* ~ T* is the  hype rp l ane  dual  to the subspace  S • T. 
The re fo re ,  given t as a c o m m o n  mark ,  it is easy to see f rom T h e o r e m  1 
that  C* = C *~ ~ C .2 ,  B* = B *~ ~ B  .2 ,  and L* = L *~ ~ L  .2.  Us ing  the  
basis and  the  values  of  its de te rmin i s t i c  var iab les  specif ied in T h e o r e m  1, 
the  c o m m o n  m a r k  t satisfies 

t ( D  1) = d 1, t ( D  2) = d : ,  t ( D 3 )  = d3 ,  t ( U )  = u ,  t ( V )  = t~. 

There fo re ,  t can be  wr i t t en  as po in t  (d~, d 2, d 3, u, L,, t~, t : ,  t 3 . . . .  ) in the  
sample  space,  whe re  t i is the  value  ass igned to X i by t, i = 1 ,2 ,3 .  
Accord ingly ,  C* and  B* can be r e p r e s e n t e d  as follows: 

C = C .1 ~ C .2  = { ( d l , d 2 , d 3 , u , t , , x l , x 2 , x  ~ . . . .  )}, 

B = B *l N B .2 = ( ( d t , d 2 , d 3 , u , t , , t l , t 2 , t  3 . . . .  ) ) .  

F o r  any x = ( d l , d z , d 3 ,  u , t , , x l ,  x 2 , x  3 . . . .  ) and  x ' = ( d l , d 2 , d 3 ,  u , l~ ,x '  l, 
! t 

x 2, x 3 . . . .  ) in C*, 

~ , ' ( ~ ,  ~,) = ( , , -  ~,,x, - , , , ~  - t:)(~]~) ' ( ~ , -  ~,, x', - , , ,x~ - ¢2) ~ 

= ( x  I - t  t , x : - t 2 ) G ( x '  1 - t  1 , x ~ - t 2 )  r ,  

.~ 1 

1 r * 2 ( x , x ' )  = ( u  - u , x ,  - t , , x  3 - t 3 ) ( x ; j  ) ( u  - u , x ' ,  - t l , x ~  - t3 )  r 

= ( x  t - t  l , x  3 - t . O H ( x '  1 - t  l , x ~ - t 3 )  r ,  

where  

G = 

H = 

[ (zcl~ 
) ]1 

__ ( --1 1 

]1 
__ 1 2 "~ 

~ 3  :~,, ( ~ , , )  (~,,~, zc~. 0 . 
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By some tedious computation we can verify that 

c = w-’ + th2)7b2) ‘b* -(h2)7(cT2)-’ I -(CT*)-‘b, ( CT* 1~ ’ I; 
H = w-’ + W7bJ ‘6, -(b,)7(cT1)-1 

i 
I 

-(a,) h, I (a,>-’ ’ 

where 2’ (i = 1,2), a,, a,, and b, (i = 2,3) are listed in (26) and (29)-(32). 
Therefore. 

Tr*‘(x, x’) + ‘rr*‘(x, x’) 

= (x, - f’,X, - t*,xj ~ t,)fL ‘(x’, - t’, x; - t*, x; - t,)‘, 
where R is listed in (23). According to Theorem 1, T*’ + T* *, when 
restricted to C*, is indeed r*. Finally, for any point x = (d,, d?, d,, U, I?, 
xl,xz,xj ,... )in C”, 

E”‘(x) = (PI, - [‘, #LL; - f,, /L: - tz)(Cf,) % - 1%,X, - t,,x, - tZ)7 

= [( 4, - P)Q + (/.L\ - r,,p; - qG](x, ~ l,,X? - q7, 

E**(x) = (#ui - U, & ~ t’, /L: - t&q+ - U,X, - l,,X, - t?)7 

= [(~~-u)R+(~~-tl,~L;--~)]H(xl --,,x,-t3J7, 

where G and H are as above, and Q and R are as follows: 

Q = -(X2,,,) ‘(&‘,,, C;,,)G, R = -(X;,,,m’(2:;,,X,:,,H. 

E*‘(x) + E*‘(x) is obviously a linear functional on C* with null hyper- 
plane B*. We can determine the location of its corresponding hyperplane 
that is parallel to BY by (8) and (10) with C replaced by 0 in (8). By some 
straightforward but tedious computation, we can verify that the location is 
the point (a,, uz + aI(h a3 + u,(h,)” ), which, according to Theorem 1, 
is the mean vector for X,, X2, and X, in the combined GBF. Therefore, 
E*‘(X) + E*2(x) = E*(x) when x is in C”. H 

Note that Theorem 2 is intuitive. As we see from Section 3.2, all the 
focal elements of Bel, are the hyperplanes that are on C”’ and parallel to 
B *‘, i = 1,2. Therefore, by Dempster’s rule, B*’ n B*’ is a typical focal 
element for the combined belief function. Its associated basic probability 
assignment is obtained by multiplying the basic probabilities assigned to 
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B .1 a n d  B .2  a n d  an  a p p r o p r i a t e  n o r m a l i z a t i o n  c o n s t a n t .  Thus ,  the  log 
" d e n s i t y "  o f  the  c o m b i n e d  G B F  is the  s u m  of  the  c o m p o n e n t  log " d e n s i -  
t ies ."  T h e r e f o r e ,  7r* = ~.,1 i c , , ~ c , :  + 7r,2 i c ,~nc ,_  " m a k e s  sense .  

E X A M P L E  4 L e t  Bel  1 b e  the  G B F  spec i f i ed  in E x a m p l e  2, a n d  Be l  2 be  
d u a l  to  t he  Bel  2 spec i f i ed  in E x a m p l e  3. A s  in E x a m p l e s  2 a n d  3, we 
c h o o s e  U , V , W  as a bas is .  S ince  t(U) = 1, le t  the  c o m m o n  m a r k  t = 
(1 ,0 .3 ,2 ) .  T h e n  C .1 = {(1, c ,w)} ,  B .1 = {(1,0 .3 ,w)},  L .1 = {(1,0.3,2)},  a n d  
for  any  two  p o i n t s  (1, c, w)  a n d  (1, t,', w ' )  in C *1, we have  ~- '1[(1,  v ' ,  w') ,  
(1, l,, w)] = ' 5 ( t  - 0 .3)(c  - 0.3) a n d  E*l(1, t,,w) = ½(0.5 - 0.3)(~ - 0.3). 
N o  v a r i a b l e  in Bel  2 is c e r t a i n  o r  vacuous .  Thus ,  C .2  = {(u, t,,w)}, B .2  = 
{(1,0.3,2)},  a n d  L .2  = {(1,0.3,2)}.  L e t  

0 . 1 3 0 1 - '  ( - 0 . 3 0 5  ) 
~ =  2 . 7 2 8 1 . 6 9 3 0 . 0 7  | = - 1 . 0 4 8 2 . 3 0 6  - 0 . 6 2 9  . 

0 .040 ] 27.09 

5 . 9 2 3 2 . 7 2 8  

0 .130 0 .070 

T h e n ,  fo r  any  two  p o i n t s  (u ,  t,, w)  

rr*2[(u',~,',w), (u,t,,w)] 

0.658 - 1.048 

- 0.305 - 0 .629 

a n d  (u',v',w') in C .2 ,  

E*2(u,v,w) 

= (u '  - 1 , t , '  - 0.3,  w'  - 2) 

X f ~ ( u  - 1,L, - 0 . 3 , w  - 2) T, 

= (1 .2  -- 1 , 0 . 6  -- 0.3,  0.2 -- 2) 

X ~ ( U  -- 1,L~ -- 0.3,  w -- 2) r .  

(t:' 0 . 3 , w '  ~ , [ 0 . 3 5 8 0 . 0 0 8 ) - 1 ( u - 0 . 3 )  
= - - z ) [ 0 . 0 0 8  0 .037 w -  2 ' 

E * I ( 1 ,  t , , w )  + E * 2 ( 1 ,  c , w )  

= ½(0.5 - 0 .3 ) ( t ,  - 0 .3)  + (1 .2  - 1 , 0 . 6  - 0 . 3 , 0 . 2  - 2) 

× f l ( 1  - 1 , L ,  - 0 . 3 ,  w - 2) r 

= 1 .714(t ,  - 0 .3)  - 49 .011 (w  - 2) 

= (0 .507 - 0 . 3 , 0 . 1 9 6  - z ) ~ 0 . 0 0 8  0 .037 

T h e r e f o r e ,  a c c o r d i n g  to  T h e o r e m  2, C* = C .1 n C . 2  = {(1, t,, w)}, B* = 
B *l n B .2  = {(1,0.3,2)},  L* = L .1 C~ L . 2  = {(1,0.3,2)}.  F o r  any  two p o i n t s  
(1, t ' ,  w)  a n d  (1, L/, w ' )  in C*,  

rr*l[(1,t / ,w') ,(1,c,w)] + ~ ' * 2 [ ( 1 , v ' , w ' ) , ( 1 , c , w ) ]  

= ½(L" - 0 . 3 ) ( v  - 0 .3)  + (1 - 1,c, '  + 0 . 3 , w '  - 2) 

× f ~ ( 1  - 1 , c  - 0 . 3 ,  w - 2) T 

= ( l / -  0 .3 ,  w'  - 2 ) (  _ 0.6292"806 -0.62927.09 ] l[UI w--0"3)2 
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Note that part of the above computat ion is to compare  the results with 
those obtained in Example 3. If two GBFs are represented in a sample 
space, computing the inverse of a covariance matrix is unnecessary. There-  
fore, computing rr .1 + ~_,2 and E .1 + E .2 only involves multiplications 
of matrices or additions of quadratic and linear functions. After this is 
done, it is also unnecessary to transform the quadratic function form of 
~-*~ + ~r .2 and the linear function form of E *l + E .2  into their matrix 
product forms. 

5. CONCLUSION 

This paper  emphasizes how the Dempster-Shafer  theory of finite belief 
functions is extended to the case of GBFs, which are continuous and 
noncondensable. We first briefly introduced the basic notions of finite 
belief functions. We then described GBFs in terms of this basic concepts 
and gave the reader a geometric picture of GBFs. The combination of 
GBFs is defined by the standard procedure of intersecting focal elements 
and multiplying the component  basic probabilities, except that a basic 
probability assignment for a finite belief function is replaced by a density- 
like function in a GBF. This treatment,  we believe, will give the reader 
who has never exposed to Dempster-Shafer  theory a self-contained de- 
scription of the GBF theory. It will also give a Dempster-Shafer  theorist a 
link between finite belief function and GBFs. 

A GBF can be geometrically described as a Gaussian distribution across 
the members  of a partition of a hyperplane into parallel subhyperplanes. It 
includes as special cases multivariate Gaussian distributions, linear equa- 
tions, and vacuous belief functions, which are nontrivial statistical models 
in both the classical and the Bayesian schools of thought. This paper  
formally represents a GBF by a wide-sense inner product and a linear 
functional over a variable subspace and by their duals over a hyperplane in 
a sample space. These abstract representations concisely show the full 
generality of GBFs. As illustrated by the examples in this paper  as well as 
in Liu (1995a, b), in practical applications, many statistical and 
knowledge-based models turn out to be special GBFs and can be repre- 
sented by quadratic and linear functions or their corresponding matrix 
representations. Therefore,  the abstract presentation of the theory of 
GBFs does not hinder its effective applications and efficient implementa- 
tion. 

Part of the reason for having the dual representations is that marginal- 
ization can be naturally described in a variable space and combination in a 
sample space. As we show, the combination of two GBFs in a variable 
space cannot be explicitly represented by component  inner products and 
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linear functionals. The same is true for the marginalization of a GBF in a 
sample space. However,  in applications we often have a predetermined set 
of variables of interest. In this case, with additional burden of conversion 
between covariance matrices and their inverses, both combination and 
marginalization can be easily done numerically in both a variable space 
and a sample space. 

The focal elements of a GBF in general are the subhyperplanes of a 
hyperplane. If an appropriate  basis is chosen for a variable space, this 
feature essentially reduces a GBF to a Bayesian belief function for some 
basic variables. Therefore,  the combination of GBFs can be derived from 
that for general Bayesian belief functions, which is the adaptation of 
Dempster ' s  rule. We have employed this strategy in defining the combina- 
tion of GBFs in variable spaces. We could also adapt  this strategy to derive 
the combination for non-Gaussian continuous belief functions such as t 
and exponent belief functions, if any. 

The rule for combining GBFs in a variable space is somewhat complex. 
However,  it acts as a basis for more efficient or more concise representa-  
tions. In this paper,  for example, it implies a coordinate-free representa-  
tion of combination, according to which the combined GBF is obtained by 
intersecting the component  certainty hyperplanes and summing the com- 
ponent  inner products and linear functionals over the intersection. This 
alternative representation is mathematically elegant but not computation- 
ally efficient. In Liu (1995a, b), a third representation of combination is 
obtained using full or partial sweepings. It essentially reduces the combi- 
nation of GBFs basic matrix operations, which can be done by a spread- 
sheet program. 
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