
Ain Shams Engineering Journal (2016) 7, 473–482

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej
www.sciencedirect.com
ENGINEERING PHYSICS AND MATHEMATICS
Nonlinear throughflow effects on thermally

modulated porous medium
* Corresponding author. Tel.: +91 542 6702512.

E-mail addresses: kiran40p@gmail.com (P. Kiran), mathsbsb@yahoo.

com (B.S. Bhadauria).

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.asej.2015.03.010
2090-4479 � 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Palle Kiran a, B.S. Bhadauria b,*
a Department of Applied Mathematics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University,
Lucknow 226025, India
b Department of Mathematics, Faculty of Sciences, Banaras Hindu University, Varanasi 221005, India
Received 21 September 2014; revised 3 February 2015; accepted 1 March 2015
Available online 14 May 2015
KEYWORDS

Throughflow;

Temperature modulation;

Weakly nonlinear theory;

Darcy model
Abstract Effect of vertical throughflow on Darcy convection has been investigated subject to time-

periodic temperature modulation of the boundaries. The amplitudes of temperature modulation at

the lower and upper surfaces are considered to be very small, and the disturbances are expanded in

terms of power series of amplitude of convection. A weak nonlinear stability analysis has been per-

formed for the stationary mode of convection, and heat transport in terms of the Nusselt number,

which is governed by the non-autonomous Ginzburg–Landau equation, is calculated. The effect of

vertical throughflow is found to be either to destabilize or stabilize the system for downward or

upward throughflows in the case of impermeable boundary conditions. The effect of amplitude

and frequency of modulation, Prandtl–Darcy number on heat transport has been analyzed and

depicted graphically. Further, the study establishes that the heat transport can be controlled effec-

tively by a mechanism that is external to the system.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The buoyancy driven convection in fluid saturated porous

media is of fundamental interest due to its practical applications
such as geothermal energy utilization, enhanced recovery of pet-
roleum reservoirs, insulation of reactor vessels, polymer
engineering, ceramic processing and nuclear waste repositories,
to mention a few. The enormous volume of work devoted to this

field is well documented in the literature, Ingham and Pop [1],
Nield and Bejan [2], Vafai [3]. Because of these applications,
together with the fact that porous media occur in many natural
situations, several studies have been undertaken to analyze the

effects of different phenomena connected with such media. An
excellent review of most of these studies has been reported in
Nield and Bejan [4]. In the aforementioned applications, control

of convective instability plays an important role. One of the
effective mechanisms that control convective instability is that
ofmaintaining a nonlinear temperature gradient. Recently, con-

sidering various convective flowmodels in porousmedium [5–7],
fluid layer [8–10] the phenomenon of heat ormass transfer inves-
tigated, where the concept of regulating either heat or mass
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Figure 1 A sketch of the physical problem.
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transfer is missing. The temperature gradient can be achieved by
time-dependent heating or cooling at the boundaries, the related
problems have been investigated by Nield [11], Chhuon and

Caltagirone [12], Rudraiah et al. [13], Rudraiah and
Malashetty [14], Caltagirone [15], Bhatia and Bhadauria
[16,17], Bhadauria [18–24], Bhadauria and Suthar [25],

Bhadauria and Srivastava [26], Bhadauria et al. [27],
Bhadauria and Kiran [28,29] and Kiran and Bhadauria [30].

However, several geophysical and technological applications

involve non-isothermal flow of fluids through porous media,
called throughflow (i.e., there is flow across the porous medium
and the basic flows not quiescent). Such a flow alters the basic
temperature profile from linear to nonlinear with layer height,

which in turn affects the stability of the system significantly.
The effect of throughflow on the onset of convection in a hori-
zontal porous layer has been studied by Wooding [31], Sutton

[32], Homsy and Sherwood [33], Jones and Persichetti [34].
Nield [35] and Shivakumara [36] showed that a small amount
of throughflow can have a destabilizing effect, if the boundaries

are of different types. Khalili and Shivakumara [37] have inves-
tigated the effect of throughflow and internal heat generation on
the onset of convection in a porous medium. They have shown

that throughflow destabilizes the system even if the boundaries
are of the same type; a result which is not true in the absence of
an internal heat source. The non-Darcian effects on convective
instability in a porous medium with throughflow have been

investigated in order to account for inertia and boundary effects
by Shivakumara [38]. Shivakumara and Nanjundappa [39]
investigated analytically, the effects of quadratic drag and verti-

cal throughflow on double diffusive convection in a horizontal
porous medium using the Forchheimer extended Darcy equa-
tion. It is found that, irrespective of the nature of boundaries,

a small amount of throughflow in either of its direction destabi-
lizes the system; a result which is in contrast to the single com-
ponent system. Shivakumara and Sureshkumar [40] have

studied convective instability in non-newtonian fluid saturated
porous medium in the presence of vertical throughflow and
found that throughflow has stabilizing or destabilizing effect
depending on the boundaries and the directions of the flow.

Brevdo [41] investigated three-dimensional absolute and
convective instabilities at the onset of convection in a porous
medium with inclined temperature gradient and vertical

throughflow. Barletta et al. [42] analyzed the convective roll
instabilities of vertical throughflow with viscous dissipation in
a horizontal porous medium. The effects of hydrodynamic

and thermal heterogeneity, horizontal throughflow on the onset
of convection in a horizontal layer of a saturated porous have
been investigated by Nield andKuznetsov [43]. They found that
the horizontal throughflow has no effect on the stability. When

the permeability increases in the direction of the throughflow a
small amount of throughflow may destabilize the transverse
modes and so destabilize the layer as a whole. Reza and

Gupta [44] investigated the effect of throughflow on the onset
of convection in a horizontal layer of electrically conducting
fluid, confined between two rigid permeable boundaries, and

heated from below in the presence of a uniform vertical mag-
netic field. They found that magnetic field inhabits the onset
of steady convection, and a positive throughflow is more stabi-

lizing than negative throughflow. Patil and Rees [45], investi-
gated the effects of local thermal nonequilibrium on the linear
stability of the thermal boundary layer formed by a constant
downward throughflow. They found that the basic temperature
field is altered from the pure exponential formwhich arises when
the phases are in LTE. They also found that, small values of
either inter-phase heat transfer coefficient or the porosity-

modified conductivity ratio cause the boundary layer to split
into two distinct regions, an inner region, which arises because
of the effect of the intrinsic suction velocity, and an outer region,

which is due to the poor transfer of heat between the phases.
Recently Nield and Kuznetsov [46], considering iso-flux and
iso-temperature boundaries, investigated the effect on onset of

convection in a layered porous medium with vertical through-
flow and found that throughflow has a stabilizing effect whose
magnitude may be increased or decreased by the heterogeneity.

From the above paragraph, it is observed that a huge

amount of analysis on throughflow has been discussed on
the onset of convection for various flow models. However,
not much work has been done on throughflow considering

nonlinear theory, which is essential to analyze the effect of heat
transfer on the system. Further, to the best of authors’ knowl-
edge, not even a single study which considers linear/nonlinear

thermal instability on throughflow under modulation is avail-
able in the literature. Therefore, in this paper, we intend to
study, the effect of constant throughflow on Darcy convection,

subjected to temperature modulation of the boundaries, by
making a weak nonlinear stability analysis. The heat transport
across the porous medium is quantified in terms of the Nusselt
number, obtained by solving the non-autonomous Ginzburg–

Landau equation.

2. Mathematical formulation

We consider an infinitely extended horizontal porous medium
saturated by Newtonian fluid, confined between two free–free
boundaries at z ¼ 0 and z ¼ d, and heated from below. The

temperature of the boundaries varies periodically in a time-
dependent manner. The temperature difference across the
porous medium is kept at DT. We choose Cartesian frame of

reference as, origin in the lower boundary and the z-axis in
vertically upward direction. The schematic diagram is shown
in Fig. 1, given below. It is assumed that the mechanical prop-

erties and thermal properties in x and y-directions are same.
Further, Darcy law and the Oberbeck–Boussinesq approxima-
tion are considered. Under these assumptions, the equations
which describe the system are given by the following:
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r �~q ¼ 0; ð1Þ

q0

/
@~q

@t
¼ �rpþ q~g� l

K
~q; ð2Þ

c
@T

@t
þ ð~q � rÞT ¼ jTr2T; ð3Þ

q ¼ q0 1� bT T� T0ð Þ½ �; ð4Þ

where ~q is velocity ðu; v;wÞ; l is a viscosity, K is permeability,
jT is the thermal diffusivity, T is temperature, bT is thermal
expansion coefficient, c is the ratio of heat capacities. For sim-

plicity c is taken to be unity in this paper. q is density,
~g ¼ ð0; 0;�gÞ is gravitational acceleration, T0 is the tempera-
ture at which q ¼ q0 is reference density. The externally
imposed thermal boundary conditions considered in this paper

are as follows:

T ¼ T0 þ
DT
2
½1þ �2d cosðxtÞ� at z ¼ 0

¼ T0 �
DT
2
½1� �2d cosðxtþ hÞ� at z ¼ d; ð5Þ

where e is the perturbation parameter, d represents the ampli-
tude of temperature modulation, x is the modulation fre-
quency and h is the phase difference. The basic state is
assumed to be quiescent and the quantities in this state are

given by the following:

qb ¼ ð0; 0;w0Þ; q ¼ qbðz; tÞ; p ¼ pbðz; tÞ; T ¼ Tbðz; tÞ; ð6Þ

@pb
@z
¼ l

K
w0 � qbg; ð7Þ

@Tb

@t
þ w0

@Tb

@z
¼ jT

@2Tb

@z2
; ð8Þ

qb ¼ q0 1� bT Tb � T0ð Þ½ �: ð9Þ

The solution of Eq. (8) subject to the thermal boundary condi-

tions Eq. (5), is given by the following:

Tbðz; tÞ ¼ fðzÞ þ �2dRe½f1ðz; tÞ�: ð10Þ

Here fðzÞ is the steady part, while f1ðz; tÞ is the oscillatory part
of the basic temperature field, and will be defined later. The
finite amplitude perturbations on the basic state are super-

posed in the form,

~q ¼ ~qb þ~q 0; q ¼ qb þ q0; p ¼ pb þ p0; T ¼ Tb þ T0: ð11Þ

Since, we are considering only two dimensional flow model,

therefore, introduce the stream function, w as

u0 ¼ @w
@z
; w0 ¼ � @w

@x
. Using Eq. (11) in Eqs. (1)–(4), eliminating

the pressure term, non-dimensionalizing the physical variables

by ðx; y; zÞ ¼ dðx�; y�; z�Þ; t ¼ d2

jT
t�; w ¼ jTw

�; T0 ¼ DT T�,

we obtain the following equations (after dropping the asterisk)

1

PrD

@

@t
ðr2wÞ ¼ �r2w� Ra

@T

@x
; ð12Þ

� @Tb

@z

@w
@x
� r2 � Pe

@

@z

� �
T ¼ � @T

@t
þ @ðw;TÞ
@ðx; zÞ : ð13Þ

The non-dimensionalizing parameters in the above equations

are as follows : Pe ¼ w0d
2

jT
is Péclet number, PrD ¼ /md2

KjT
is
Prandtl–Darcy number, Ra ¼ bTgDTdK
mjT

is thermal Rayleigh num-

ber. Eq. (13) shows that the basic state solution influences the

stability problem through the factor @Tb

@z
, which is given by the

following:

@Tb

@z
¼ f 0ðzÞ þ �2dRe½f 01ðz; tÞ�; ð14Þ

where f 0 ¼ PeePez

1�ePe ; f
0
1ðz;tÞ¼ ½Bðh2Þeh2zþBð�h2Þe�h2z�e�ixt; Bðh2Þ

¼ h1þh2
2

ðe�i/�eh1�h2 Þ
eh1 ðeh2�e�h2 Þ ; h1 ¼ Pe

2
; h2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2þ4k2
p

2
and k ¼ ð1� iÞ

ffiffiffi
x
2

p
.

Assuming small variation of time, and re-scaling it as

s ¼ �2t, we study the stationary mode of convection of the sys-
tem. We write the nonlinear system of Eqs. (12) and (13) in the
matrix form as given below:

r2 Ra @
@x

� @Tb

@z
@
@x
� r2 � Pe @

@z

� �
" #

w

T

� �
¼

� �2

PrD

@
@s ðr

2wÞ

��2 @T
@s þ

@ðw;TÞ
@ðx;zÞ þ �2df1ðz; sÞ

@w
@x

" #
:

ð15Þ

To solve Eq. (15), we consider impermeable and isotherm

boundary conditions as given below:

w ¼ 0 and T ¼ 0 at z ¼ 0;

w ¼ 0 and T ¼ 0 at z ¼ 1: ð16Þ
3. Amplitude equation for stationary instability

We introduce the following asymptotic expansions in Eq. (15):

Ra ¼ R0 þ �2R2 þ �4R4 þ . . . ;

w ¼ �w1 þ �2w2 þ �3w3 þ . . . ;

T ¼ �T1 þ �2T2 þ �3T3 þ . . . ; ð17Þ

where R0 is the critical Rayleigh number at which the onset of

convection takes place in the absence of temperature modula-
tion. Now, we solve the system for different orders of e.

At the lowest order, we have

r2 R0
@
@x

� @Tb

@z
@
@x
� r2 � Pe @

@z

� �
" #

w1

T1

� �
¼

0

0

� �
: ð18Þ

The solution of the lowest order system subjected to the
boundary conditions, Eq. (16) is as follows:

w1 ¼ AðsÞ sinðkcxÞ sinðpzÞ; ð19Þ

T1 ¼ �
4kcp2

d2ð4p2 þ Pe2Þ
AðsÞ cosðkcxÞ sinðpzÞ; ð20Þ

where d2 ¼ k2c þ p2.

The critical Rayleigh number and the corresponding wave
number for the onset of stationary convection are calculated,

the expressions for Rayleigh number and wave number are
given by

R0 ¼
d4ð4p2 þ Pe2Þ

4p2k2c
; ð21Þ

kc ¼ p: ð22Þ

At the second order, we have:

r2 R0
@
@x

� @Tb

@z
@
@x
� r2 � Pe @

@z

� �
" #

w2

T2

� �
¼

R21

R22

� �
; ð23Þ
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where

R21 ¼ 0; ð24Þ

R22 ¼
@w1

@x

@T1

@z
� @w1

@z

@T1

@x
: ð25Þ

The second order solutions subjected to the boundary condi-
tions, Eq. (16) is obtained as follows:

w2 ¼ 0; ð26Þ

T2 ¼ �
2k2cp

3

d2ð4p2 þ Pe2Þ2
A2ðsÞ sinð2pzÞ

þ Pek2
cp

2

d2ð4p2 þ Pe2Þ2
A2ðsÞ cosð2pzÞ: ð27Þ

The horizontally averaged Nusselt number Nu, for the station-

ary mode of convection, is given by

NuðsÞ ¼ 1þ
kc
2p

R 2p
kc
0

@T2

@z

� �
dx

h i
z¼0

kc
2p

R 2p
kc

0
@Tb

@z

� �
dx

h i
z¼0

¼ 1þ 4p4k2cðePe � 1Þ
d2Peð4p2 þ Pe2Þ2

A2ðsÞ: ð28Þ

The above results, Eqs. (21) and (22) are obtained by Lapwood
[47], Siddheshwar et al. [48,49], Bhadauria et al. [28] for Pe ¼ 0
and isotropic porous medium.

At the third order, we have

r2 R0
@
@x

� @Tb

@z
@
@x
� r2 � Pe @

@z

� �
" #

w3

T3

� �
¼

R31

R32

� �
; ð29Þ

where

R31 ¼ �
1

PrD

@

@s
ðr2w1Þ � R0

@T2

@x
� R2

@T1

@x
; ð30Þ

R32 ¼
@w1

@x

@T2

@z
þ df1ðz; sÞ

@w1

@x
� @T1

@s
: ð31Þ

Substitutingw1; T1 andT2 into Eqs. (30) and (31), we can easily
obtain the expressions for R31 and R32. Now, applying the solv-
ability condition for the existence of third order solution, we get

the Ginzburg–Landau equation for the stationary mode of con-
vection, with time-periodic coefficients, in the form

A1A
0ðsÞ � A2AðsÞ þ A3AðsÞ3 ¼ 0; ð32Þ
where A1 ¼ d2

PrD
þ 4R0p2k

2
c

d4ð4p2þPe2Þ, A2 ¼ 4R2p2k
2
c

d4ð4p2þPe2Þ �
2R0k

2
c

d2
dI1,

A3 ¼ 2R0p4k
4
c

d4ð4p2þPe2Þ2
and

I1 ¼
Z 1

0

f1ðz; sÞ sin2ðpzÞdz:

The Ginzburg–Landau equation given by Eq. (32) is a

Bernoulli equation and obtaining its analytical solution is dif-
ficult due to its non-autonomous nature. So, it has been solved
numerically using the in-built function NDSolve of

Mathematic 8 subjected to the initial condition Að0Þ ¼ a0,
where a0 is the chosen initial amplitude of convection. In our
calculations we use R2 ¼ R0, to keep the parameters to mini-
mum. For unmodulated case, the analytical solution of the

above Eq. (32) takes the form:

AðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

A2
þ C1Exp � 2A2

A1
s

h i	 
r ; ð33Þ

where A1; A3 are same as in Eq. (32), A2 ¼ 4R2p
2k2c

d4ð4p2þPe2Þ and C1,

which appears in Eq. (33), is an integration constant, can be
found by using suitable initial condition. We have calculated

the mean value of Nusselt number ðNuÞ for better understand-
ing the effect of temperature modulation on heat transport, a
representative time interval that allows a clear comprehension
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of the modulation is chosen. The interval ð0; 2pÞ seemed an

appropriate interval to calculate ðNuÞ. The time-averaged

Nusselt number ðNuÞ is defined as

Nu ¼ 1

2p

Z 2p

0

Nu ds: ð34Þ

Since the amplitude AðsÞ is obtained numerically and hence

ðNuÞ is also obtained numerically. The factor I1, determines
whether the modulation amplifies or diminishes the amplitude
of convection. A discussion of the results now follows culmi-

nating in a listing of conclusions.
4. Results and discussion

In this paper, we study the combined effect of temperature
modulation and vertical throughflow on Bénard–Darcy con-
vection in a porous medium. A weakly nonlinear stability

analysis has been performed to investigate the effect of tem-
perature modulation and vertical throughflow on heat trans-
port. The effect of temperature modulation on Bénard–Darcy

system has been assumed to be of second order Oð�2Þ. This
means we consider only small amplitude temperature modu-
lation. Such an assumption helps us in obtaining the ampli-

tude equation of convection in simple and elegant manner,
and is much easier to obtain than in the case of the Lorenz
model. The purpose of weak nonlinear theory is to study heat

transfer, which linear study could not support. External reg-
ulation of convection is important in the study of convection
in porous media. The objective of this article was to consider

such as candidates, temperature modulation and vertical
throughflow for either enhancing or inhabiting convective
heat transfer as is required by a real application. The temper-

ature modulation has been considered in the following three
cases:
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Figure 5 Effect of (a) PrD (b) Pe (c)
1. In-phase modulation (IPM) ðh ¼ 0Þ.
2. Out-phase modulation (OPM) ðh ¼ pÞ.
3. Only Lower boundary modulated (LBMO) ðh ¼ �i1Þ,

which means that the modulation effect will not be consid-

ered in upper boundary but only in lower boundary.

Since the porous medium is assumed to be closely packed,
the Darcy model is considered in governing equation. Vadasz

[50], pointed that there are some modern porous medium
applications, such as mushy layer in solidification of binary
alloys and fractured porous medium, where the value of PrD
may be considered to be unity order, therefore the time-
derivative term in the present study has been retained.
Further, this is the reason that the values of PrD have been

kept around one in our calculations. The values of d are con-
sider very small, between 0 and 0.1, since we are studying the
effect of small amplitude modulation on the heat transport.
Also, since the effect of modulation on the onset of convection

as well as on the heat transport is maximum at low frequencies,
therefore the modulation of temperature is assumed to be of
low frequency. A small amount of throughflow in a particular

direction can either destabilize or stabilize the system, there-
fore, the values of Pe are taken around one.

It can be noticed that the critical Rayleigh–Darcy number is

an even function of Pe and as Pe increases, R0 also increases,
thus onset of convection is delayed due to throughflow as shown
in Fig. 2. The reason for this according toReza andGupta [44] is

that as we increase throughflow velocity, a temperature bound-
ary layer forms at the one of the plates, this decreases the effec-
tive thickness of the stratified layer of fluid, while the
temperature difference across the layer remains constant, thus

R0 would increase with Pe. However, due to nonlinear effects
we obtain the results opposite in heat transfer. Using linear sta-
bility analysis, Reza andGupta [44] found that upward flow sta-

bilizes more than downward flow for two rigid plates.
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d; x on Nu with respect to time s.



PrD 0.5

1.0

1.5

Pe 1.0, 0.1, 2.0

a

0 5 10 15 20
1.0

1.5

2.0

2.5

3.0

N
u Pe 0.3, 0.4, 0.5

Pe 0.1,0.2,0.3

PrD 1.0, 0.1, 2.0

b

0 5 10 15 20
1.0

1.5

2.0

2.5

3.0

3.5

N
u

0.1

c

Pe 1.0,PrD 1.0, 2.0

0.3
0.2

0 5 10 15 20
1.0

1.5

2.0

2.5

3.0

3.5

N
u 2

6020

PrD 1.0,Pe 0.1, 0.3

d

0 5 10 15 20
1.0

1.5

2.0

2.5

3.0

3.5

N
u

Figure 6 Effect of (a) PrD (b) Pe (c) d (d) x on Nu with respect to time s.

OPM IPM LBMO

Pe 0.1,PrD 1.0, 0.3, 2.0

0 5 10 15 20
1.0

1.5

2.0

2.5

3.0

3.5

N
u

Figure 7 Comparison of three types temperature modulations.

unmodulated system
modulated system

Pe 0.1,PrD 1.0, 0.1, 2.0

0 5 10 15 20
1.0

1.5

2.0

2.5

3.0

N
u

Figure 8 Comparison between modulated and unmodulated

cases.

478 P. Kiran, B.S. Bhadauria
One can observe from Eq. (32) that the coefficients
A1; A2 > 0 and A2 is a function of time. The solution gives as

s ! �1; A! 0 is unstable solution, and a new stable solu-

tion develops, r ¼ �
ffiffiffiffi
A2

A3

q
as s!1, whatever be the value of

A0. This is known a supercritical pitch fork bifurcation. For
the range of s as ð�1;1Þ the coefficient A2 takes +values,
the origin has become unstable. Two new stable fixed points

appear on either side of the origin as shown in Figs. 3 and 4.
If we assume that A is very small in Eq. (32), then the equation
may be approximated by As ¼ rA whose solutions are A ¼ er�s.
Thus, for very small amplitude initial disturbances the flow

grows in strength is exponentially. Also R2 represents the devi-
ation of Ra away from critical Rayleigh number, these distur-
bances eventually attained by nonlinear effects given in Eq. (33).

The numerical results for Nu, obtained from the expression
in Eq. (28) by solving the amplitude Eq. (32) are presented in
the (Figs. 5–8). It is clear to see the expression in Eq. (28) in

conjunction with Eq. (32) that Nu(s) is a function of system
parameters. The effect of each type of modulation on heat
transport is shown in (Figs. 5–8), wherein the plots of
Nusselt number Nu versus s are presented. It is found from

the figures that the value of Nu starts with one and remains
constant for quite some time, thus showing the conduction
state initially. Then the value of Nu increases with time, thus

showing the convection state and finally becomes constant
on further increasing s, thus achieving the steady state.

For IPM, the results are presented in Fig. 5a–d. From

Fig. 5a, we observe that Nu increases with Prandtl–Darcy
number, the effect is clearly visible at small values of PrD.
On further increasing the time the effect of increasing PrD on

heat transport diminishes. These results are earlier obtained
by Bhadauria et al. [27], Bhadauria and Kiran [28,29] without
throughflow. The effect of Pe on heat transfer is given in
Fig. 5b, for the cases of downward and upward throughflows.
It is found that upward throughflow (Pe > 0) has destabilizing
effect, whereas downward throughflow (Pe < 0) has stabiliz-
ing effect. The same results were also obtained by Nield [35]
in the case of a fluid layer with small amount of throughflows.



Figure 9 Effect of phase angle (h) and frequency (x) of modulation on mean Nusselt number Nu.
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The present results are compatible with the results obtained by
Shivakumara and Sureshkumar [40] and Suma et al. [51].

According to Shivakumara and Sureshkumar [40], the destabi-
lization effect may be due to the distortion of steady-state basic
temperature distribution from linear to nonlinear by the

throughflow. A measure of this is given by the basic state tem-
perature and this can be interpreted as a rate of energy transfer
into the disturbance by interaction of the perturbation convec-
tive motion with basic temperature gradient. The maximum

temperature occurs at a place where the perturbed vertical
velocity is high, and this leads to an increase in energy supply
for destabilization. Further, the amplitude d and the frequency

modulation x both have negligible effects on heat transport in
this case given in Fig. 5c.
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In Fig. 6a–d, we have depicted the variation of Nu with
time s for out of phase modulation. It is found that Nu starts
with one, increases with increasing time s, and then becomes

oscillatory. However, on further increasing the time, we
observe from Fig. 6a and b that the effects of PrD, Pe on heat
transport are found to be similar to those of IPM. Further, we

found in Fig. 6c that the effect of amplitude of modulation is
to increase the magnitude of Nu, thus increasing the heat trans-
port and advancing the convection. We note the following in

respect of the influence of amplitude on heat transport.

Nud¼0:1 < Nud¼0:2 < Nud¼0:3

Also, from Fig. 6d, we observe that an increase in the fre-
quency of modulation decreases the magnitude of Nu, and so

the effect of frequency of modulation on heat transport dimin-
ishes. At high frequency, the effect of temperature modulation
on thermal instability disappears altogether. This result agree
with the linear stability results of Venezian [52], where the cor-

rection in the critical value of Rayleigh number due to temper-
ature modulation becomes almost zero at high frequencies.
The effect of amplitude and frequency of modulation is of sim-

ilar effect under rotation speed modulation [53] which is orig-
inating idea from temperature modulation. The results in the
case of lower boundary temperature modulation only were

also obtained, but found to be qualitatively very similar to
those obtain in OPM case, therefore not presented here.
Further, the magnitude of Nu in lower boundary temperature
modulation only is found to be less than that in the case of

OPM. In Fig. 7, a comparison of results of in phase modula-
tion, out of phase modulation and when only lower boundary
temperature is modulated, is presented. It is found that the

magnitude of Nu for LBMO is greater than that obtained in
case of IPM, but less than that of OPM as shown below:

NuIPM < NuLBMO < NuOPM:

In Fig. 8, we presented the unmodulated result of Eq. (33)

and compared it with the present results of modulated case. It
is found that the unmodulated results are very similar to the
results obtained for IPM, which also confirms that in-phase

modulation does not affect heat transport in the system.
We also have presented our results (according to

Siddheshwar et al. [49]) on mean Nusselt number (Nu), which

depends on both the phase difference h and frequency x of
modulation than only on the choice of the small amplitude
modulation. Fig. 9a–d shows the effect of phase angle h on

(Nu) and Fig. 9e–h shows effect of x on (Nu). From the fig-
ures it is evident that for a given frequency of modulation

there is a certain range of h in which (Nu) increases with

increasing h and another range in which (Nu) decreases.

Thus, one can conclude that, the suitable combination or
choices of x and h can be used to regulate heat transfer
depending on the demands on heat transport in an application

situation. Heat transfer can be controlled (enhanced or
reduced) with the external mechanism of temperature modula-
tion effectively. We also can observe our results in Fig. 9 are

the results which are similar to Siddheshwar et al. [49] for the
Newtonian fluid case. It is clear that for temperature modula-
tion the boundary temperatures should not be in in-phase

modulation (synchronized), where the effect of modulation
is negligible on heat transport.
5. Conclusions

We have analyzed the effect of temperature modulation and
vertical throughflow on Bénard–Darcy convection by perform-

ing a weakly nonlinear stability analysis resulting in the real
Ginzburg–Landau amplitude equation. The following conclu-
sions are made:

1. The effect of in-phase modulation is negligible on heat
transport, while it is oscillatory in nature for OPM and
LBMO.

2. The effect of d and x is also found to be negligible on heat
transport when the boundaries temperature is modulated in
phase.

3. Effect of PrD is to enhance the heat transport for all three
types of modulations at lower values of time and same at
large values of time.

4. The effect of throughflow (Pe) enhances heat transport for
upward direction, diminishes for downward direction of all
three types of modulations.

5. The parameters h and x show significant effect on Nu given
in Fig. 9.

6. Supercritical pitch fork bifurcation exits for Eq. (32).
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