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SUMMARY

Epigenetic regulation and, in particular, DNA methyl-
ation have been linked to the underlying genetic
sequence. DNA methylation quantitative trait loci
(meQTL) have been identified through significant
associations between the genetic and epigenetic
codes in physiological and pathological contexts.
We propose that interrogating the interplay between
polymorphic alleles and DNAmethylation is a power-
ful method for improving our interpretation of risk
alleles identified in genome-wide association studies
that otherwise lack mechanistic explanation. We
integrated patient cancer risk genotype data and
genome-scale DNA methylation profiles of 3,649 pri-
mary human tumors, representing 13 solid cancer
types. We provide a comprehensive meQTL catalog
containing DNA methylation associations for 21%
of interrogated cancer risk polymorphisms. Differen-
tially methylated loci harbor previously reported and
as-yet-unidentified cancer genes. We suggest that
such regulation at the DNA level can provide a
considerable amount of new information about the
biology of cancer-risk alleles.

INTRODUCTION

The epigenetic code is characterized as being inherited through

cell division and even transgenerationally. The exact mecha-

nisms that reprogram the DNA methylation landscape during

spermatogenesis and embryogenesis have only been partially

explored and are the subject of current investigation (Seisen-

berger et al., 2013). It is likely that a concerted function of the

genetic blueprint and DNA binding factors maintains DNA

methylation profiles from mother to daughter cells and from
parents to their offspring (Rando, 2012). Integration of DNA

methylation profiles and the underlying genotypes reveals a

close relationship between regional CpG density and DNA

methylation levels, with CpG islands usually lacking modifica-

tions and CpG-poor regions being mostly hypermethylated

(Weber et al., 2005). Because this simplified model cannot be

sustained for many hypomethylated regions (Molaro et al.,

2011), including enhancers, insulators, and CpG-poor pro-

moters, additional sources evidently help to shape the DNA

methylome.

Screening the genomic sequence and epigenomic modifica-

tions at high resolution revealed a direct relationship between

the underlying genetic sequence and DNA methylation at spe-

cific sites and led to the definition of methylation quantitative

trait loci (meQTL) that illustrate the tight interplay between the

two layers of information (Gibbs et al., 2010; Zhang et al.,

2010; Shoemaker et al., 2010; Heyn et al., 2013). Particularly,

variations in the genetic code at SNPs were associated with

DNA methylation levels at proximal CpG sites. Because

these cis-acting associations are likely to appear independently

of CpG densities an obvious connection is lacking. Therefore,

intermediate mediators, such as DNA binding factors or sec-

ondary chromatin structures (McDaniell et al., 2010), are

suspected to provide a functional link with the genetic and

epigenetic code. This relationship between the genotype and

epitype (displaying DNA methylation levels at a given cytosine

in the genome) has been determined for natural human varia-

tion (Bell et al., 2011; Fraser et al., 2012; Heyn et al., 2013),

neurological disorders (Gibbs et al., 2010; Zhang et al., 2010),

and rheumatoid arthritis (Liu et al., 2013), highlighting its

importance for various phenotypes, including those relating

to diseases. Despite the obviously great informative potential

of meQTLs in various disease contexts, no comprehensive

studies have so far addressed their contribution to the biology

of cancer cells.

The tight connection between the two layers of infor-

mation might help explain the hitherto unknown connections
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Table 1. Cancer Types Interrogated for Genotype-Epitype Associations

Cancer Type Type ID

Epitype/Genotype Data

GWAS-SNPs meQTLsCancer Healthy

Bladder urothelial carcinoma BLCA 153 18 6 1

Breast invasive carcinoma BRCA 576 78 28 5

Colon adenocarcinoma COAD 255 38 7 1

Glioblastoma multiforme GBM 110 0 2 1

Kidney renal clear cell carcinoma KIRC 281 160 4 2

Liver hepatocellular carcinoma LIHC 98 47 6 1

Lung adenocarcinoma LUAD 303 32 5 2

Pancreatic adenocarcinoma PAAD 49 7 16 3

Prostate adenocarcinoma PRAD 172 49 23 5

Skin cutaneous melanoma SKCM 46 0 8 2

Stomach adenocarcinoma STAD 261 2 2 0

Thyroid carcinoma THCA 435 56 2 1

Uterine corpus endometrioid carcinoma UCEC 381 42 0 0

Total 3,120 529 109 23a

Number of analyzed samples/SNPs GWAS-SNPs is shown. Cancer-related risk polymorphisms present in GWASdb and interrogated on the analyzed

genotyping platform. meQTLs, number of risk alleles with significant association to differential CpG methylation.
ars401681 is reported for BLCA and PAAD.
between intergenic and intronic SNPs and the various pheno-

types identified in genome-wide association studies (GWAS)

(Freedman et al., 2011; Hernandez and Singleton, 2012; Kilpinen

and Dermitzakis, 2012). Herein, genotype-epitype connections

might also further clarify the causal relationships underlying

risk alleles found to be expression quantitative trait loci (Li

et al., 2013).

Considering the close interplay between genetic variability

and epigenetic gene regulation, we hypothesize that compre-

hensive analysis of both layers in a context-specific manner

could greatly improve our understanding of genetic variability

associated with disease biology. Realizing that a major portion

of cancer-related SNPs are located in a noncoding context

with elusive functional impact, the connection between the

genotype and epitype might facilitate GWAS interpretation

and allow the identification of novel cancer gene candidates.

Consequently, we integrate DNA methylation and genotype

data of 3,649 primary samples representing the most frequent

solid cancer types and propose that DNA methylation is an

important component in cancer risk biology.

RESULTS

Hypothesis-Driven Discovery of Genotype-Epitype
Connections at Cancer Risk Alleles
We determined associations between SNPs identified as

being cancer related in genome-wide association studies

(GWAS-SNPs) and cis-acting DNA methylation quantitative

trait loci (cis-meQTLs). Assuming the genotype-epitype interac-

tion to be predominantly detectable in a cancer-type-specific

manner, we separately analyzed the association between

GWAS-SNPs and DNA methylation levels for 13 cancer types

that rank among the most frequent solid cancer types (SEER
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Cancer Statistics 2005–2009, Age-Adjusted SEER Incidence

Rates and Trends for the Top 15 Cancer Sites) (Table 1). Geno-

type and epitype data from large cohorts of well-characterized

cancer samples were obtained from The Cancer Genome

Atlas (TCGA) consortium. In total, using the available geno-

type data sets, we were able to interrogate 109 GWAS-SNPs

related to the respective cancer types and integrated matched

DNA methylation and genetic data from 3,649 samples (3,120

primary tumor and 529 matched healthy control samples,

Table 1).

GWAS-SNP annotations for the respective cancer type

were extracted from related studies present in the GWAS

database (Li et al., 2012). In order to determine associations

between the genetic and epigenetic codes comprehensively,

we combined data from high-resolution genotyping (Affymetrix

Genome-Wide Human SNP Array 6.0) and epityping (Illumina

HumanMethylation450 BeadChip) array platforms, analyzing

906,600 SNPs and 485,577 CpG sites, respectively. The DNA

methylation BeadChip interrogates DNA methylation levels in

promoter regions of virtually all protein-coding genes, but

also noncoding RNAs (ncRNAs) and regulative loci (Sandoval

et al., 2011).

To define cis-acting associations between GWAS-SNPs and

DNA methylation levels of CpG sites in a 1 Mb region flanking

the cancer-related polymorphic site, we applied a multivariate

model (random forest selection frequency [RFSF]) for cancer

and healthy samples independently and stratified by tissue

types. We used the RFSF method, because it is known to

perform better in identifying quantitative trait loci compared

with other univariate or multivariate approaches (Michaelson

et al., 2009, 2010). The method determines direct correlations

between polymorphic sites (GWAS-SNPs) and CpG methylation

levels enriched over a predefined background.



Differential DNA Methylation Associated with Breast
Cancer Risk Alleles Identified Potentially Novel Cancer
Genes
To evaluate the merits of the study design and the applied

methods, we initially interrogated epigenetic GWAS-SNP asso-

ciations in the context of breast cancer, which comprises the

largest sample cohort interrogated in our study and is the most

common tumor type in women throughout the world (SEER

Cancer Statistics 2005–2009, Age-Adjusted SEER Incidence

Rates and Trends for the Top 15 Cancer Sites Females). In terms

of cancer predisposition and risk alleles, breast cancer is one

of the best-defined cancer types, having been analyzed in

numerous GWA studies. Fifty-seven genetic variants associated

with disease risk have been determined in 23 independent

studies (Li et al., 2012). Most importantly, the vast majority of

the polymorphic sites is located in a noncoding sequence and

consequently does not directly affect gene products. However,

their proximity or intronic location with respect to cancer-related

genes, such as the estrogen receptor 1 (ESR1) (Deblois and

Giguère, 2013), the fibroblast growth factor receptor 2 (FGFR2)

(Katoh, 2008), or telomerase reverse transcriptase (TERT)

(Horn et al., 2013; Huang et al., 2013), suggests that there is

a direct regulatory influence of genetic variants, although under-

lying mechanisms remain difficult to identify. Intriguingly, a num-

ber of breast cancer risk polymorphisms were recently reported

to be enriched at differentially methylated enhancer sites that

are correlated with intertumoral expression variation (Aran and

Hellman, 2013). Although they did not analyze direct genotype-

epitype associations, the study provides an outlook on the po-

tential of data integration to study cancer risk allele biology.

In order to determine significant associations between genetic

variability and epigenetic variation, we performed an integrative

analysis of matched genotype and epitype data from 576 inva-

sive breast carcinomas and 78 normal breast tissues (Table 1).

Using the available genotype data sets (Affymetrix Genome-

Wide Human SNP Array 6.0), we were able to interrogate the

epitype association of 28 out of 57 breast cancer-related

GWAS-SNPs. Most strikingly, we observed significant associa-

tions between five risk alleles and CpG methylation levels within

a 1 Mb region flanking the polymorphism (RFSF, false discovery

rate [FDR] %0.05; Figure 1). Particularly, the five cis-acting

GWAS-SNPs were associated with DNA methylation levels of

seven CpG sites, with one SNP showing multiple associations

(Table S1). These genes include reported oncogenes, such as

v-myc myelocytomatosis viral oncogene homolog (MYC) and

collagen, type I, alpha 1 (COL1A1), but might also represent

novel cancer gene candidates not previously described as being

cancer related.

We were able to detect the association between five out

of seven GWAS-SNPs and differential CpG methylation in

matched healthy breast tissue (RFSF, FDR %0.05), suggesting

these meQTLs are established even before cancer onset

(Table S1). Importantly, the associations could be confirmed

in an independent set of tumor-adjacent normal breast tissues

using Sanger and bisulfite pyrosequencing for geno- and epityp-

ing, respectively (Mann-Whitney test, Figure S1). Further, we

wondered whether we could detect the epigenetic associations

of the breast cancer risk polymorphisms that were present in
the healthy cohort even outside the breast tissue context. Impor-

tantly, integrating genotype and epitype data of 12 additional

tissue types, five out of five breast meQTLs could also be de-

tected in other tissue types (Table S2), suggesting that the

epigenetic risk alleles occur independently of tissue types and

draw attention to their stable character and potential function

as risk epi-polymorphisms.

In particular, the association of the breast risk allele rs2380205

with DNA methylation levels in the promoter of F-box protein,

helicase, 18 (FBXO18) is an interesting case, because the gene

codes for a DNA-dependent ATPase and DNA helicase with

ubiquitin ligase activity (Kim et al., 2002) and is involved in the

regulation of homologous recombination and stress-induced

apoptosis (Figures 2A–2C), processes reported to be aberrant

in familial and sporadic breast cancer.

By integrating genotype and epitype data from a large cohort

of breast cancer samples, we determined significant associa-

tions between breast cancer risk alleles and epigenetic aberra-

tions at already reported and potentially novel cancer genes.

Consequently, given the power of the methods applied, we

carried out an integrated epitype analysis for the GWAS-SNPs

associated with the most frequent solid tumor types.

Comprehensive Profiling for Risk meQTLs in Solid
Human Cancer Types
To compile a comprehensive catalog of differential DNA methy-

lation alleles related to cancer risk, we did an analysis of 12 addi-

tional cancer types, representing close to 3,000 human samples

(2,544 primary tumors and 451 healthy control samples, Table 1).

In total, we identified 29 additional genotype-epitype associa-

tions related to 18 risk alleles in ten cancer types (RFSF, FDR

%0.05; Figure 1). The entire set of genotype-epitype associa-

tions is listed in Table S3. Illustrative examples displaying

differential DNA methylation in gene promoters with a previously

identified association with tumorigenesis include tumor protein

63 (TP63) (Tonon et al., 2005) and growth arrest specific 8

(GAS8) (Whitmore et al., 1998) in lung adenocarcinomas and

melanomas, respectively.

Similar to the breast cancer analysis, 72% (21 out of 29) of

meQTLs could also be detected in a matched healthy context

(RFSF, FDR %0.05; Table S3) and replicated in a technical and

biological validation study of tumor-adjacent normal tissues

(Figure S2), suggesting these associations to potentially partici-

pate in cancer predisposition. Although all risk allele-associated

differentially methylated genes are potentially directly associ-

ated with cancer formation, we believe it worthwhile to highlight

a special case relating to aberrant methylation of the oncogene

TERT, which was previously reported as being aberrantly regu-

lated in a cancer context (Horn et al., 2013; Huang et al.,

2013). Reverse transcriptase is implemented in the maintenance

of telomere ends and prevents telomere shortening during cell

division and oncogenesis. A genetic variation in the second

intron of TERT (rs2736100) was previously related to a higher

risk of lung adenocarcinomas (Landi et al., 2009), although

the functional consequences on the oncogene remain un-

known. Integrating an epitype analysis of 303 primary lung

adenocarcinomas revealed an association of the risk allele with

a differentially methylated CpG site in the gene promoter region
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Figure 1. Schematic Overview of the DNA Methylation Quantitative Trait Loci Associated with GWAS Cancer Risk Polymorphisms

A total of 23 GWAS-SNPs (inner ring) had significant associations with DNA methylation levels of 36 CpG sites, representing 27 unique genes (outer ring)

(Krzywinski et al., 2009). Random forest selection frequencies for cancer (up) and healthy (down) samples are displayed. Significant associations in healthy

cohorts are indicated (red box). The position of the gene linkers (black lines) represents the location on the respective chromosomes. The associated cancer

types are color coded.
of TERT, approximately 4 kb downstream of the risk SNP (Fig-

ures 3A and 3B). Taking advantage of the high resolution of the

DNA methylation array, we were able to interrogate further the

methylation level of flanking CpG sites in the CpG-dense pro-

moter region of TERT. In this way, we identified several flanking

loci that were differentially methylated, consistent with the iden-

tified meQTL (Figure 3C). Thus, we suggest that the epigenetic

modification could participate in deregulating TERT in the

context of lung tumors. Similarly, the association of cancer risk

alleles and epigenetic regulation of TERT has been recently

described in an ovarian cancer context (Bojesen et al., 2013).

Likewise, the additional here listed epigenetic associations
334 Cell Reports 7, 331–338, April 24, 2014 ª2014 The Authors
might help explain the functional role of risk alleles in their

respective tissue types.

In order to underscore the functional impact of differential

CpG methylation, we further performed correlation analysis

between DNA methylation levels of risk allele associated

CpG sites and transcript abundance of assigned target genes

(Spearman’s correlation test, Table S3). Here, we observed

highly significant correlations between CpG methylation levels

and the expression of crucial cancer genes, including MYC,

TERT, and TP63, further supporting differential DNA methylation

to present an important mechanism that might mediate genetic

cancer risk (Figure S3).



Figure 2. The Breast Cancer Risk SNP rs2380205 Is Associated with Differential CpG Methylation in the FBXO18 Promoter

(A) Epigenetic association studies revealed a significant (RFSF, FDR%0.05) connection between rs2380205 and twoCpG sites (cg12219469 and cg16407947) in

the promoter region of FBXO18. Significance values are shown of the CpG sites and gene locations in the interrogated 1 Mb window flanking the breast-cancer-

related SNP.

(B and C) Relationship between the breast cancer risk genotype (rs2380205) and DNAmethylation level at cg16407947 (B) and cg12219469 (C) in the promoter of

FBXO18. Allele frequencies are displayed.
DISCUSSION

Comprehensive profiling of the genome with respect to variable

loci between individuals discordant for certain phenotypes re-

vealed a plethora of SNP sites with a significant association

with diverse phenotypes, including cancer. However, the func-

tional consequence of risk polymorphisms was often hard to

determine because their gene products were mainly unaffected

by the variation. Consequently, we hoped to explain the lack of

any direct connection by adding another layer of information.

Considering epigenetic gene regulation as a potential inter-

mediate event connecting genotype-phenotype associations,

we integrated high-resolution epitype data with well-known

cancer risk polymorphisms. The resulting catalog of genotype-

epitype associations is a rich source of information with which

we may interpret GWAS-defined cancer risk markers.

A Catalog of Epigenetic Associations to Cancer
Risk Alleles
Taken together, massively integrating genotype data from can-

cer-related polymorphic sites with potentially cis-affected CpG

methylation levels and analyzing cancer types that rank among

the most abundant solid tumor types (SEER Cancer Statistics

2005-2009, Age-Adjusted SEER Incidence Rates and Trends

for the Top 15 Cancer Sites Both Sexes), the risk meQTL catalog
described here features significant association of 21% (23 out of

109) of the cancer-related polymorphisms interrogated. As the

risk polymorphisms are predominantly located in a noncoding

context, their epigenetic association might aid functional inter-

pretation and further clarify their role in cancer biology. The

majority of the genes reported (apart from MYC and COL1A1)

have not previously been defined as cancer genes on the basis

of their genetic alterations (Cancer Gene Consensus, Sanger

Institute). Among those, the risk allele association to FBXO18

represents a particularly interesting case as the gene product

actively participates in the formation of double-strand breaks

and the activation of tumor protein p53 (TP53) -dependent

apoptosis following DNA replication stress (Fugger et al., 2013;

Jeong et al., 2013). FBXO18-deficient cells have an impaired

ability to activate the cytotoxic-stress-induced cascade, result-

ing in increased cell survival. FBXO18-deficient cells are hyper-

sensitive to topoisomerase inhibitors, due to their involvement

in mitotic progression (Laulier et al., 2010). FBXO18 is involved

in processes reported to be aberrant in familial and sporadic

breast cancer, and although the gene itself has not yet been

reported in the context of cancer, its functional implication in

DNA repair draws attention to its possible importance for dis-

rupting DNA integrity and thereby cancer formation. According

to its regulatory association to genetic breast cancer risk,

FBXO18 might represent an epigenetically regulated breast
Cell Reports 7, 331–338, April 24, 2014 ª2014 The Authors 335



Figure 3. Association of the Lung Cancer

Risk SNP rs2736100 and Differential Pro-

moter Methylation of TERT

(A) Epigenetic association studies revealed a

significant (RFSF, FDR % 0.05) connection be-

tween rs2736100 and a CpG (cg03341025) in the

promoter region of TERT. Significance values

are presented of the CpG sites and gene locations

in a 100 kb window flanking the lung cancer-

related SNP.

(B) Relationship between the lung cancer risk

polymorphism (rs2736100) and DNA methylation

level at cg03341025 in the TERT promoter. Allele

frequencies are displayed.

(C) Differential DNA methylation in the TERT pro-

moter region. The identified meQTL (cg03341025)

and flanking CpG sites display altered DNA

methylation associated with the lung cancer

risk polymorphism. One horizontal line repre-

sents DNA methylation levels of a single lung

cancer patient with the indicated genotypes

(black: AA; dark gray: AB; light gray: BB). Dis-

tances of neighboring CpG sites to the meQTL

are indicated.
cancer candidate gene. However, further studies need to clarify

the functional implication of FBXO18 in breast tumorigenesis.

Detecting the risk allele associations in a cancer and healthy

context supports the potential implementation of the meQTLs

as a risk factor for cancer and potential integral components

of cancer risk allele biology, wherein aberrant DNA methylation

might function as a mediator for the respective risk alleles.

Likewise, genetic risk polymorphisms display germline variants

present in the diseased tissues and thematched normal counter-

parts. Breast cancer 1, early onset (BRCA1), the most commonly

mutated gene in inherited breast cancer, is a well-studied

example of breast cancer susceptibility. Although, germline mu-

tations are present in all healthy tissue types, they mainly exhibit

increased predisposition for breast and ovarian cancer, being

responsible for 40% of inherited breast cancer. In line, we de-

tected breast cancer risk meQTLs in cancer samples and normal

tissues, including nonrelated tissue types.

However, as the underlying data sets (cancer samples and

adjacent normal tissues) did not include control subjects

without disease, future studies have to elucidate if GWAS risk

alleles exhibit similar relationships in cancer-unrelated donors,

further supporting meQTLs as mechanistic player in cancer

predisposition.

By presenting previously undescribed genotype-epitype-

phenotype connections in human cancers, we make it easier

to interpret risk alleles. Given the significance of the epigenetic

association described in this study, we suggest that their
336 Cell Reports 7, 331–338, April 24, 2014 ª2014 The Authors
annotation in genotype databases, such

as the SNP database (SNPdb), should

be taken into consideration. In this

context, the annotation of expression

QTLs already provides important extra

information with which to evaluate the

biological consequences of genetic vari-
ation. The addition of meQTL information could further support

an accurate interpretation.

EXPERIMENTAL PROCEDURES

The entire set of experimental procedures is available in Supplemental

Information.

Methylation Quantitative Trait Loci Identification

Methylation quantitative trait loci associated with the entire set of GWAS-SNP

on the genotyping platform (Affymetrix Genome-Wide Human SNP Array 6.0)

were identified by interrogating CpG sites (represented on the Infinium

HumanMethylation450) located in a ±1 Mb window flanking the polymorphic

sites. The window was reduced by 100 Kb steps if it contained more than

1,000 CpGs. We used the multivariate random forest selection frequency

(RFSF) method, as described in Michaelson et al. (2010), to identify associa-

tions between a SNP and its neighboring CpG sites.

The Random Forest algorithm is implemented in R in the randomForest

package (Liaw and Wiener, 2002). First, we set the random forests algorithm

to generate 2,000 trees for classification, and calculated the selection fre-

quency (SF) of the variables (CpG sites) used in building the classification

model. Bias correction was then applied to the frequencies by subtracting

the deviation between the SF of the variable under the null hypothesis

(no association between the SNP and the methylation value) and the average

SF of all variables under the null hypothesis; we used 1,000 forests of ten

trees to derive the SF under the null hypothesis, randomly sampling the three

possible genotypes with the same frequency, and applying the correction

to the original SF. Finally, in order to measure how closely the genotype was

associated with the SF of a CpG site, we constructed an empirical null distri-

bution from the SFs of ten forests of 2,000 trees by permuting the genotypes



of our samples, and deriving a q value for every CpG by comparing its SF with

those under the null hypothesis. Here, the null distribution was created with

the assumption that the selection frequencies were not linked to any relation-

ship between the SNP and the CpG methylation values. Thus, we shuffled

the genotypes of the samples and calculated ten forests of 2,000 trees,

each to create a null distribution of SF following our null hypothesis. Then,

we calculated the empirical cumulative distribution of the null SF values, which

was used to test our initial hypothesis that the SF is linked to the relationship

between CpG methylation and genotype. For selected associations, our initial

hypothesis stated that the SF was higher than what would be expected under

the null hypothesis. The number of tests depended on the number of CpG

probes on the HumanMethylation450 BeadChip located within the analyzed

window flanking the respective risk SNPs (range: 0–978, mean: 391). Accord-

ingly, the p value was adjusted by FDR.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.03.016.
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